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We study the dynamics of axion-like fields in F-theory and suggest that they can serve as inflatons in 
models of natural inflation. The axions arise from harmonic three-forms on the F-theory compactification 
space and parameterize a complex torus that varies over the geometric moduli space. In particular, this 
implies that the axion decay constants depend on the complex structure moduli that can be fixed by 
background fluxes. This might allow tuning them to be super-Planckian in a controlled way and allow for 
interesting single field inflationary models. We argue that this requires a localization of the three-forms 
near regions of strong string coupling, analogously to the reasoning that GUT physics requires the use of 
F-theory. These models can admit a tensor to scalar ratio r > 0.1.
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1. Introduction and summary

Inflation was proposed to solve several cosmological puzzles, 
including the homogeneity, isotropy, and flatness of the universe, 
as well as the absence of relic monopoles [1–3]. The simplest mod-
els of inflation are driven by slowly rolling scalar fields [4]. Infla-
tionary models also predict small inhomogeneities in the cosmic 
microwave background that can be used to test the inflationary 
paradigm. Recently, the Bicep2-experiment announced the discov-
ery of a non-zero signal of primordial gravitational waves in the 
B-mode power spectrum [5]. The measured B-mode spectrum was 
well-fitted with a lensed Λ-CDM model with a tensor to scalar 
ratio r = 0.20+0.07

−0.05. If this result survives further tests it places 
remarkably strong constraints on inflationary models. In particu-
lar, it suggests that large field models in which the inflaton rolls 
over super-Planckian distances are favored. To control such a sce-
nario within an effective field theory, an embedding into a theory 
of quantum gravity such as string theory is desired. Such a UV 
completion allows to examine the flatness of the potential for such 
large field ranges.

There have been various suggestions how to realize an inflation 
dynamics within string theory [4] and only a few can accommo-
date a large tensor to scalar ratio as has now been observed. One 
way to construct a well-controlled large field inflationary model is 
to postulate that the scalar inflaton admits a classical shift symme-
try that is preserved perturbatively. Such a Peccei–Quinn symmetry 
can naturally protect the two scales of inflation necessary to roll 
over a long distance in a flat potential [6].

Many candidate axions with these properties arise in string 
theory as zero modes of the R-R and NS-NS form fields. The ex-
http://dx.doi.org/10.1016/j.physletb.2014.10.043
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plicit value of the axion decay constants in string theory has been 
examined in various string compactifications. A systematic study 
appeared, for example, in [7]. Already earlier, it was claimed that 
axion decay constants are always sub-Planckian in string theory. 
More precisely, it was argued that in a controlled compactification 
one has to be at large volume and small string coupling, at least in 
some dual frame, which naturally leads to a suppression of the ax-
ion decay constants. In this work we argue that F-theory provides 
a natural set of axions that can admit large axion decay constants. 
More precisely, we claim that two crucial points about inflation in 
string theory can be successfully addressed: (1) We identify axions 
with perturbative shift-symmetries that are the lightest fields dur-
ing inflation in a controlled setting generalizing [8]; (2) We argue 
that in F-theory field excursions can be potentially super-Planckian. 
The axion decay constants crucially depend on a calculable holo-
morphic function of the complex structure moduli that can be 
evaluated also for geometries with strong string coupling regions. 
A non-perturbatively induced scalar potential is periodic in the 
axions, but also depends on the aforementioned holomorphic func-
tion.

It was suggested in [8] that axions arising from the R-R two-
form in Type IIB orientifold compactifications with minimal four-
dimensional supersymmetry might serve as candidate inflatons. To 
realize such a scenario it was important that moduli stabiliza-
tion using background fluxes and non-perturbative effects [9–11]
ensures that these axions can be the lightest fields during infla-
tion. Furthermore, they combine with the NS-NS two-form axions 
into complex fields Ga and are therefore not directly linked to 
the geometric moduli of the compactification space. In fact, the 
Ga parameterize a complex torus with metric depending on the 
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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geometric moduli of the compactification space and the string cou-
pling. The arguments of [12] state that in a controlled region of 
moduli space, i.e. at weak string coupling and large volume, the 
metric for axions encoding the axion decay constants is always 
sub-Planckian. Therefore, [8] implemented the N-flation scenario 
[13,14], in which inflation is driven by N axions using an assis-
tance effect [15,16].1

In this work we want to propose a scenario that might circum-
vent the no-go results of [12] by using an F-theory background. 
It should be stressed, however, that we do not expect that one 
can tune the axion decay constants arbitrarily large without ruin-
ing the inflationary potential. Instead, we suggest that the limits 
from the weakly coupled Type IIB analysis will be weakened and 
a wider range of possibilities for model building is accessible in 
F-theory. The precise upper limits on the axion decay constants 
will depend on the form of the scalar potential, which we discuss 
in more detail in Sections 2.2 and 3.3. We will also not comment 
on the impact of further corrections to the Kähler potential, such 
as α′-corrections. While they might be crucial for such an ex-
treme scenario with large axion decay constants their calculation 
is beyond the scope of this work. We will therefore work in the 
moderately large volume limit of the geometry and focus on pure 
gs corrections encoded by the F-theory compactification geometry.

1.1. Description of the scenario: a landscape of computable axion decay 
constants

In order to obtain large axion decay constants, we propose 
to consider an F-theory setup. We first note that the axion de-
cay constants of the R-R two-form axions are proportional to the 
string coupling. While suppressed at weak string coupling, there 
can be an enhancement in backgrounds with strong string coupling 
regions. F-theory allows to geometrically describe Type IIB back-
grounds in which the complexified string coupling τ = C0 + i/gs

varies over the compact six-dimensional space [18]. More pre-
cisely, one interprets τ as the complex structure modulus of an 
auxiliary two-torus, and encodes the background by an elliptically 
fibered geometry with two additional real dimensions. Keeping 
N = 1 supersymmetry in four-dimensions requires this space to 
be an elliptically fibered Calabi–Yau fourfold Y4 with a base B3. 
The space–time filling seven-branes are located at the singular-
ities of the elliptic fiber, i.e. when the torus pinches. Therefore, 
one finds that general F-theory backgrounds will admit regions 
of strong string coupling. Let us recall, that one cannot globally 
employ the Sl(2, Z)-symmetry of Type IIB to exchange strong and 
weak coupling. While there exist seven-brane configurations that 
admit a genuine weak coupling limit [19], this is generally not the 
case. In fact, when aiming to embed Grand Unified Theories (GUTs) 
into F-theory, an inherently non-perturbative configuration is re-
quired [20,21]. Let us also stress that such F-theory backgrounds 
automatically account for certain instanton corrections becoming 
relevant at strong coupling. The effective theory, at least for the 
moduli sector relevant in this work, can nevertheless be reliably 
calculated [22].

In the F-theory background the considered axions arise from 
harmonic three-forms on the Calabi–Yau fourfold Y4 that admit 
one leg in the elliptic fiber. There are N such forms, where 2N is 
the number of harmonic three-forms on Y4 minus the number of 
harmonic three-forms on the base B3. Indeed, these axions cor-
respond in Type IIB to R-R and NS-NS two-form axions as well 
as Wilson line moduli on seven-branes. The three-forms on Y4
parameterize a complex torus T2N

c , defined in (24), with metric 

1 See also [17] for a different attempt to realize N-flation in string theory.
depending on the complex structure moduli and Kähler moduli of 
Y4. This metric determines the axion decay constants and takes 
the simple form

f 2
ab = i

V

∫
Y4

J ∧ Ψ̄a ∧ Ψb, (1)

where Ψa are (2, 1)-forms depending on the complex structure 
chosen on Y4, J is the Kähler form, and V is the volume of Y4. 
A more detailed discussion of (1) can be found in Section 3. The 
complex structure dependence of Ψa allows to compute the axion 
decay constants in various regions in moduli space. Furthermore, 
the stabilization of complex structure moduli by fluxes has been 
investigated intensively [9–11]. In fact, the counting of flux vacua 
suggests that there are a vast number of vacua in complex struc-
ture moduli space near strong curvature regions [23,24]. A variety 
of computable axion decay constants therefore seems attainable 
even at controllably large volume. Depending on the value of the 
axion decay constants, one can implement either models of single 
axion natural inflation or N-flation. Clearly, also axion monodromy 
models [25–32] should be attainable in F-theory.

The functional dependence of the axion decay constants on the 
complex structure moduli can be computed for specific Calabi–Yau 
fourfolds using methods known from the computation of periods.2

We will not attempt to perform such a computation here. Instead, 
we will employ a local picture and motivate that large values can 
indeed arise if the axions localize in the internal space near certain 
seven-brane configurations.

1.2. Single axion model and GUTs on seven-branes

The simplest models one can consider arise from geometries 
with N = 1. In order to obtain inflationary dynamics in such a 
setup, it is necessary to either engineer super-Planckian axion de-
cay constants f 2, or to roll over several periods of the axion. The 
single axion now lives on a two-torus T2

c with complex structure 
induced by the complex structure of the Calabi–Yau fourfold Y4. As 
an elliptic curve the complex structure of this T2

c can be encoded 
by a single function h varying holomorphically over the complex 
structure moduli space of Y4. For the axion decay constant f 2 we 
find the relation f 2 ∝ (Im h)−1. While Im h ≈ Imτ = 1/gs � 1 at 
weak string coupling, we claim that Im h can be small when local-
izing the axion also near a strong coupling seven-brane. In order 
to see this, we will motivate that in a patch B ⊂ B3 one can write

f 2 ∝ 1

Vb

∫
B

(Imτ )−1 Jb ∧ ω̃2, (2)

where ω̃2 is localizing the axion in the patch B, Jb is the Kähler 
form, and Vb is the volume of B3. Let us stress that the fact that 
the axions arise from three-forms with one leg in the elliptic fiber 
allows to localize the physics of these fields in the base B3. The 
claim is that (2) can pick up large contributions from strong string 
coupling regions.

Strong coupling regions in an F-theory compactification are 
generic, but are particularly crucial for constructing F-theory GUTs. 
In these constructions the GUT group arises from a seven-brane 
stack on a four-cycle S in B3. In order to obtain the necessary 
Yukawa structure, the geometry has to have points on S where the 
local gauge symmetry enhances to an exceptional group E6, E7, or 
E8 [20,21]. One can envision that the axion is localized near such 
an exceptional point as depicted in Fig. 1.

2 See, for example, Refs. [33,34] for the study of fourfold periods.
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Fig. 1. Localization of the axion support (dashed line) near a strong coupling point.

Furthermore, in such a case one will also find that the complex 
field G containing the inflating axion Re G will correct the GUT 
gauge coupling function as

α−1
GUT = Vol(S) + κ(Im h)−1(Im G)2, (3)

where κ is a model-dependent number encoding the intersection 
number with S . This coupling has to be fixed at the GUT scale 
of 3 × 1016 GeV. Crucially, this will also choose a frame for the 
Sl(2, Z) symmetry of T2

c and render the notion of having large 
(Im h)−1 well-defined. In other words, as we discuss in more detail 
in Section 3.3, moduli stabilization of the Kähler sector is linked to 
the value of f 2 in two ways: (1) f 2 directly depends on the vac-
uum value of the Kähler form Jb, (2) the correct definition of the 
N = 1 coordinates of the volume moduli is modified by G and has 
non-trivial monodromies on T2

c .

2. Inflation driven by axions

In the following we review some basics on natural inflation 
[6,35]. We introduce the basic constructions in Section 2.1. A can-
didate supergravity embedding is described in Section 2.2. We will 
argue in the next section that such a supergravity theory can arise 
in F-theory.

2.1. Brief review of natural inflation

Let us start with a set of axion-like scalars ca , a = 1, . . . , N . 
By definition these admit a perturbatively preserved Peccei–Quinn 
shift symmetry

ca → ca + λa, (4)

where λa are constants. The Lagrangian for these fields takes the 
form

L = 1

2
f 2
ab∂μca∂μcb − V . (5)

The f 2
ab might depend on other scalar fields of the theory, but are 

perturbatively independent of ca . Only non-perturbative effects can 
induce a subleading ca dependence.

To briefly discuss the phenomenological properties of such a 
model we assume that all fields determining f 2

ab have been fixed to 
their minimum and diagonalize f 2

aa = f 2
a . Canonically normalized 

scalars θa are obtained as

θa = ca fa, (6)

where no sum is performed. If the axions ca are periodic with pe-
riod 2π the accessible field ranges are

−π < ca ≤ π, − faπ < θa ≤ faπ. (7)

Since the shift symmetry (4) protects the theory from perturbative 
corrections in ca , a scalar potential can only be induced by non-
perturbative effects. Schematically, neglecting all cross couplings, 
the potential for the normalized axions θa takes the form

V
(
θa) = Λ4

0 +
∑

a

Λ4
na

(
1 − cos

[
naθ

a/ fa
])

, (8)

n

where Λ0 is the cosmological constant at the vacuum θa = 0, {na}
is a model dependent set of integers, and Λ4

na
are the scales at 

which the Peccei–Quinn symmetries (4) are broken. One observes 
that the continuous symmetry (4) is broken by V to a discrete 
subgroup determined by the set {na}.

A theory with axions ca and scalar potential (8) allows for mod-
els of natural inflation [6] or chaotic inflation for small θa [36]. Let 
us introduce the slow roll parameters for a separable potential V
as in (8). In this case the slow roll parameters are given by

ε = M2
P

2

∑
a

(
V ,a

V

)2

, η = M2
P min

a

(
V ,aa

V

)
, (9)

where V ,a ≡ ∂θa V and V ,aa = ∂2
θa V , and M P = 2.436 × 1018 GeV

is the reduced Planck mass. The slow roll conditions read ε < 1
and |η| < 1 and define a multi-dimensional subspace in the fields 
θa where inflation takes place. In this inflationary region of the 
field-space the relevant physical observables can be defined as a 
function of the potential V and its derivatives only. For example, 
the tensor to scalar ratio r, is given by

r = 16ε. (10)

Therefore, it is straightforward to evaluate r for the scalar potential 
(8). As was noted in [15,16,13,14], even if each of the axions θa

rolls over a distance smaller than M P , an assistance effect for N
axions can ensure a sufficient number of e-folds and a large r.

Of particular importance in this work will be the case of one 
axion θ = c · f . This yields the simple and elegant model of natural 
or chaotic inflation. In a general string compactification one might 
encounter numerous axions that are counted by the topological 
numbers of the compactification space. However, the masses of 
these axions can differ significantly during inflation, such that ef-
fectively only one field should be viewed as the inflaton. In such a 
scenario, however, the axion has to roll over a distance larger than 
M P . In particular, calculating r one finds

r = 8

(
M P

f

sin(θ/ f )

1 − cos(θ/ f )

)2

, (11)

where we have set Λ0 ≈ 0 and f1 ≡ f , n1 = 1 in (8). This simple 
formula implies that in order to have 0.1 < r < 0.2 one has to have 
a super-Planckian axion decay constant f [35]. Furthermore, in a 
single field model the width of the potential must exceed the Lyth 
bound [37]

�θ ≥ M P

√
2r, (12)

where �θ is the field excursion during inflation.
The value of r is also related to the height of the potential de-

termining the scale of inflation. Concretely, one finds

V 0 = (
1.94 × 1016 GeV

)4 r

0.12
. (13)

This implies that for r > 0.1 the scale of inflation is at least 
1016 GeV, which is also the GUT scale at which gauge cou-
pling unification occurs. Compatibility of natural inflation with the 
claimed Bicep2-results has been recently discussed in [38].

2.2. Embedding into supergravity

Before discussing axion inflation in F-theory it will be instruc-
tive to consider the encountered embedding into a purely four-
dimensional supergravity setup. On the one hand, this will allow 
us to already comment on the properties of the appearing func-
tions. On the other hand, by comparing with the Type IIB weak 
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coupling setup [8], we find that by requiring large axion decay 
constants, one is naturally led to consider F-theory setups.

Four-dimensional N = 1 supergravity theories require the spec-
ification of a Kähler potential K and superpotential W to encode 
the relevant parts of the action. The scalar potential is then given 
by

V = eK (
K AB̄ D A W D B W − 3|W |2), (14)

where K AB̄ is the inverse Kähler metric and D A is the Kähler-
covariant derivative with respect to the complex Kähler coordi-
nates.

The axions are complexified into fields Ga = ca + ida , with da

real scalars in the same N = 1 multiplet. In order that the shift 
symmetry is preserved perturbatively, the Kähler potential should 
only depend on Ga − Ḡa . Indeed, in our F-theory setting with one 
Kähler structure modulus T , the Kähler potential takes the form

K = Kcs − 2 logVb,

(6Vb)
3/2 ≡ T + T̄ + 1

4
C cs

ab

(
Ga − Ḡa)(Gb − Ḡb), (15)

where Kcs and Ccs
ab generally depend on a number of additional 

complex fields zk , the complex structure moduli. In F-theory we 
will find that Ccs

ab can in fact be written as

Ccs
ab = (

Im hab)−1
, (16)

where hab(z) is a holomorphic function of the zk . The axion de-
cay constants are trivially computed from this Kähler potential for 
small Re Ga to be

f 2
ab = 2∂Ga∂Ḡb K = 3

(Im hab)−1

T + T̄
. (17)

Therefore, both the vacuum value of Re T > 0 and Im hab > 0 will 
crucially influence the size of the axion decay constants in this 
setup.

The superpotential can contain a classical piece Wflux(z) only 
depending on the zk and a non-perturbative contribution Wnp:

W = Wflux(z) + Wnp(z, G, T ). (18)

One notes that the non-perturbative part depending on Ga is al-
ways suppressed by Re T and hence should take the form

Wnp = Θ(z, G)e−T . (19)

Within string theory this is not surprising, since Re T → ∞ corre-
sponds to decompactification to a higher-dimensional theory with-
out superpotential [39–42]. We will discuss the form of Θ(z, G) in 
Section 3.3, and only make some general remarks in the following. 
Since Im Ga has a Peccei–Quinn shift symmetry, it should only de-
pend on eina Ga

, i.e. arise from non-perturbative effects. This implies 
that after fixing zk and T to their vacuum values, one encounters 
an effective non-perturbative superpotential

Weff
(
Ga) =

∑
na

Λ2
na eina Ga

, (20)

where one sums as over a set of integer vectors {na}. The effec-
tive superpotential (20) allows to induce the scalar potential (8) for 
the axions ca = Re Ga . In order to realize a simple natural inflation 
or N-flation model it is crucial that the Λ2

na and the exponential 
e−na Im Ga

sufficiently suppress higher harmonics for the ca .
Before turning to the construction of the described supergravity 

theory in F-theory, it is worth making the following simple obser-
vation. As we will see in the next section, the effective theory is 
only valid for sufficiently large Re T , but it can equally well be ap-
plied for all values of Im hab > 0. An interesting regime to consider 
is therefore

Im hab � 1, (21)

since it allows the axion decay constants (17) to be large, in 
fact, potentially super-Planckian. If this regime can be reliably ap-
proached in a string theory construction, a single axion model can 
implement inflation with a large r given in (11). However, de-
riving the above data in weakly coupled Type IIB string theory, 
one finds Im hab ∝ 1/gs , where gs is the string coupling constant. 
Therefore, one has to leave the weak coupling regime to allow 
for (21). Here F-theory comes into the game and we suggest that 
f 2
ab > M2

P implies that one has to use a full-fledged F-theory set-
ting. It is interesting to remark that this is analogous to the fact 
that Grand Unified Theories cannot be studied in weakly coupled 
Type IIB string theory.

3. Inflation from F-theory axions

Let us consider F-theory compactified on an elliptically fibered 
Calabi–Yau fourfold Y4 with base threefold B3. This theory corre-
sponds to Type IIB string theory on B3 with seven-branes located 
at the singularities of the elliptic fibration. The four-dimensional 
effective theory is minimally supersymmetric, such that its spec-
ifying data include a Kähler potential and superpotential. For the 
analysis of the moduli action it will be sufficient to apply the re-
sults of [22].

3.1. F-theory axions and their decay constants

Crucial for our F-theory models is the fact that the effective 
four-dimensional theory arising from such a reduction admits

N = h2,1(Y4) − h2,1(B3) (22)

complex scalars Ga [11,22]. Here hp,q(Y4), hp,q(B3) are the Hodge 
numbers of the manifolds Y4, B3. To simplify our analysis we 
consider base manifolds B3 with h2,1(B3) = 0 in the following. 
Furthermore, recall that h3,0(Y4) = 0 for every Calabi–Yau fourfold 
that yields an N = 1 effective theory in four space–time dimen-
sions. To define the Ga we use the dual M-theory picture, and 
expand the M-theory three-form C3 as

C3 = iGaΨ̄a − iḠaΨa, (23)

where the Ψa , a = 1, . . . , N form a basis of H2,1(Y4). Since the 
Ψa have one leg in the elliptic fiber, performing the M-theory to 
F-theory limit shows that the fields Ga correspond to modes of the 
R-R and NS-NS two-forms and Wilson line moduli of seven-branes 
[22].

From (23) one realizes that the Ga are coordinates on a complex 
N-dimensional torus

T
2N
c = H2,1(Y4)/H3(Y4,Z), (24)

which varies over the geometric moduli space of the manifold Y4. 
The complex structure on T2N

c will be induced by the complex 
structure on Y4 and hence will vary over the space of complex 
structure deformations of Y4. The metric Gab on T2N

c takes the 
form

Gab = 1

2V

∫
Y4

Ψ̄a ∧ ∗Ψb = i

2V

∫
Y4

J ∧ Ψ̄a ∧ Ψb. (25)

where V = ∫
Y4

J 4 is the volume and J is the Kähler form of Y4. 
This metric encodes the four-dimensional kinetic terms of Ga as 
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Lkin = Gab∂μGa∂μḠb . One notes that Gab depends on the complex 
structure deformations through Ψa and the Kähler structure de-
formations through the appearance of J and V . Importantly, one 
expects that one can thus follow T2N

c into the interior of the com-
plex structure moduli space of Y4.

The metric (25) can be derived from a Kähler potential [22], 
which for the simple case of having h1,1(B3) = 1 is of the form 
(15). In this case the Kähler form J on the base B3 is proportional 
to the single harmonic form ωb. Comparing the metric (25) with 
(17) and (15) one finds

Ccs
ab = 2i

∫
Y4

ωb ∧ Ψ̄a ∧ Ψb. (26)

The complex structure dependence of Ccs
ab therefore arises from 

the fact that the notion of Ψa being a (2, 1)-form depends on the 
choice of complex structure on Y4.

The form (16) of Ccs
ab can now be inferred as follows. Let us 

introduce a real symplectic basis (αa, βb) on H3(Y4, Z) satisfying∫
Y4

ωb ∧ βb ∧ αa = δb
a , (27)

∫
Y4

ωb ∧ αa ∧ αb =
∫
Y4

ωb ∧ βa ∧ βb = 0.

The (2, 1)-forms Ψa can be expanded in this basis as

Ψa = 1

2

(
Im hab)−1(

βb − hbcαc
)
, (28)

where hab is a symmetric matrix that depends holomorphically 
on the h3,1(Y4) complex structure deformations zk . This can be 
justified by the fact that H2,1(Y4) can be chosen to vary holomor-
phically over the space of complex structure deformations. Indeed, 
setting

ψa = 2 Im habΨb = βb − hbcαc, (29)

one finds ∂z̄k ψa = 0, for a holomorphic hbc(z). Inserting the ex-
pansion (28) into (26) one evaluates by using (27) that Ccs

ab =
(Im hab)−1, just as claimed in (16).

In order to implement axion inflation one crucially has to show 
that the classical Kähler potential is independent of the axions 
Re Ga = ca . This is true in the above setup, since ImΨa is inde-
pendent of the complex structure moduli. Expanding the M-theory 
three-form C3 = b̃aβ

a − c̃aαa in the basis (27) one finds by com-
parison with (23) and using (28) that the complex coordinates are 
defined as

Ga = c̃a − habb̃a, (30)

and the shift symmetry of C3 translates to a shift-symmetry of 
ca = c̃a − Re habb̃b . This justifies the simple form of the Kähler po-
tential (15). A detailed derivation can be found in [22].

Let us note that using the axions ca was first suggested in the 
weakly coupled Type IIB N-flation scenario of [8], and later used 
in axion monodromy inflation [25,27–30]. At weak coupling the 
axions ca can be the zero-modes of the R-R two-forms C2, and the 
coordinates Ga are given by Ga = c̃a − τ b̃a . In this case one finds

hab = τδab, (31)

where τ = C0 + ie−φ is a four-dimensional complex scalar field 
comprising the R-R zero-form C0 and the dilaton φ. As stressed 
before, at weak coupling Im τ � 1 and the axion decay constants 
are naturally sub-Planckian. Inflation then requires the use of an 
assistance effect [15,16], as suggested for the N-flation scenario of 
[13,14].

Let us close this section by noting that hab(z) can be computed 
explicitly for a given Calabi–Yau fourfold example. The required 
techniques are similar to the ones for computing the complex 
structure dependent periods of the (4, 0)-form Ω on Y4. In fact, 
by considering the variation of Hodge-structures, a basis ψa of 
H2,1(Y4) varying holomorphically over the complex structure mod-
uli space is expected to satisfy a second order homogeneous dif-
ferential equation in the complex structure moduli zk . This should 
allow to derive the moduli dependence of ψa explicitly. While it 
would be interesting to do that, we will take a more local route 
in the following to infer properties about hab . This will also hint 
to the fact that Y4 should admit certain singularities that lead to 
four-dimensional gauge groups.

3.2. Decay constant in a one axion model

Let us next discuss the simplest possible model and assume 
that the geometry satisfies

h2,1(Y4) = 1, h1,1(B3) = 1, (32)

with h2,1(B3) = 0 as above. In this case one finds a single axion 
c ≡ c1 as the real part of a single complex field G .

The complex field G parameterizes a complex one-dimensional 
torus T2

c as defined (24). Recall the basic fact that such a torus can 
be mapped to an elliptic curve:

T
2
c : ỹ2 = 4x̃3 − g2(z)x̃ − g3(z), (33)

by using the Weierstrass ℘-function (x̃, ỹ) = (℘, ℘′). The coeffi-
cient functions g2, g3 depend on the complex structure induced 
on T2

c , and hence on the complex structure moduli zk of Y4. To re-
late the g2(z), g3(z) to the holomorphic function h(z) introduced 
in (28), we note that ψ defined in (29) is given by ψ = β − hα, 
where (α, β) span the lattice H3(Y4, Z). Therefore, again applying 
a standard fact about elliptic curves, one finds the relation

j(h) = 1728
g3

2

g3
2 − 27g2

3

, (34)

where j is the j-invariant of the elliptic curve. The axion decay 
constant for the single axion is given by

f 2 = 3
(Im h)−1

T + T̄
. (35)

The key question is whether the function Im h of the complex 
structure moduli of Y4 can be small such that f becomes large.

In order to proceed we aim to relate the elliptic curve (33) to 
the elliptic fiber of the Calabi–Yau manifold Y4. Let us first recall 
some basic facts about elliptic fibrations. The equation describing 
Y4 can be brought into the Weierstrass form

Y4 : y2 = 4x3 − f (u, z)x − g(u, z). (36)

In contrast to (33), however, the coefficient functions depend both 
on the coordinates u on B3 and on the complex structure moduli 
zk . The complex structure τ of the elliptic fiber is given by j(τ )

expressed as a function of f , g as in (34) with g2 → f and g2 → g . 
Clearly, also τ depends both on the coordinates u on B3 and the 
complex structure moduli zk .

In order to relate τ and h we employ a local picture. The 
(2, 1)-form Ψ can be locally written as

Ψ = 1
(Imτ )−1ω̃ ∧ (dx − τdy) (37)
2



206 T.W. Grimm / Physics Letters B 739 (2014) 201–208
where ω̃ is a two-form supported on a patch B in the base B3. 
Both ω̃ and τ depend on the location on B3 and the integral (25)
reduces on B as

f 2 = 1

Vb

∫
B

(Imτ )−1 Jb ∧ ω̃2, (38)

where we have integrated over the torus fiber with normalized 
volume form dx ∧ dy and localized to B. In (38) we further use 
that the base Kähler form Jb and volume Vb arise when taking the 
M-theory to F-theory limit V−1 J |B3 → V−1

b Jb [22]. One concludes 
that the axion decay constants can indeed gain large contributions 
near strong coupling regions in the base B. Interestingly, this is a 
local configuration and we believe that an explicit computation for 
an appropriate seven-brane configuration will confirm this result.

Let us observe that (38) at first seems ill-defined, since τ is 
only defined up to an overall Sl(2, Z) monodromy of the elliptic 
fiber. In fact, such a monodromy can exchange a D7-brane into 
a general (p, q)-seven-brane. This symmetry translates into the 
Sl(2, Z) symmetry of T2

c . In the vacuum, however, a frame for this 
symmetry is chosen when considering a concrete moduli stabiliza-
tion scenario. Indeed, the definitions of the h1,1(B3) complex fields 
Tα containing the cycle volumes of Y4 are non-trivially shifted by 
Ga [22]. For h1,1(B3) = 1 one finds

T = V2/3
b + iρ − 1

4
Ccs

abGa(Gb − Ḡb), (39)

where ρ is the R-R four-form axion. Hence, a general Sp(2N, Z)

symmetry transformation of T2N
c will non-trivially shift the Kähler 

coordinates Tα . Recall that also the GUT gauge coupling is given by 
the combination nα

GUT Re Tα , where the constant vector nα
GUT deter-

mines the location of the GUT-brane in B3. Hence, fixing the gauge 
coupling on the observable brane will equally choose a frame for 
the symmetry of T2N

c . In the final subsection we will collect fur-
ther comments on moduli stabilization and the generation of a 
potential for Ga .

3.3. Remarks on moduli stabilization

In the final part of this letter we comment on moduli stabiliza-
tion and the generation of an axion potential. To begin with, note 
that the complex structure moduli of Y4 can be stabilized using 
background four-form fluxes G4 on Y4. In the four-dimensional ef-
fective theory the scalar potential arises from a superpotential [45]

W (z) =
∫
Y4

Ω(z) ∧ G4 (40)

where Ω is the (4, 0)-form on Y4 depending on the complex struc-
ture deformations zk . Moduli stabilization with fluxes was studied 
intensively [9,10]. In particular, it was argued in [23,24] that a 
large fraction of the vacua derived from (40) are in the interior 
of the complex structure moduli space.

Clearly, in addition to stabilizing the complex structure mod-
uli zk using (40) one also needs to find a potential for the Kähler 
structure moduli Tα . Following the suggestion of [46], one can 
stabilize these fields using a non-perturbatively generated super-
potential

W (T ) =
∑
nα

Θnα e−nα Tα , (41)

where the sum runs over a model dependent set of integers 
nα classifying allowed non-perturbative configurations in F-theory 
[47].

The coefficient functions Θnα can, in general, holomorphically 
depend on all other complex scalar fields of the theory. In partic-
ular, they can be a non-trivial functions of the complex structure 
deformations zk and the fields Ga . The precise definition of Tα , 
which arises from the world-volume action of a brane instanton, 
suggest that the Θnα (z, G) are theta-functions on the torus T2N

c
[39–41]. For example, for a single Kähler modulus Θ(z, G) takes 
the form

Θ(z, G) = f (z)
∑

na∈Γ

e
1
2 ihabnanb+ina Ga

, (42)

where Γ is some model dependent integer lattice. For instance, Γ
can be the lattice of supersymmetric fluxes supported on the brane 
instanton, as discussed e.g. in [42–44].

In order to obtain the potential for the fields Ga we make the 
following observations. There are two contributions to the scalar 
potential for Im Ga . Firstly, there is a term arising from expanding 
the prefactor eK in the N = 1 scalar potential (14) as

eK = e〈K 〉(1 + 2 f 2
ab Im Ga Im Gb + ...

)
, (43)

where we have inserted the Kähler potential (15) and f 2
ab given in 

(17), and expanded for small Im Ga . One observes that the arising 
term can give a significant contribution to the mass of Im Ga when 
f 2
ab is large. Secondly, the dependence of the superpotential (41)

with (42) on the fields Im Ga induces additional contributions to 
the scalar potential.

In contrast, the Kähler potential is independent of ca = Re Ga . 
Therefore, a periodic potential of the form (8) is induced by (41)
with (42). In order to build models of natural inflation or N-flation 
it will be crucial to ensure that higher harmonics for the ca are 
suppressed. Investigating simple toy examples, one realizes that 
this is challenging for large f 2

ab ∝ (Im hab)−1 in (42), and that there 
will be a model-dependent upper bound on f 2

ab with suppressed 
higher harmonics.

4. Conclusions

In this letter we have studied models of natural inflation real-
ized in F-theory. The inflatons were chosen to be axions arising 
from harmonic three-forms with one leg in the elliptic fiber of 
the compactification Calabi–Yau fourfold. In the four-dimensional 
N = 1 effective theory the inflating axions are the real parts of 
complex fields Ga . These are singled out, since only Im Ga appear 
in the Kähler potential of the theory. The axions correspond to 
R-R or NS-NS two-form axions, and seven-brane Wilson line ax-
ions in Type IIB string theory. The three-forms span a complex 
N-dimensional torus T2N

c with complex structure and metric de-
pending on the geometric moduli of Y4. In contrast to weakly cou-
pled Type IIB compactifications, the F-theory axion decay constants 
are non-trivial functions over the complex structure moduli space 
of Y4. It is conceivable that a systematic fixing of complex struc-
ture moduli using the well-known flux superpotential will allow 
for a rich value distribution of axion decay constants. It would be 
desirable to compute the complex structure dependence explicitly 
for specific Calabi–Yau fourfold examples. While this is expected 
to be possible for Calabi–Yau fourfolds with few complex struc-
ture moduli, it will be challenging to perform such computations 
for fourfolds with GUT singularities. For such situations a local ap-
proach would be desirable at first.

An estimation or computation of additional corrections, such as 
α′-corrections, to the axion decay constants would be also desir-
able. It should be stressed that our main focus in this work was 
on the purely complex structure dependent part of this coupling. 
It might be possible that additional corrections depending on the 
Kähler moduli are also important, since one can only work at mod-
erately large volume to not additionally suppress the value of the 
axion decay constants.
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The main claim of this paper is that F-theory provides the 
opportunity to access possibly super-Planckian axion decay con-
stants in a controlled way including gs-dependent instanton cor-
rections. We argued that large contributions to the axion decay 
constants arise when the axions are localized in strong coupling 
regions on the base space B3. Strong coupling effects are nec-
essary to realize GUTs in F-theory, but could also occur near a 
hidden seven-brane. To establish an invariant notion of strong cou-
pling it was also crucial to fix the symmetries of T2N

c that we 
argued to be linked to the overall Sl(2, Z) symmetry of the F-
theory setup. The latter symmetry can be used to locally transform 
strong into weak string coupling. If the axions are localized near 
complicated seven-brane configurations, however, this symmetry 
might only permute which brane-regions contribute dominantly 
to f 2. Furthermore, a frame for the symmetries of T2N

c is chosen 
once moduli stabilization is implemented. In particular, expanding 
the non-perturbative superpotential and keeping only the leading 
terms in the Kähler structure moduli Tα and the Ga will break the 
symmetries.

Clearly, it remains to be an important open task to find concrete 
examples with large axion decay constants f 2

ab and a sufficiently 
flat scalar potential. One challenging part in this endeavour will be 
to identify models with scalar potentials arising from instanton ef-
fects that sufficiently suppress higher harmonics for the inflations 
ca . The success will depend on the flux-lattice Γ appearing in (42)
and the vacuum expectation values for the stabilized moduli in-
cluding Im Ga .

Let us end with a final comment concerning reheating in these 
setups. At the end of natural inflation the axions oscillate around 
their minimum and decay into various coupled modes [6,35,38]. In 
particular, a coupling maca Tr(F ∧ F ) can yield decays into the GUT 
or a hidden sector gauge fields. In our setting ma is a seven-brane 
flux. An appropriate choice of ma therefore allows to control the 
size of the decays in this channel, similar to the discussion of [31]. 
It would be interesting to study reheating in this F-theory setting 
in detail.
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