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Abstract-This paper studies the problem of global asymptotic stability of a class of high-order 
Hopfield type neural networks with time delays. By utilizing Lyapunov functionals, we obtain some 
sufficient conditions for the global asymptotic stability of the equilibrium point of such neural networks 
in terms of linear matrix inequality (LMI). Numerical examples are given to-illustrate the advantages 
of our approach. @ 2003 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Higher-order neural networks have attracted considerable attention in recent years (see, 
e.g., [l-7]). Th is is due to the fact that high-order neural networks have stronger approxima- 
tion property, faster convergence rate, greater storage capacity, and higher fault tolerance than 
lower-order neural networks. Hopfield neural networks with time delays have been extensively 
investigated over the years, and various sufficient conditions for the stability of the equilibrium 
point of this class of neural networks have been presented in (8-121. However, there are very 
few results on the stability of the equilibrium point for high-order Hopfield type neural networks 
with time delays. In this paper, we shall consider a class of such neural networks. By utilizing 
Lyapunov functionals, we obtain some sufficient conditions on global asymptotic stability of the 
equilibrium point. Our conditions are expressed in terms of linear matrix inequality (LMI) and 
are less conservative. Even in the special case, our results improve the existing theorems. Some 
numerical examples are worked out to illustrate the advantages of our approach. 
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2. PRELIMINARIES 

Consider the following second-order Hopfield type neural networks with time delays: 

+ 2 -&ijkLIj(uj(t - q))gk(uk(t - Tk)) + A, i=1,2 ).‘., n, 
j=l k=l 

(1) 

where C, > 0, Ri > 0, and Ii are, respectively, the capacitance, resistance, and external input of 
the ith neuron; T,j and Tijk the first- and second-order synoptic weights of the neural networks, 
which are not necessary symmetric, ui(t) the output of the ith neuron; gi the neuron input-output 
activation function; ri the time delay of the ith neuron, which satisfies 0 5 ri 5 r (i = 1,2, , n), 

T is a positive constant. 
Let ui(s) = cp%(s), s E [-r,O] (i = 1,2,. . ,n) be the initial condition, where cpz : [-T,O] + R 

are continuous functions. 
We assume that the activation functions gi : R -+ R (i = 1,2,. , n) satisfy Igi( < h/r, for 

all u E R, and 0 5 (gi(u))/u < Ki f or any 0 # u E R (i = 1,2,. , n), where Li > 0, h/l, > 0 
(i = 1,2, , n) are constants. 

Let U* = (Ui,UI,...,U~)T be an equilibrium point of system (l), and set z = u - ,u* = 

(21952,. . . ,%) T, fi(zi) = gi(zi + UT) - gi(uz). Then, we see that 

Ifi(z)1 I Kl.4 and z.fi(z) L 0, for all z E R, (2) 

and system (1) is equivalent to 

- = -$$ + eqj.fj(xj(t - 7~‘)) + 2 kTij/c [fj(Xj(t - Tj))fk(Xk(t - Tk)) 
2 j=1 j=l k=l (3) 

+ .fk(xk(t - Tk))gj (“;) + fj(xj(t - Tj))gk b;,] ! i = 1,2,...,n 

The initial condition becomes xi(t) = &(t)y t E [-~~01, where @i(t) = p%(t) - u:, t E [-r,O], 
i=1,2 ,..., 72. 

Using Taylor’s theorem, we can write (3) as 

c, dxi(t) Xi(t) 
Z---$-= -F f 2 qj + k(zjk i- z/cj)<k .fi(xj(t - Tj)), i=1,2 ,..., 12, (4 

z j=l k=l 

where <k lies between gk(Uk(t - rk)) and gk(u;). 
Let C = diag(Cr, C2,. . , G), R = diag(&,&,...,Kd, 1 = (11,12,...,L)T, T = (T&),x,, 

Ti = (Tijk)nxn (i=1,2 ,..., n),l-I=(Tl+T,T,T2+T; ,... rT,+T,T)T, g(u(t-T)) = (gl(ul(t- 
~1))~ gz(uAt - 7~))~. . . ,gn(un(t - T,)))~, 4 = (dl,h,. . . ,&)T, G(u(t - 3) = diwddu(t - 
T)), . . . ,g(u(t -F))), u(t) = (w(t), w(t), . , ~,(t))~, K = diag(K1, K2, , K), M = (MI, ML?, 

I Mn)T, C = (cl,t,...,Cn)T, r = diag(C,C,...,C), f(x(t -T)) = (fl(xl(t -71))~ f2(m(t - 
7~))~. , fn(xn(t -7,)))T. Then, system (1) can be rewritten in the following vector-matrix form: 

@J(t) - 
dt 

-R%(t) + Tg(u(t - F)) + ;GT(u(t - ?))IIg(u(t - 7)) + I, (5) 

and system (4) becomes 

($x(t) _ 
dt 

-R-lx(t) + Tf(x(t - 7)) + rTI’If(x(t - 7)). (6) 
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We denote the vector norm of y on R” by ]y] = fi, and the matrix norm of A by IAl induced 
by the vector norm I . I; i.e., [A( = dm. AT ’ 1s the transpose of A. If A is symmetric, 
then A > 0 means that A is positive definite. Similarly, A < 0 (A < 0) means that A is negative 
definite (negative semidefinite). 

Consider the following autonomous time delay equation: 

*(t) = f(Q), (7) 
wherezt E C([--7,0]),Rn) isdefined byzt(0) =z(t+f?), --7 5 B 5 0, f : C([-T,O]),R~) --+ R” is 
completely continuous. Assume that solutions of (7) depend continuously on the initial data. We 
denote by ~(4) th e solution through (0,4), 4 E C([-r,O]), Rn), and C([-T,O]), Rn) the Banach 
space of continuous functions mapping the interval [-7, 0] into Rn with the topology of uniform 
convergence. We denote the norm of 4 in C([--7,O]), R”) by ]]$J]] = su~_,~~~c Id(e)]. 

If V : C([--7,O]), Rn) + R is a continuous functional, we define the generalized derivative of V 
along a solution of (7) by 

~(4)1~7) = hmsou+p iV(zh(4)) - V(4)]. 

LEMMA 1. (See (131.) Suppose V : C([-T,;]), R”) -+ R is continuous and there exist nonnegative 
functions al(~), Q?(T), and b(r) such that al(r) + co as r + co 

~l~ldJ(0)l) I V(4) L ~2wll)? W) I -w7w)l>~ 

Then, the solution x = 0 of equation (7) is stable and every solution is bounded. If, in addition, 
b(r) is positive definite, then every solution approaches zero as t -+ co. 

3. GLOBAL ASYMPTOTIC STABILITY 

In this section, we shall show that system (1) has a unique equilibrium point which is globally 
asymptotically stable. 

THEOREM 1. Assume that the activation functions gi(u) (i = 1,2,. . , n) are bounded on R, and 
therearesomeconstantsKi > Osuch that0 5 (gi(u))/u 5 K, forany # u E R (i = 1,2,. .n). 
Then system (1) has an equilibrium point. 
PROOF. If U* is an equilibrium point of system (l), then u* satisfies the vector-matrix equation 

u* = RTg(u*) + ;RGT(u’)ng(u’) + RI. 

Define a map F : R” -+ R” by F(u) = RTg(u) + (1/2)RGT(u)Dg(u) + RI. Obviously, F is 
continuous. Let 

R = u E R” 1 Iu - RI1 5 IRI 

and 

L = sup sER 
u-1 

2$(s) 
i=l 

Then s1 is a bounded and closed set on Rn. 
Since for any u E s1, 

IF(u) - RII = IR (W) + ;GTWW) 1 

I IRI (ITI + ; IGTb)I II) M4l I IRI (ITI+ ;I+ J% 
it follows that F maps R into itself. By the Brouwer’s fixed-point theorem, the map F has at least 
one fixed point u*. This means that there exists at least one equilibrium point for system (1). 
The proof is complete. I 

We shall need the following lemma. 
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LEMMA 2. (See [14].) For any constant E > 0, 2uTu < wTu+ (l/&)uTv, where u E Rn, v E Rm. 

THEOREM 2. The equilibrium point u* of system (1) is unique and globally asymptotically 
stable, if there exists a symmetric matrix P > 0, diagonal matrices Q = diag(ql, 42, , qn) > 0, 
H = diag(hl, hz, . . . , h,) > 0, and constants &i > 0 (i = 1,2,3,4) such that 

- A PC-IT PC-l KHC-’ KHC-1 - 

TTC-‘P --&lInx,, 

c-IP 

C-IHK 

C-‘HK 

~2Lxn -- 

WI2 < 0, (8) 

-E3kxn 

&4I,zxn -- 
WI2 - 

and 
&l&n + &3TTT + (~2 + ~4)l-I~l-I - 2Q 5 0, 

where A = 2KQK - 2KRe1C-lH - PCIR-’ - R-lC-lP. 

PROOF. Define the Lyapunov functional V(4) by 

(9) 

V(d) = 4T(0)P4(O) + 2 2 qi so 
i=l -7; 

f;@%(s)) ds + 2 2 h, l,,,) f%(S) ds, 
r=l 

and let al(~) = Xmin(P)T2, az(r) = (X,,,(P) + 2maxl<i<,{h&} + 2Tmaxl<i<n{qzKf})?. -- -- 
Then al(~) --t 00 as T + w and al(M(O)l) L V(4) I ~2(lMl)~ 

The derivative of V(d) along the trajectories of system (6) is 

v 
(6) 

= -zT(t) (PC-lR-l + R-‘C-‘P) z(t) + 2~~(t)PC-~Tf(z(t - ?)) 

+ 2zT(t)PC-‘rT,f(,(t - 7)) - 2~~(t)R-~+Hf(s(t)) (10) 
+ 2fT(x(t))HC-1Tf(s(t - 7)) + 2fT(z(t))HC-1rTrIj(s(t - .T)) 

+ ?fTW)QfW)) - 2f’W - 3)QfMt - 3). 

By Lemma 2, the terms on the right-hand side of (10) satisfy the following inequalities: 

2zT(t)~~-1~f(z(t - 7)) 5 -&T(t)pC-1~~TC-1p5(t) 

+ ElfT(Z(t - F))fb(t - F)), (11) 

2zT(t)PC-lrTIIf(z(t - 7)) I ~zT(t)PC-‘rTrC-‘Pz(t) 

+ &#(Z(t - ?))nTrIf(s(t - ?)), (12) 

2fT(z(t))HC-1Tf(z(t - 7)) I ;fT(z(t))HC-lC-lHf(&)) 

+ ~~f~(z(t - t))TTTf(s(t - 7)), (13) 

zfT(J:(t))HC-lI?If(z(t - 7)) 5 ~fT(5(t))HC_lrTrC--1Hf(Z(t)) 

+ E4fT(5@ - ?))rITl-If(z(t - 7)). (14) 
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Since rTl? = IC121nxn and ICI I IMI, it follows that 

zT(t)PC-lrTrC-lPz(t) I IMl2zT(t)PC-%(t), 

fT(s(t))Hc-lrTrc-lHf(s(t)) 5 IM12fT(2(t))Hc-2Hf(~(t)). 
(15) 

(16) 
By (2), we have 

and hence 

xT(t)R-lC-lHf(x(t)) = 2 &x$)f&i(t)) 2 2 ( 
i=l 

i=l && ff(x&)) (17) 
= f’(x(t))R-‘c-‘K_‘Hf(x@)). 

Substituting (ll)-(17) into (lo), we have 

-bC-lTTTC-lFJ + WI2 -PC-2P - PC-‘R-l - R-lC-‘P 
El E2 > 

x(t) 

+.fwa [(i+T) HC-2H - 2R-1C-‘K-1H + 2Q 1 f(x(t)) 

+fT(x(t-7)) [ ~1 I ,,xn + EsT~T + (~2 + Q)II~~-I - 2Q] f(z(t - T)) 

< ZT(t) - IPC-‘TTTC-‘P + !$PC-2P - PC-‘R-l - R-‘C-‘P) x(t) 
El 

+xwK[(;+yf) HC-2H - 2R-‘C-lK-‘H + 2Q 1 Kx(t) 

+fT(x(t-5)) [ ~1 I nxn + eTTT + (~2 + a)nTn: - 2Q] f(x(t - ?)) 

= xT(t)Qx(t) + fT(x(t - 7)) [ ~1 I nxn + &3TTT + (~2 + +-ITII - 2Q] f(s(t - ?;))I 

Q = Ipc-‘~~Tc-lp + I”12 -pC-2p _ PC-‘R-1 _ R-‘C-‘P 
El E2 

+K[(;+T) HC-2H - 2R-‘C-‘K-‘H + 2Q 1 K. 

BY (9) we get VI(G) I X max(*)1d(0)12. On the other harid, by the Schur complement [15], 
LMI (8) is equivalent to \k < 0. Hence, if we let b(r) = -Xmax(!P)r2, then b(r) is positive definite. 
Therefore, it follows from Lemma 2 that the equilibrium point x = 0 of system (6) or, equivalently, 
the equilibrium point U* of system (1) is globally asymptotically stable. Consequently, the 
equilibrium point u* is unique. Thus, the proof is complete. I 
COROLLARY 1. If there exists a symmetric matrix P > 0, a diagonal matrix 

Q = dkdql, a,. . . ,A > 0, 
and constants pi > 0 (i = 1,2,3,4) such that 

R2 + 2KQK - 2I,,, - PC-‘R-1 _ R-‘C-‘P PC-IT PC-l 

TTC-‘P -ElInnxn 

c-‘P . - 

-c 0, 

and &lInxn +&3TTT + (~2 +&4)llTll - 2Q < 0, then system (1) has a unique equilibrium point u* 
which is globally asymptotically stable. 

Corollary 1 follows from the proof of Theorem 2 in a straightforward manner by letting H = 
CRK-l. If H = 0, then we get the following result. 
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COROLLARY 2. If there exists a symmetric matrix P > 0, a diagonal matrix 

Q=diag(ql,qa,...,q,)>O, 

and constants ~1 > 0, ~2 > 0 such that 

2KQK - PC-lR-’ - R-kFIP PC-IT PC-’ 
TTC-‘P -E1hLxn 1 < 0, 

c-1P 

and &lInxn f &JITIJ - 2Q < 0, then system (1) has a unique equilibrium point u* which is 
globally asymptotically stable. 

4. EXAMPLES 

To demonstrate the applicability of our results, we now consider some examples. 
EXAMPLE 1. Consider the neural network 

c, dud9 w(t) 
.z- = -Ri + kTl^gj(uj(t - Tj)) 

dt 
j=l 

where K = diag(0.7,0.6,0.8), R-l = diag(l.5,1.8,1.2), 

1.63 0.03 -0.13 
c = 13x3, -0.02 0.98 0.12 

0.01 -0.08 0.79 

(1) 
,n! 

f 

0.09 0.01 -0.01 
Tl = 0.02 0.04 0.03 I ) 

0.05 0.02 -0.02 

0.01 0.02 0.04 
T2 = [ 0.01 0.07 0.01 1 , 

-0.01 0.02 0.08 

0.06 
T3 = [ -0.01 

-0.01 0.02 

0.02 
0.03 0.01 1 
0.01 0.09 

By MATLAB LMIToolbox, we know that there exist ~1 = 5.5485, ~2 = 26.4433, ~3 = 3.3531, 
~4 = 27.0682, Q = diag(9.2313,9.8214,6.8918) > 0, 

2.5057 0.0098 0.0572 
H = diag(5.1703,3.4088,3.3885) > 0, P = [ 0.0098 2.6769 -0.0133 1 > 0: 

0.0572 -0.0133 4.6298 

such that LMI (8) and (9) hold, and therefore from Theorem 2, the equilibrium point u* of 
system (1) is globally asymptotically stable. Also, we know that there exist 

1.7769 0.0046 0.0543 
&1 = 4.0589, &2 = 17.4413, P = 1 0.0046 2.4417 -0.0054 1 > 0, 

0.0543 -0.0054 3.4101 

Q = diag(2.6621,4.9189,3.0831) > 0, such that 

I 

2KQK - PC-lR-l - R-lC-lP PC-lT PC-’ 

TTC-lP -&1Lxn 1 < 0, 

C-lP - 
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and srl,,xn +ssII’II- 29 < 0; therefore from Corollary 1, the equilibrium point U* of system (1) 
is globally asymptotically stable. 

The next example is the special case when T&k E 0, which is the Hopfield neural network with 
time delays. 

EXAMPLE 2. Consider the neural network 

h(t) W(t) 
- = -x + cT,&(t - 7)) + Ii, dt 

i=1,2 )‘..) 71. 
j=l 

(18) 

From Corollary 2, we obtain the following sufficient condition for the global asymptotic stability 
of the equilibrium point of this neural network. 

There exists a symmetric matrix P > 0, a diagonal matrix Q = diag(qi, qz, . , qn) > 0, and a 
constant E > 0 such that 

2KQK-PR-‘-R-‘P PT <o 
TTP -Gxn 1 and 

Let R-’ = diag(3.5,1.8,3.6,3.6,1.49,1.95,1.74,1.55,2.89,3.62), 

T=f 

0.1 0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0.5 

0.5 -3.6 0.5 -0.5 0.5 0.5 0.5 0.5 0.5 

0.5 0.5 0.8 0.5 0.5 -0.5 0.5 0.5 0.5 

0.5 0.5 0.5 0.2 0.5 0.5 0.5 0.5 -0.5 

-0.5 0.5 -0.5 0.5 -2.65 0.5 0.5 -0.5 0.5 

0.5 0.5 0.5 0.5 -0.5 -2.45 0.5 0.5 0.5 

0.5 0.5 -0.5 0.5 0.5 0.5 -2.35 0.5 0.5 

0.5 0.5 0.5 -0.5 0.5 0.5 0.5 -2.9 0.5 

-0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0.5 -3.55 

0.5 0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0.5 

0.5 

0.5 

-0.5 

0.5 

0.5 

-0.5 

-0.5 

0.5 

0.5 

-2.5 

(19) 

and K = (3/r) diag(1,0.5,0.8,0.9,0.5,0.6,0.7,0.4,0.8,0.8) is system (18). 
Using MATLAB LMIToolbox, we obtain a feasible solution of LMIs (19) as follows: 

33.0793, Q = .6.53971ia, is, and 

P= 

4.6159 0.0568 -0.0407 -0.0507 0.0784 0.0600 -0.2019 0.0314 0.0417 -0.0215 
0.0568 5.8910 0.0565 -0.1429 0.0052 0.4260 0.5182 0.3111 0.3263 0.1385 
-0.0407 0.0565 4.4379 -0.0428 0.1697 -0.3497 0.0258 0.0284 0.0257 -0.0959 
-0.0507 -0.1429 -0.0428 4.5054 0.1096 0.0535 -0.0644 -0.0070 -0.1406 0.0053 
0.0784 0.0052 0.1697 0.1096 7.4133 -0.0146 0.5118 -0.3606 0.3388 0.2256 
0.0600 0.4260 -0.3497 0.0535 -0.0146 6.7007 0.3481 0.4740 0.0356 -0.0769 
-0.2019 0.5182 0.0258 -0.0644 0.5118 0.3481 7.3905 0.5371 0.3774 -0.3063 
0.0314 0.3111 0.0284 -0.0070 -0.3606 0.4740 0.5371 6.9664 0.3361 0.1296 
0.0417 0.3263 0.0257 -0.1406 0.3388 0.0356 0.3774 0.3361 4.6884 0.1209 

_ -0.0215 0.1385 -0.0959 0.0053 0.2256 -0.0769 -0.3063 0.1296 0.1209 4.2062 

= 

>o. 

It implies that the equilibrium point of system (18) is globally asymptotically stable. However, 
it can be shown that the sufficient condition lRT[ < l/( maxi<i<,{K,}) that guarantees global 
asymptotic stability of the equilibrium point of system (18) given in [lo] does not hold. 

As well, the sufficient condition maxi<i<,{Ri C,“=, jTji[} < 1 that guarantees global asymp- -- 
totic stability of the equilibrium point of system (18) given in [16] does not hold. 
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EXAMPLE 3. We consider the neural network 

dui (t) 
dt 

= -Q(t) + ~T&u(t - Tj)) + I,, i=l,2,...:n 
j=l 

Using Corollary 2, a sufficient condition of the global asymptotic stability of the equilibrium 
point of this neural network is that there exists a symmetric matrix P > 0, a diagonal matrix 
Q = diag(ql, qz, , qn) > 0, and a constant E > 0 such that 

Let 

2KQK-2P PT <o 
TTP 1 -&xn ’ 

Ed nxn - 2Q IO. 

T-f [ 
0 -1 -1 

-1 0 -1 1 , 
-1 -1 0 

(21) 

K = 1sx3 in system (20). By simple calculation, we obtain a feasible solution of LMIs (21) is 
E = 431.2842, Q = 215.64211sX3, and 

20.1084 -16.0693 
437.8221 -26.6464 

-16.0693 -26.6464 473.9998 1 > 0. 

It shows that the equilibrium point of system (20) is globally asymptotically stable. But it can 
be verified that all the sufficient conditions for the global asymptotic stability of the equilibrium 
point of system (20) given in [12] do not hold. 

5. CONCLUSION 

In the present paper, we have derived several sufficient conditions for global asymptotic stability 
of the equilibrium point for a class of high-order Hopfield type neural networks with time delays. 
These conditions are expressed in terms of LMI and are less conservative. Even in the special 
case our results improve the existing results found in the literature, which has been illustrated 
by two numerical examples. 

REFERENCES 
1. A. Dembo, 0. Farotimi and T. Kailath, High-order absolutely stable neural networks, IEEE Rxns. C’zrc~zts 

Syst. 38, 57-65, (1991). 
2. E.B. Kosmatopoulos and M.A. Christodoulou, Structural properties of gradient recurrent high-order neural 

networks, IEEE ‘Prans. Circuits Syst. II 42, 592-603, (1995). 
3. E.B. Kosmatopoulos, M.M. Polycarpou, M.A. Christodoulou and P.A. Ioannou, High-order neural network 

structures for identification of dynamical systems, IEEE Trans. Neural Networks 6, 422-431, (1995). 
4. T. Zhang, S.S. Ge and C.C. Hang, Neural-based direct adaptive control for a class of general nonlinear 

systems, Int. J. Systems Science 28, 1011-1020, (1997). 
5. J. Su, A.Q. Hu and Z.Y. He, Stability analysis of analogue neural networks, Electronzcs Letters 33, 506-507. 

(1997). 
6. J. Su, A. Hu and Z. He, Solving a kind of nonlinear programming problems via analog neural networks. 

Nezlrocompzlting 18, l-9, (1998). 
7. M. Brucoli, L. Carnimeo and G. Grassi, Associative memory design using discrete-time second-order neural 

networks with local interconnections, IEEE tins. Circuits Syst. I, 44, 153-158, (1997). 
8. X.X. Liao and D.M. Xiao, Global exponential stability of Hopfield neural networks with time-varying delays, 

(in Chinese), Acta Electronics Sinica 28, 88-90, (2000). 
9. S. Arisk, Stability analysis of delayed neural networks, IEEE tins. Circuits Syst. I, 47, 1089-1092, (2000). 

10. H. Ye and A.N. Michel, Robust stability of nonlinear time-delay systems with applications to neural networks, 
IEEE Trans. Circuits Syst. I, 43, 532-543, (1996). 

11. C.H. Hu and J.X. Qian, Stability analysis for neural dynamics with time-varying delays, IEEE ‘Trans. Neural 
Networks 9, 221-223, (1998). 



Hopfield Type Neural Networks 1737 

12. Y.J. Cao and Q.H. Wu, A note on stability of analog neural networks with time delays, IEEE tins. Neural 
Nef.urorks 7, 1533-1535, (1996). 

13. J.K. Hale, ‘Theory of Functional Di_#erential Equations, Springer-Verlag, New York, (1977). 
14. B. Xu, Stability robustness bounds for linear systems with multiple time-varying delayed perturbations, Int. 

J. Systems Sci. 28, 1311-1317, (1997). 
15. S. Boyd, L. ElGhaoui, E. Feron and V. Balakrishnan, Linear Matrir Inequalities in System and Control 

Theory, Studies in Applied Mathematics, SIAM, Philadelphia, PA, (1994). 
16. K. Gopalsamy and X.Z. He, Stability in asymmetric Hopfield nets with transmission delays, Physica D 713, 

344-358, (1994). 


