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Abstract

Let G = (V, E) be a simple and undirected graph with a vertex set V and an edge set E. A totally irregular total k-labeling

f : V ∪ E → {1, 2, . . . , k} is a labeling of vertices and edges of G in such a way that for any two different vertices x and x′, their

weights wt f (x) = f (x) +
∑

xy∈E f (xy) and wt f (x′) = f (x′) +
∑

x′y′∈E f (x′y′) are distinct, and for any two different edges xy and x′y′

their weights f (x) + f (xy) + f (y) and f (x′) + f (x′y′) + f (y′) are also distinct. A total irregularity strength of graph G, denoted by

ts(G), is defined as the minimum k for which G has a totally irregular total k-labeling. In this paper, we determine the exact value

of the total irregularity strength for double-star S n,m, n,m ≥ 3 and graph related to it, that is a caterpillar S n,2,n, n ≥ 3. The results

are ts(S n,m) =
⌈

n+m−1
2

⌉
and ts(S n,2,n) = n.
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1. Introduction

Let us consider a simple, connected and undirected graph G with a vertex set (V(G) and an edge set E(G)). A

labeling of a graph G is a mapping that carries a set of graph elements into a set of integers, called labels (see

Wallis [14]). If the domain of mapping is a vertex set, or an edge set, or a union of vertex and edge sets, then the

labeling is called vertex labeling, edge labeling, or total labeling, respectively. In his survey, Gallian[5] shows that

there are various kinds of labelings on graphs, and one of them is an irregular total labeling.

For a graph G, Bača et al. [4] defined a labeling f : V(G) ∪ E(G) → {1, 2, . . . , k} to be a vertex irregular total
k-labeling if for every two different vertices x and y the vertex-weights wt f (x) � wt f (y), where the vertex-weight

wt f (x) = f (x) +
∑

xz∈E f (xz). A minimum k for which G has a vertex irregular total k-labeling is defined as the total
vertex irregularity strength of G and denoted by tvs(G). They obtained the exact values of the total vertex irregularity

strength for cycles, stars, complete graphs and prisms. Moreover, Nurdin et al. [11] proved the exact value of the total
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vertex irregularity strength for any tree T with n pendant vertices and no vertex of degree two, that is

tvs(T ) =

⌈
n + 1

2

⌉
. (1)

For a graph G, Bača et al. [4] also define a labeling g : V(G) ∪ E(G) → {1, 2, . . . , k} to be an edge irregular total k-
labeling of the graph G if for every two different edges xy and x′y′ of G the edge-weights wtg(xy) = g(x)+g(xy)+g(y)

and wtg(x′y′) = g(x′) + g(x′y′) + g(y′) are different. The total edge irregularity strength denoted by tes(G), is defined

as the minimum k for which G has an edge irregular total k-labeling. They also obtained the exact values of the tes
for paths, cycles, stars, wheels and friendship graphs. The tes of generalized helm and generalized web graphs have

been determined by Indriati et al. [6] , [7]. Moreover, Ivančo and Jendrol [9] proved that for any tree T , satisfy

tes(T ) = max {�(|E(T )| + 2)/3� , �(Δ(T ) + 1)/2�} . (2)

Combining the ideas of vertex irregular total k-labeling and edge irregular total k-labeling, Marzuki et al. [10]

introduced another irregular total k-labeling called the totally irregular total k-labeling.

A labeling h : V(G) ∪ E(G) → {1, 2, . . . , k} to be a totally irregular total k-labeling of the graph G if for every two

different vertices x and y the vertex-weights wth(x) � wth(y), where the vertex-weight wth(x) = h(x) +
∑

xz∈E h(xz) and

also for every two different edges xy and x′y′ of G the edge-weights wth(xy) = h(x) + h(xy) + h(y) and wth(x′y′) =
h(x′) + h(x′y′) + h(y′) are different. The total irregularity strength, ts(G), is defined as the minimum k for which G
has a totally irregular total k-labeling. For the total irregularity strength of a graph G, they observed that

ts(G) ≥ max{tes(G), tvs(G)}. (3)

They determined the total irregularity strength of cycles and paths. Ramdani and Salman[12] obtained the total irregu-

larity strength of some cartesian product graphs, namely K1,n�P2, Pn�P2, (Pn+P1)�P2, and Cn�P2. In [13], Ramdani

et al. determined the total irregularity strength of Gear graphs Gn, n ≥ 3, fungus graphs Fgn , n ≥ 3 and disjoint union

of stars mS n, n,m ≥ 2.

In order to find the total irregularity strength for tree in general, we have started the investigation for star K1,n and

double star S n,n (see [8]). In this paper, we continue to investigate the total irregularity strength of double-star S n,m for

n,m ≥ 3 and related graphs, a caterpillar S n,2,n for n ≥ 3.

2. Double-Star Graphs

The next theorem presents an exact value of the total irregularity strength of double stars, S n,m, that is a tree

obtained by connecting the centers of two disjoint stars K1,n and K1,m for n,m ≥ 3. One of the pendant vertex of K1,n

and K1,m is embedded to the center of K1,m and K1,n respectively.

Theorem 1. Let S n,m, n,m ≥ 3, be a double star graphs. Then

ts(S n,m) =

⌈
n + m − 1

2

⌉
.

Proof. First, assume that n ≤ m. Therefore, if m < n, then we could change m by n, for example S 5,3 could be written

as S 3,5. The maximal degree of this graph is Δ = m. A double-star S n,m is a tree T with n + m − 1 edges, n + m − 2

pendant vertices with no vertex of degree two and no isolated vertex. According to (1), we know that

tvs(S n,m) =

⌈
n + m − 1

2

⌉
, (4)

and from (2) we obtain

tes(S n,m) = max

{⌈
m + 1

2

⌉
,

⌈
n + m + 1

3

⌉}
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There are two possibilities value of tes(S n,m).

1. Suppose that tes(S n,m) =
⌈

m+1
2

⌉
. According to (4) , n + m − 1 = m + 1 + n − 2 > m + 1, for n ≥ 3. Therefore,

max{tes(S n,m), tvs(S n,m)} = tvs(S n,m).

2. Suppose that tes(S n,m) =
⌈

n+m+1
3

⌉
. By (4) it was resulted that

⌈
m+n−1

2

⌉
>
⌈

m+n+1
3

⌉
= tes(S n,m).

Then, max{tes(S n,m), tvs(S n,m)} = tvs(S n,m).

For the all possibilities, according to (3), we conclude that ts(S n,m) ≥
⌈

n+m−1
2

⌉
.

In order to obtain the total irregularity strength of S n,m, we prove the upper bound of this parameter as follows.

Assume the set of vertices of S n,m is V(S n,m) = {v1
i : 1 ≤ i ≤ n− 1} ∪ {v2

i : 1 ≤ i ≤ m− 1} ∪ {v j : 1 ≤ j ≤ 2} and the set

of edges is E(S n,m) = {v1v1
i : 1 ≤ i ≤ n − 1} ∪ {v2v2

i : 1 ≤ i ≤ m − 1} ∪ {v1v2}.

Case 1: For both n and m are even or odd.

Let k =
⌈

n+m−1
2

⌉
. Define the total labeling g by the following way.

g(v j
i ) =

⎧⎪⎪⎨⎪⎪⎩
i, for1 ≤ i ≤ n − 1, j = 1,

min{n − 1 + i, k}, for1 ≤ i ≤ m − 1, j = 2,

g(v j) = k, for j = 1, 2,

g(v1v2) = k,

g(v1v1
i ) = 1, for 1 ≤ i ≤ n − 1,

g(v2v2
i ) =

⎧⎪⎪⎨⎪⎪⎩
1, for 1 ≤ i ≤

⌈ |n−m|+1
2

⌉
,

i −
⌈ |n−m|+1

2

⌉
+ 1, for

⌈ |n−m|+1
2

⌉
+ 1 ≤ i ≤ m − 1.

It can be seen that under the total labeling g, all vertex and edge labels are at most k =
⌈

n+m−1
2

⌉
. Therefore, g is a total

k-labeling. Then, the vertex and edge-weights are as follows:

wtg(v j
i ) =

⎧⎪⎪⎨⎪⎪⎩
i + 1, for 1 ≤ i ≤ n − 1, j = 1,

n + i, for 1 ≤ i ≤ m − 1, j = 2.

wtg(v j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k + n − 1, for j = 1,

2k + m − 1 +

(
m−1−

⌈ |n−m|+1
2

⌉)(
m−
⌈ |n−m|+1

2

⌉)
2

, for j = 2.

wtg(v jv j
i ) =

⎧⎪⎪⎨⎪⎪⎩
k + i + 1, for 1 ≤ i ≤ n − 1, j = 1,

k + n + i, for 1 ≤ i ≤ m − 1, j = 2.

wtg(v1v2) = 3k.

Since the vertex-weights of v j
i form a set of consecutive integers from 2 up to n+m− 1 and the weights of v j, j = 1, 2

are distinct and greater than n +m − 1, then it indicates that the weight of each pair of vertices is distinct. The weight

of pendant edges also construct a set of consecutive integers from k + 2 up to k + n + m − 1 and the weight of v1v2

is 3k which is greater than the weight of all pendant edges. Therefore, it conclude that g is a totally irregular total

k-labeling with k =
⌈

n+m−1
2

⌉
. Then, ts(S n,m) = k =

⌈
n+m−1

2

⌉
.

Case 2: For n and m have a different parity.

Suppose k =
⌈

n+m−1
2

⌉
. Define a total labeling g as follows.
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g(v1
i ) =

⎧⎪⎪⎨⎪⎪⎩
1, for 1 ≤ i ≤ k,
i − k + 1, for k + 1 ≤ i ≤ m − 1.

g(v2
i ) = k + i + 1 − n, for 1 ≤ i ≤ n − 1.

g(v j) =

⎧⎪⎪⎨⎪⎪⎩
k − 1, for j = 1,

k, for j = 2.

g(v1v2) = k − n + 2.

g(v1v1
i ) =

⎧⎪⎪⎨⎪⎪⎩
i, for 1 ≤ i ≤ k,
k, for k + 1 ≤ i ≤ m − 1.

g(v2v2
i ) = k, for 1 ≤ i ≤ n − 1.

Under the labeling g, it can be seen that the greatest label of edges and vertices is k =
⌈

n+m−1
2

⌉
. It means that g is an

irregular total k-labeling with k =
⌈

n+m−1
2

⌉
. The weight of vertices and edges are as follows.

wtg(v1) =

k∑
i=1

i + (m − 1 − k)k + 2k + 1 − n

=
k(k + 1)

2
+ (m + 1 − k)k + 1 − n.

wtg(v2) = (n + 1)k − n + 2.

wtg(v j
i ) =

⎧⎪⎪⎨⎪⎪⎩
i + 1, for 1 ≤ i ≤ m − 1, j = 1,

2k + i − n + 1, for 1 ≤ i ≤ n − 1, j = 2.

wtg(v jv j
i ) =

⎧⎪⎪⎨⎪⎪⎩
k + i, for 1 ≤ i ≤ m − 1, j = 1,

3k + i − n + 1, for 1 ≤ i ≤ n − 1, j = 2.

wtg(v1v2) = 3k − n + 1.

The weight of pendant vertices v j
i form a set of consecutive integers from 2 up to 2k and the weight of v j, j = 1, 2 are

distinct and greater than 2k. Therefore, the weight of every pair of vertices are distinct. The edge-weights also form

a set of consecutive integers from k + 1 up to 3k, which is indicated that the weight of every pair of edges is distinct.

Therefore, we conclude that g is a totally irregular total k-labeling with k =
⌈

n+m−1
2

⌉
. Then, ts(S n,m) = k =

⌈
n+m−1

2

⌉
.

3. Caterpillar Sn,2,n

A caterpillar S n,2,n is a class of graph constructed from the double-star S n,n by inserting one vertex on the bridge

connecting of the two centers of two stars. Therefore, this caterpillar contains three stars with the center of the two

end-stars have degree n and the center of star in the middle has degree two. This graph is a tree with 2n + 1 vertices,

2n edges and 2n − 2 pendant vertices. Maximal degree of the graph is Δ = n.

According to (3), the lower bound of its total irregularity strength is the maximum value between its total edge

irregularity strength and its total vertex irregularity strength. The total edge irregularity strength of graph S n,2,n can be

found by (2), that is

tes(S n,2,n) = max

{⌈
Δ + 1

2

⌉
,

⌈ |E| + 2

3

⌉}
= max

{⌈
n + 1

2

⌉
,

⌈
2n + 2

3

⌉}
=

⌈
2n + 2

3

⌉
. (5)

The next theorem gives the total vertex irregularity strength of S n,2,n.
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Theorem 2. Let consider a caterpillar S n,2,n, n ≥ 3. Its total vertex irregularity strength is

tvs(S n,2,n) = n.

Proof. S n,2,n is a tree with 2n + 1 vertices, 2n edges and 2n − 2 pendant vertices. Because of one vertex as a center

of the middle star has degree two, then (1) can not be used for determining the total vertex irregularity strength of

the graph. S n,2,n has 2n − 2 pendant vertices, one vertex of degree two and two vertices of degree n ≥ 3. In order

to obtain as small as possible label, start the labeling from the vertex with smallest degree (in this situation, pendant

vertices have a smallest degree). After that, we continue the labeling for vertices with greater degree than before, and

so on until all vertices are labeled. The smallest vertex-weight is two, then with a consecutive weight, the smallest

weight of 2n − 2 pendant vertices is not smaller than 2n − 2 + 1 = 2n − 1 which is a sum of two labels, namely the

label of pendant vertex and the label of edge incident to this vertex. Then, the greatest label of pendant vertices is not

smaller than
⌈

2n−1
2

⌉
. There is a vertex of degree two, therefore the greatest vertex-label is not smaller than

⌈
2n
3

⌉
. For

two vertices of degree n, the greatest label is not smaller than
⌈

2n+2
n+1

⌉
. Therefore, the greatest label of all vertices is not

smaller than

max
{ ⌈2n − 1

2

⌉
,

⌈
2n
3

⌉
,

⌈
2n + 2

n + 1

⌉ }
=

⌈
2n − 1

2

⌉
= n.

Let the vertex set of this graph be V(S n,2,n) = {v j
i : 1 ≤ i ≤ n − 1, j = 1, 3} ∪ {v j : j = 1, 2, 3} and the edge set be

E(S n,2,n) = {v jv j
i : 1 ≤ i ≤ n − 1, j = 1, 3} ∪ {v jv j+1 : j = 1, 2}. To determine the exact value of tvs, define the vertex

irregular total k-labeling h as follows.

h(v j
i ) =

⎧⎪⎪⎨⎪⎪⎩
1, for 1 ≤ i ≤ n − 1, j = 1,

i, for 1 ≤ i ≤ n − 1, j = 3.

h(v j) =

⎧⎪⎪⎨⎪⎪⎩
n − 1, for j = 1,

n, for j = 2, 3.

h(v jv j
i ) =

⎧⎪⎪⎨⎪⎪⎩
i, for 1 ≤ i ≤ n − 1, j = 1,

n, for 1 ≤ i ≤ n − 1, j = 3.

h(v jv j+1) =

⎧⎪⎪⎨⎪⎪⎩
1, for j = 1,

n, for j = 2.

Under the total labeling h it is shown that the greatest label for all vertices is n. It means that h is a total k-labeling

with k = n. The weight of vertices are as follows.

wt(v j
i ) =

⎧⎪⎪⎨⎪⎪⎩
i + 1, for 1 ≤ i ≤ n − 1, j = 1,

n + i, for 1 ≤ i ≤ n − 1, j = 3.

wt(v1) =

⎧⎪⎪⎨⎪⎪⎩
n+1

2
n, for n ≥ 3 and odd,

n
2
n + n

2
, for n ≥ 4 and even.

wt(v j) =

⎧⎪⎪⎨⎪⎪⎩
2n + 1, for n ≥ 3, j = 2,

n(n + 1), for n ≥ 3, j = 3.

The weight of vertices v j
i for j=1 and 3 form a consecutive integers from 2 up to n and from n + 1 up to 2n − 1,

respectively. The weight of v2 is 2n + 1 which is smaller than the weight of v1, and the weight of v1 is a half of the

weight of v3. Then, it indicates that the weight of every pair of vertices are distinct. Therefore, we conclude that h is

a vertex irregular total k-labeling. Then, tvs(S n,2,n) = k = n.
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The next theorem proved the total irregularity strength of graph S n,2,n as follows.

Theorem 3. Let S n,2,n, n ≥ 3 be a caterpillar graph. Then,

ts(S n,2,n) = n.

Proof. As in Theorem 2, S n,2,n is a tree having 2n + 1 vertices, 2n edges and 2n − 2 pendant vertices. Theorem 2

proves that tvs(S n,2,n) = n. Total edge irregularity strength of this graph is in (5). According to (3), the lower bound

of total irregularity strength is

ts(S n,2,n) ≥max{tes(S n,2,n), tvs(S n,2,n)} = max
{ ⌈2n + 2

3

⌉
, n
}
= n.

To prove the exact value of ts, we show the existence of totally irregular total k-labeling with k = n. The similar

definition of vertex and edge set of S n,2,n as presented in Theorem 2. In fact, the vertex irregular total k-labeling which

is obtained in Theorem 2 satisfies the condition of totally irregular total k-labeling. The weight of the edges are as

follows.

wt(v jv j
i ) =

⎧⎪⎪⎨⎪⎪⎩
n + i, for 1 ≤ i ≤ n − 1, j = 1,

2n + i, for 1 ≤ i ≤ n − 1, j = 3.

wt(v jv j+1) =

⎧⎪⎪⎨⎪⎪⎩
2n, for n ≥ 3, j = 1,

3n, for n ≥ 3, j = 2.

It can be seen that the weight of v1v1
i and v3v3

i form a consecutive integers from n + 1 up to 2n − 1 and from 2n + 1

up to 3n − 1, respectively. The weight of v1v2 is 2n and the weight of v2v3 is 3n. Therefore, the weight of each

pair of edges are distinct. It means that h is also totally irregular total k-labeling with the total irregularity strength,

ts(S n,2,n) = k = n.

Furthermore, we conclude this paper with the following conjecture for the direction of further research which is

still in progress.

Conjecture: The total irregularity strength of caterpillar S n,2,m for n,m ≥ 3 is
⌈

n+m−1
2

⌉
.
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