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Abstract

Given an undirected grap@ and a positive integek, the k-vertex-connectivity augmentation
problem is to find a smallest setof new edges for whicl& + F is k-vertex-connected. Polynomial
algorithms for this problem have been found only fo€4 and a major open question in graph
connectivity is whether this problem is solvable in polynomial time in general.

In this paper, we develop an algorithm which delivers an optimal solution in polynomial time for
every fixedk. In the case when the size of an optimal solution is large comparecta algorithm
is polynomial for allk. We also derive a min—max formula for the size of a smallest augmenting set
in this case. A key step in our proofs is a complete solution of the augmentation problem for a new
family of graphs which we cak-independence free graphs. We also prove new splitting off theorems
for vertex connectivity.
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1. Introduction

An undirected graplt; = (V, E) is k-vertex-connectetr more simplyk-connecteqif
|V| >k + 1 and the deletion of any— 1 or fewer vertices leaves a connected graph. Given a
graphG = (V, E) and a positive integds; thek-vertex-connectivity augmentation problem
is to find a smallest sé% of new edges for whiclG’ = (V, E U F) is k-connected. This
problem (and a number of versions with different connectivity requirements and/or edge
weights) is an important and well-studied optimization problem in network design. The
complexity of the vertex-connectivity augmentation problem is one of the most challenging
open questions of this area. It is open even if the gr@pio be augmented i& — 1)-
vertex-connected. Polynomial algorithms have been developed only fer2, 3,4 by
Eswaran and Tarjafb], Watanabe and Nakamuf22] and Hsu[11], respectively. Values
of k close to Y| =n are also of interest. The cake n—1 is easyk= n—2 is equivalent to
finding a maximum matching, arld= n—3 is open. Near-optimal solutions can be found
in polynomial time for ever, se€[13,12]

In this paper, we give an algorithm which delivers an optimal solution in polynomial
time for any fixedk > 2. We also obtain a min—max formula which determines the size of
an optimal solution when it is large comparedktdn this case, the running time of the
algorithm is O (n%), wheren is the size of the input graph. When the size of an optimal
solution is small compared tq the running time is bounded b9 (cxn2), wherec; is a
constant ifk is fixed. A key step in our proofs is a complete solution of the augmentation
problem for a new family of graphs which we clindependence free graphs. We follow
some of the ideas of the approach[d5], which obtained a near-optimal solution in the
special case when the graph to be augmented is 1)-connected. We also develop new
‘splitting off’ theorems fork-vertex-connectivity.

We remark that the other three basic augmentation problems (where one wants to make
G k-edge-connected or wants to make a digrigllge- oik-vertex-connected) have been
shown to be polynomially solvable. These results are due to Watanabe and Nakamura
[21], Frank[6], and Frank and Jord§B], respectively. For more results on connectivity
augmentation and its algorithmic aspects, see the survey papers byHrani Nagamochi
[20], respectively. In the remainder of this section, we introduce some definitions and our
new lower bounds for the size of an augmenting set which mékksertex-connected.

We also state our main min—max results.

In what follows we deal with finite undirected graphs. We shall reserve the term ‘graph’
for graphs without loops or multiple edges and use ‘multigraph’if loops and multiple edges
are allowed. LetG = (V, E) be a multigraphp € V andX C V — v. We usedg(v)
to denote thalegreeof vin G anddg (v, X) for the number of edges @& from v to X.

Let Ng(X) denote the set dfieighboursof X, that is,Ng(X) = {v e V- X : uv € E
for someu € X}, andng(X) denote|Ng(X)|. (We will suppress the subscri@ in the
above functions when it is obvious to which graph we are referring.) WeXtide denote
V — X — Ng(X). We say thaK is afragmentof G if X # @ # X*. A k-deficient fragment
is a fragmenk for whichn(X) < k, for some integek. For two vertices, y of G we shall
usex(x, y, G) to denote the maximum number of openly disjoint paths frdoy in G. We
usex(G) to denote the minimum of(x, y, G) over all pairs of vertices db. By Menger’s
theoremx(G) equals the minimum size of a vertex cut@ unlessG is complete.
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Let G be a graph with at least+ 1 vertices. Ak-augmenting sdor G is a set of edgeBs
such thatG + F is k-connected. (When the value lofs obvious we shall refer t6 simply
as araugmenting sebr G.) Leta, (G) denote the size of a smalldshugmenting set faB.
Itis easy to see that evekyaugmenting set foB must contain at leagt— n(X) edges from
X to X* for every fragmenX. By summing up these ‘deficiencies’ over pairwise disjoint
k-deficient fragments, we may obtain a useful lower boundydi@), similar to the one
used in the corresponding edge-connectivity augmentation problem. Let

t(G) = max{Zk —n(X;): X1, ..., X, are pairwise disjoint fragments #}.
i=1

Then
ax(G) 2 1 (G)/2]. 1)

Another lower bound fad, (G) comes from ‘shredders’. F& C V letbg (K), or simply
b(K) whenitis clear to which graph we are referring to, denote the number of components
in G — K. We say thaK is ans-shredder(or simply ashreddey in G if |K| = s and
b(K)>3. Lethy(G) = max{b(K) : K isa(k — 1) — shredder inG}. Since(G + F) — K
has to be connected for evaaugmenting seff and every(k — 1)-shreddeiK, we have
|F|>b(K) — 1. This gives the second lower bound:

ak(G) 2 bi(G) — 1. @

These lower bounds extend the two natural lower bounds used for exanip)&lril5]
Although these bounds suffice to charactetiz€s) for k <3, there are examples showing
thatai (G) can be strictly larger than the maximum of these lower bounds. For example,
if we take G to be the complete bipartite grags 3 with target connectivitk = 4, we
havets(G) = 6, ba(G) = 3 andas(G) = 4. We shall show in Sectiof thata,(G) =
maxX{by(G) — 1, [%:(G)/2]} whenG is a 'k-independence free graph’. We use this result
in Section4 to show that ifG is (k — 1)-connected andy (G) is large compared té&,
then again we have, (G) = maxX{by(G) — 1, [t (G)/2]}. Our proof technique is to find
a set of edge# such thaiu, (G + F1) = ax(G) — |F1| andG + F is k-independence
free. The same result is not valid if we remove the hypothesisGhisitk — 1)-connected.

To see this consider the grajgh obtained fromK,, r—» by adding a new vertex and
joining x to j vertices in them set of thekK,, x_2, wherej < k < m. Thenby(G) = m,
t(G) = 2m+k —2j anday(G) = m — 1+ k — j. We shall see in Sectioh however, that

if we modify the definition ofb, (G) slightly, then we may obtain an analogous min—max
theorem for augmenting graphs of arbitrary connectivity. Fot a 1)-shreddeiK of G

we defined(K) = max0, maxik — d(x) : x € K}} andb(K) = b(K) + d(K). We let
br(G) = max{b(K) : K is a(k — 1) — shredder inG}. It is easy to see that

ar(G) = bi(G) — 1.

We shall prove in Sectiorithat if G is a graph of arbitrary connectivity aag(G) is large
compared tk, then

ar(G) = max{hi(G) — 1, [1(G)/2]}.
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Our proof technique is to find a set of edgéssuch thatu; (G + F1) = a;x(G) — |Fy]
and eithelG + F1 is (k — 1)-connected oG + F1 is (k — 2)-connected and has a special
structure. In the former case, we apply the result of SedttorG + F;. In the latter case, we
find an optimak-augmenting set fo + F; using a result on ‘detachments’ of 2-connected
graphs.

Our proofs are algorithmic and give rise to polynomial algorithms for finding an optimal
k-augmenting set in each of the cases mentioned above. In the remaining case, (hen
is small compared th, we simply check all possibleaugmenting sets (spanned by a small
set of vertices) to find an optimal solution. This is the only part where our algorithm is
polynomial only ifk is fixed.

In what follows, we shall suppress the subsckipt the parameterg (G), br (G), Ek(G)
when the value ok is obvious.

2. Preliminaries

In this section, we first introduce some submodular inequalities for the functsma
then describe the ‘splitting off’ method. We also prove some preliminary results on edge
splittings and shredders.

2.1. Submodular inequalities

The following inequalities are fundamental to our proof technique. Inequd)itg (vell-
known, see, for exampl@5].

Proposition 2.1. Ina graphH = (V, E) every pairX, Y C V satisfies
nX)+n¥)=nXNY)+nXUY)+|(N(X)NNX)) —NXNY)|
HINX)NY) = NXNY)|+|(NY)NX)—NXNY). (3

Proof. Readers may find it helpful to follow the proof given below if they imagings)
represented by a8 3 grid, in which the two pairs of opposite sides repregantx*) and
(Y, Y*), respectively, and the 9 subsquares represent the corresponding partitio6 of
into 9 subsets. TherB) follows from the following equalities:

n(X)=[NX)NY[+ |[NX) NN+ [NX)NY,
nY)=|XNNXY)|+ INX)NNX)|+ | X*NNT),

nXUY)=|NX)NY* |+ INX)NNX)|+ | X*NN)]
and
nXNY)=|INXNY)NX|+|NXNY)NY|
+HINXNY)N(NX)NNY)|. O



B. Jackson, T. Jordan / Journal of Combinatorial Theory, Series B 94 (2005) 31-77 35

Proposition 2.2. Ina graphH = (V, E) every pairX, Y C V satisfies
nX)+n) ZnXNY)+n(XUY), (4)
nX)+n@)>nXNY" +n¥ NX. (5)

Proof. Inequality @) follows immediately from3). Inequality &) can be proved in a similar
way to Propositior2.1 [

The following inequality is new and may be applicable in other vertex-connectivity prob-
lems as well.

Proposition 2.3. Ina graphH = (V, E) every tripleX, Y, Z C V satisfies

nX)+n¥)+nZ2) >nXNYNZD)+nXNY*"NZH+nX*NY*N2Z)
Fn(X*NY NZ* — [N(X)NNY) NN (6)

Proof. Readers may find it helpful to follow the proof given below if they imagingr)
represented by ax33 x 3 grid, in which the three pairs of opposite faces repre€enk *),

(Y, Y*),and(Z, Z*), respectively, and the 27 subcubes represent the corresponding partition
of V(G) into 27 subsets. We have

nX)=INX)NYNZ|+INX)NNXY)NZ|+ |INX)NY* N Z|
+INX)NYNNZ)|+INX)NNY)NNZ)|+|INX)NY* " NN(Z)|
+INXYNYNZ¥ |+ |INX)NNY)NZ*| + INX)NY* N Z¥

and

nXNYNZ)KIXNYNN@)|+|XANY)NZ|+|XNNY)NNZ)|
+HINX)NYNZ +INX)NYNNZ)| + INX)NNF)N Z|
+IN(X) N N(Y)NN(2)|.

The lemma follows from the above (in)-equalities and similar (in)-equalities{oy, n(Z),
n(XNY*NZ%, nX*NY*NZ)andn(X*NYNZ*. O

2.2. Extensions and splittings

In the so-called ‘splitting off method’ one extends the input gr@giy a new vertesand
a set of appropriately chosen edges incidestod then obtains an optimal augmenting set
by splitting off pairs of edges incident ®©This approach was initiated by Cai and §2h
for the k-edge-connectivity augmentation problem and further developed and generalized
by Frank[6]. Here, we adapt the method to vertex-connectivity and prove several basic
properties of the extended graph as well as the splittable pairs.

Given the input graptG = (V, E), anextensionG +s = (V +s,E + F) of G is
obtained by adding a new vertexand a sefF of new edges frons to V. Note thatF may
contain multiple edges even thou@hdoes not, and hend& + s may be a multigraph. In
G + s, we defineX* = V — X — Ng(X) andd(X) = ng(X) +d(s, X) foreveryX C V.
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We say thatG + s is (k, s)-connectedf |V| >k + 1 and
d(X)>k forevery fragmenX of G. (7)

If, in addition,F is an inclusionwise minimal set with respect ®,then we say tha + s

is ak-critical extensiorof G. In this case, the minimality df implies that every edgsuis k-
critical, that is, deletingufrom G + s destroys 7). (Thus, an edgsuis k-critical if and only

if there exists a fragmentof Gwith u € X andd(X) = k.) A fragmentX with d(s, X) >1
andd(X) = k is calledtight. A fragmentX with d(s, X) >2 andd(X) <k + 1 is called
dangerousObserve that ifs is I-connected then for evey e V we haved(s, v) <k —

in any k-critical extension ofG. The following lemma characterizes when we can have
d(s,v)>2.

Lemma 2.4. Let G + s be a k-critical extension of G. Suppages, v) =2 for somev €
V. Let X be a fragment of G with € X and [X|>2. Thend(X) > k. Furthermore
dgs(v) = k.

Proof. If d(X) = k thend(X — v)<k —d(s,v) + 1 < k which contradicts 7). Thus
d(X) > k. SinceG + s is k-critical we may choose a tight séin G + s with v € Y. The
first part of the lemma implies that = {v}. Hencedg;(v) =d(w) = k. O

Since the functior/ (s, X) is modular on the subsetséfin G + s, Proposition®.1-2.3
yield the following (in)equalities.

Proposition 2.5. In a graphG + s every pairX, Y C V satisfies

dX)+dY)=d(XNY)+dXUY)+ [(N(X)NNY)) — NXNY)|
HINX)NY)=NEXNY)|+[(NY)NX)—NXNY), (8)

dX)+dY)=>dXNY)+d(XUY), (9)
dX)+dY)=>dXNY)+dY NX*)+d(s, X —Y*)+d@s, Y —X*). (10)

Proposition 2.6. In a graphG + s every tripleX, Y, Z C V satisfies
dX)+dY)+d2)
>dXNYNZ)+dXNY*NZH+dX* NY*NZ)+dX*NYNZ*
—|NGg(X)NNGg(Y)N Ng(Z)| +2d(s, X NY N Z). (11)

Lemma 2.7. Let G + s be a (k, s)-connected extension of G. Then there exists a k-
augmenting set F of G with (F) C N(s).

Proof. Let F be a set of edges such that= N(s) induces a complete graph i =
G + F. SupposeH is notk-connected. Then there existkaleficient fragmenX in H.
SinceAinduces a clique i, we have eitheAN X = Jor AN X* = #. Assuming, without
loss of generality, thatt N X = @, we havedg,(X) = ny(X) < k. This contradicts the
hypothesis tha& + s is (k, s)-connected. [J
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We can use Lemma2.7to obtain upper and lower bounds@f(G) in terms ofdg 1 (s).
The following result is an easy consequence of a theorem of MaflgBatz 1] It was used
in [15, p. 16]in the special case whehis (k — 1)-connected.

Theorem 2.8. Let F be a minimal k-augmenting set for a graph G and let B be the set of
those vertices of G which have degree at ldast1in G + F. Then F induces a forest
onB

Lemma 2.9. Let G + s be a (k, s)-connected extension of G and let A be a minimal
k-augmenting set for G in which every edge in A connects two verticAgsof Then
|A|<d(s) — 1.

Proof. LetB = {v € N(s) : dg+a(v) Zk+1}andletC = N(s) — B. Sincedgya(x) = k
anddgy(x) >k, we haved, (x) <d(s, x) for eachx € C. By Theorem2.8, B induces a
forest inA. Let e4(B) ande4(C) denote the number of those edgesfofvhich connect
two vertices ofB and of C, respectively. The previous observations imply the following
inequality.

|A| = ea(C) +da(B.C) +ea(B)< D da(x)+|B| -1
xeC

S (d(s)—[BD)+[Bl-1=d(s) -1
This proves the lemma.O]

To obtain a lower bound o, (G) in terms ofd(s), we introduce a new parameter. Let

G = (V, E) be agraph. We say that a fragm&if G separates pair of vertices, v € V

if {u, v}NX # @ # {u, v}NX*. Afamily F of fragments of5 is half-disjointif every pair of
vertices ofGis separated by at most two fragmentgirLets (G) = max{d_y.r k—n(X)}
where the maximum is taken over all half-disjoint familiE®f k-deficient fragments i.
Note that every family of pairwise disjoint fragments is half-disjoint and heiés > ¢ (G).
Since everk-augmenting set fo must contain at leagt— n(X) edges fronX to X* for
every fragmenK of G, we obtain the lower bound:

ar(G) = [1'(G)/2]. (12)

Lemma 2.10. Let G + s be a k-critical extension of a graph G. Then

[d(s)/2] <ax(G)<d(s) — 1.

Proof. The lastinequality follows immediately from Lemr@&. To verify the firstinequal-
ity we choose afamilyy’ = {X3, ..., X,,} oftight fragments oG such thatv(s) € U ; X;
and such tham is minimum and)_;" ; |X;| is minimum. Such a family exists since the
edges incident tg in G + s arek-critical. We claim that for every £i < j<m either
XiNX;=¢oratleastone ok* C N(X;) orx;f C N(X;) holds. Note that in the latter
case no pair of vertices can simultaneously be separatéd bpdX ;.

To verify the claim, suppose tha; N X ; # @. Then by the minimality omthe setX; UX ;
cannot be tight. Thusj implies thatX* N X;f = . Hence, either one of € N(X) or
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X* C N(X;) holds orX; N X* andX; N X} are both non-empty. In the former case we
are done. In the latter case, we applja)(to X; andX; and conclude thak; N X* and
X; N X} are both tight and all the edges fr@to X; U X enter(X; N X*) U(X; ﬂ X7).
Thus we could replac&; andX ; in X’ by two strictly smaIIer set¥; N X* andX; N X;“,
contradicting the choice of'. ThIS proves the claim.

Tofinish the proof of the lemma, observe thaf’ ; k—n(X;) = >"/" 1 d(s, X;) >d(s).In
other words, the sum ok:deficiencies’ of the fragments it is at leasti (s). We shall show
that X is half-disjoint. Suppose on the contrary that some pair € V is simultaneously
separated by three setsAfy sayX1, X2, X3. By the above claimX;, X», X3 are pairwise
disjoint. This contradicts the fact that they each separateand hencdu, v} N X; # ¢
for all 1<i <3. HenceX is half-disjoint andi(s) <¢'(G), as required. [

Let G + s be a(k, s)-connected extension @. Splitting offtwo edgesu, sv in G + s
means deletingu, sv and adding a new edgev. Note that if we perform a sequence of
splittings ats starting with graphG + s, and denote the resulting graph &Y+ s, thenG’
is the graph obtained fro® by adding the split edges. A splitksadmissibléf the graph
obtained by the splitting also satisfieg.(We will also say that the pair of edges, sv is
k-admissibleor simplyadmissiblewhen the valué is obvious. Notice that itz + s has
no edges incident te then (7) is equivalent to thé&-connectivity of G. Hence, it would
be desirable to know, whe@ + s is ak-critical extension and (s) is even, that there is
a sequence of admissible splittings such gistan isolated vertex in the resulting graph
G’ + 5. In this case we would hav& (G’) — E(G)| = dg(s)/2, and, using the fact that
ax(G) =d(s)/2 by Lemma2.10 the graphG’ would be aroptimal kaugmentation 06.

This approach works for thke-edge-connectivity augmentation probl¢é} but does not
always work in the vertex connectivity case. The reason is that such ‘complete splittings’ do
not necessarily exist. On the other hand, we shall prove results which are ‘close enough’to
yield an optimal algorithm fok-connectivity augmentation using the splitting off method,
which is polynomial fork fixed.

Pairs of edgesx, sy which do not givek-admissible splits can be characterized by
tight and dangerous ‘certificates’ as follows. The proof of the following simple lemma is
omitted.

Lemma 2.11. Let G + s be a(k, s)-connected extension of G andy € N(s). Split-
ting off the pairsx, sy is not kadmissible inG + s if and only if one of the following
holds

(i) there exists atightset T withe 7',y € N(T),
(ii) there exists a tight set U withe U, x € N(U),
(iii) there exists a dangerous set W withy € W.

2.3. Local separators and shredders

For two vertices:, v € V auv-cutis a setk C V — {u, v} for which there is nav-path
in G — K. AsetS c V is alocal separatorif there existu,v € V — § such thatSis
an inclusionwise minimaliv-cut. We also says is alocal uv-separatorand we call the
components of; — S containingu andv essential components S (with respect to the
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pair u, v). Note thatS may be a local separator with respect to several pairs of vertices
and hence it may have more than two essential components. Clg&€ey,= S for every
essential compone@ of S If Sis a localuw-separator and is a localxy-separator then

we sayT meshes 8§ T intersects the two essential componentSabntainingu andyv,
respectively.

Lemma 2.12. If T meshes S then S intersects every essential compone(drad fience S
meshes T

Proof. SupposeSis auv-separator and lef,, C, be the two essential components®f
containingu andv respectively. LeC be an essential componentfWe need to show
SintersectsC. Choosew € V(C). Without loss of generalityw ¢ S andw ¢ V(Cy,).
Chooser € T N C,. Thent ¢ S. Let P be a path in the subgraph 6fU T from w to t
such thatP N T = {r}. ThenP contains a vertex of sinceS separatesv from t. Hence
cnS#£@. O

Lemma2.12extends a result of Cheriyan and ThurimglaLemma 4.3(1)] The next
lemma extends a key observation from the same gdp®@roposition 3.1and will be used
when we discuss algorithms in Secti@n

Lemma 2.13. Let K be a local uv-separator of size- 1 and suppose that there exist- 1
openly-disjoint pathey, . .., P_1 fromuto vin G. Le® = U1 v (P).

(a) For each component C @f — K eitherC N {u, v} # ¥ or Cis a componentaf — Q.
(b) If K has at least three essential components tkea: N (C) for some component C of

G- 0.

Proof. (a) SinceK is a localuv-separator of sizé — 1, K contains exactly one vertex
from each pathPy, ..., P._1. LetC,, C,, C be distinct components & with u € C,, and
veC,.ThenQ — K C C, UC,. ThusC N Q = @#. HenceC is a component off — Q.

(b) Suppos& has at least three essential components. Then we clidode an essential
component oK distinct fromC,,, C,. ThenkK = N(C) holds by (a). O

Let K be a(k — 1)-shredder ofG andG + s be a(k, s)-connected extension @. A
component of G — K is called deaf component of K i + s if d(s, C) = 1 holds. Note
thatd (s, C’) > 1 for each componemtt’ of G — K by (7). The next lemma is easy to verify

by (7).

Lemma 2.14. LetG + s be a(k, s)-connected extension of a graph G and K bg a 1)-
shredder in G

(a) Let Cq, C2 be leaf components of K i@ + s. Then there exist — 1 openly-disjoint
paths in the subgraph of G induced by U C> U K from every vertex of'1 to every
vertex ofCs.

(b) If d(s)<2b(K)—2then K has at least two leaf componerikss a local separator and
every leaf component of K is an essential component of K in G
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Proof. Assertion (a) follows from7). Assertion (b) follows from the fact that(s, C) >1
for every component of G — K, and from (a). [

We shall use the following lemma to find — 1)-shredders with many components in a
graphG when some edge incident$on G + s belongs to many non-admissible pairs.

Lemma 2.15. LetG +s be a(k, s)-connected extension of a graph G. Suppose there exist r
dangerous set#y, Wa, ..., W, and atight seo in G +s such that >3, W; N W; = X,

and W; N W; N W, # ¢ for all distincti, j,h € {1,2,...,r}. ThenK = Ng(Xo) is

a (k — 1)-shredder in G with leaf componenty, C1, ..., C,, whereV (Co) = Xo and
V(Ci)=W; — Xgforall 1<i<r.

Proof. Applying (11) and using the factsthat(s, W;NW;NW,) > 1, sinceW;NW;NW), =
Xo, and Xg is tight; andng(W;) = d(W;) — d(s, W;) <k — 1 sinceW; is dangerous; we
obtain

3k + 3= d(Wi) +d(W)) + d(Wy) =d(W; N W; N W) +d(W; N W5 N W)
+d(W; N W N W) 4+ d(W, 0 W N W7
—INcg(W;) " Ng(W;) N Ng(Wp)| + 2d(s, W; N W; N Wp)
> 4k — |Ng(W;) N Ng(W;) N Ng(Wp)| +2>3k + 3. (13)

Thus equality must hold throughout. Hengés, Xo) = 1, and|Ng(W;) N Ng(W;) N
Ne(Wp)| = ng(Wi) = k — 1. Thus,Ng(W;) = Ng(W,) foralli,j € {1,2,...,r}.
This implies thatNg (W;) N W; =@ foralli, j € {1,2,...,r} and hence thaWVs(Xo) C
Ng(W;). Sinced(Xg) = k, d(s, Xo) = 1 andng(W;) = k — 1; we haveNg(Xg) =
Ng(W;) = K, say, foralli € {1,2,...,r}.

The fact thatW; N Ng(W;) = @ foralli, j € {1,2,...,r} also implies that¥; is the
disjoint union ofW; N W; N W, andW; N W;f NW;. Thusw; N W;.* NW; = W; — Xo for all
i,j, he{l,2, ..., r} Equalityin (L3) implies thaid(W;) = k + 1. Sinceng(W;) = k —1,
we haved(s, W;) = 2. The fact thati(s, Xo) = 1 now implies thati(s, W; — Xo) = 1.
SinceNg (W;) = K we haveNg (W) € K foralli € {1,2,...,r}. ThusNg(W; — Xo) =
N(;(WimW]?‘mWfl‘) C K.Sinced(s, W;—Xo) = land K| = k—1we haveNg (W; —Xg) =
K. It follows thatK is the requiredk — 1)-shredder irG. [

Note that the existence of(d — 1)-shreddeK as described in Lemnfal5certifies that
no pair of edges fronsto U!_,C; is k-admissible since each of the sétéC;) U V(C)) is
dangerous.

3. Independence free graphs

In this section, we give a complete solution of theonnectivity augmentation problem
for a special family of graphs which we cétindependence free graphs. This result is a key
step in our proofs concerning arbitrary graphs. However, we shall only need a special case
of the main result of this section: when we augment the connectivity/ofdl)-connected
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k-independence free graph by one. This is important from an algorithmic point of view,
since, as we shall see in Secti8rl, we are able to check whether/a— 1)-connected
graph isk-independence free. Thus, the reader may decide to focus on this special case at
first reading.

LetG = (V, E) be agraph ankbe an integer. LeX1, X» be disjoint non-empty subsets
of V. We say(X1, X») is ak-deficient paiiif d(X1, X2) =0and|V — (X1 U X2)| <k — 1.
We say twok-deficient pairg X1, X2) and(Y1, Y>) areindependenif for somei € {1, 2}
we have eitheX; C V — (YUY orY; C V — (X1 U X»). In this case no edge can
simultaneously connect; to X, andY; to Y> and hence the two pairs give ‘independent
constraints’ in thek-augmentation problem fa. We sayG is k-independence freié G
does not have two independdatieficient pairs. The following observations follow from
these definitions.

. If (X1, X>) is ak-deficient pair inG then X1 is ak-deficient fragment.

. If Xiis ak-deficient fragment il then(X, X*) is ak-deficient pair.

. (k — 1)-connected chordal graphs &éndependence free.

. Graphs with minimum degree at least-2 2 arek-independence free.

. All graphs are 1-independence free and all connected graphs are 2-independence free.

. A graph with no edges and at le@s# 1 vertices is nok-independence free for any
k>2.

7. If Gis k-independence free artd is obtained by adding edges ®thenH is also

k-independence free.
8. Ak-independence free graphlitmdependence free for dlK k.

OO WN -

In general, a main difficulty in vertex-connectivity problems is that vertex cuts (and hence
tight and dangerous sets) can cross each other in many different ways. In the case of an
independence free gra) we can overcome these difficulties and provide both a complete
characterization of the case when there is no admissible split containing a specified edge
in an extension o6, and a min/max formula which determines the number of edges in an
optimalk-augmentation fo6.

Lemma 3.1. LetG + s be a(k, s)-connected extension of aikdependence free graph G
and X, Y be fragments of G

(@) If X andY are tight then eitheX U Y istight XNY # #andd(XNY) = k;or XNY*
andY N X* are both tight andi(s, X — Y*) =0=d(s, Y — X%).

(b) If X is a minimal tight set and Y is tight then eith€rJ Y is right, d(s, X NY) = O and
ng(XNY)=k;orXCVY,orX CY*

(c) IfXisatightsetandY isamaximal dangerous settheneitherY ord(s, XNY) = 0.

(d) If X is a tight setY is a dangerous set anfls, Y — X*) + d(s, X — Y*)>2 then
XNY #Pandd(X NY)<k+1.

Proof. (a) Suppos& NY*, YNX* # @. Then (L0)impliesthad(XNY*) = k = d(YNX*)
andd(s,X —Y*) =0=d(s,Y — X*). ThusX N Y* andY N X* are both tight. Hence,
we may assume that eith& N Y* or Y N X* is empty. Sinces is k-independence free,
it follows that X* N Y* # @ # X NY (forexample if X N Y* = ¢ = X* N Y* then
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Y*C V- (XUX%*,and(X, X*) and (Y, Y*) are independeri-deficient pairs). Thus
X UY is a fragment irG. Using @) we deduce thak U Y is tight andd(X N Y) = k.

(b) This follows from (a) using the minimality of.

(c) Suppos&X Z Y andd(s, X NY)21. If XNY* # @ # Y N X* then we can usel()
to obtain the contradiction

2%k +12dX)+dY)=dX NY*)+d(Y NX*)+2>2k + 2.

Thus eithetX N Y* or Y N X* is empty and, sinc& is k-independence fre&* N Y™* # 0.
ThusX U Y is a fragment irG. Using ©) we deduce thaX U Y is dangerous contradicting
the maximality ofY.

(d) Using (L0), we deduce that eitheX N Y* or ¥ N X* is empty and, sinc& is k-
independence fre& NY # ¢ # X* N Y*. We can now use9) to deduce thai/(X N
V)<k+1. O

Using Lemma3.1we deduce

Corollary 3.2. If G + s is a k-critical extension of a k-independence free graph G then
d(s) = t(G). Furthermore there exists a unique minimal tight setdh+ s containing x
for eachx € N(s).

Proof. Let F be a family of tight sets which cove¥ (s) such that) [ X| is as small
as possible. Since every edge incidens ts k-critical, such a family exists. We show that
the members ofF are pairwise disjoint. Choosg, Y € F and suppose tha& NY # .
By Lemma3.1(a) we may replacX andY in F eitherbyX UY, orby X N Y* andY N X*.
Both alternatives contradict the minimality 3f v~ |X|. Since the members of are
pairwise disjoint, tight, and cove¥ (s), we haved(s) = ) y 7 (k —ng(X)) <t(G). The
inequalityd(s) >t (G) follows easily from {). Thusd(s) = ¢(G), as required.

The second assertion of the corollary follows immediately from criticality and Lemma
3.4b). O

Lemma 3.3. Let G + s be a k-critical extension of a k-independence free graph G and
x1, x2 € N(s). Then the pairx1, sx2 is not kadmissible for splitting irG + s if and only
if there exists a dangerous set WG+ s with x1, xp € W.

Proof. Suppose the lemma is false. Using Lemihal we may assume without loss of
generality that there exists a tight Sét in G + s such thatr; € X3 andxz € Ng(X1).
Let X, be the minimal tight set i; 4- s containingx;. Sincex; € N(s) N (X2 — X7),

it follows from Lemma3.1(a) thatX1 U X» is a tight, and hence dangerous, seGin- s
containingxy, xo. O

Theorem 3.4. Let G + s be a kcritical extension of a ndependence free graph G and
x0 € N(s).

(a) There is no kadmissible split inG + s containingsxg if and only if either d(s) =
b(G); ord(s) is odd and there exist maximal dangerous $8ts W» in G + s such that
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N(s) € WiUWso,xg € WiNWo,d(s, WiNW2) = 1,d(s, W1N W;) =ds)—1)/2=
d(s, Wi N W2), and W1 N W35 and W, N Wy are tight

(b) If there is no admissible split containingg and3 # d(s) # b(G) then there is an
admissible split containingx; for all x1 € N(s) — xo.

Proof. Note that sinces + s is ak-critical extensiond (s) > 2.

(a) Using Lemm&.3 we may choose a family of dangerous 3&ts= {Wy, Wo, ..., W,}
in G + s such thateg € N/_; W;, N(s) € U_; W; andr is as small as possible. We may
assume that each setiiti is a maximal dangerous set@n+ s. If r = 1 thenN(s) € Wy
and

d(W) = ng(Wi) <ng(W1) <k +1—d(s, W) <k — 1,

sinceWs is dangerous. This contradicts the fact tGat s is (k, s)-connected. Hence> 2.

Claim 3.5. LetW;, W; € W.ThenW; N W]’." #0#W;NW*andd(s, W; — Wj’.") =1=
d(s, Wj — Wl-*).

Proof. SupposéV; OW* = . SinceGisk-independence free, it follows thét* mW* #
and hencéV; U W; is a fragment of5. The minimality ofr now implies thatW; U W is
not dangerous, and hendew; U W;) >k + 2. Applying ©) we obtain

2k +2=d(W;) +d(W))=d(W; N W)) +d(W; UW))>2k + 2.

Hence equality holds throughout. ThigV; N W;) =k and, sinceg € W; N W;, W; N W;
is tight.

Choosex; € N(s) N (W; — W;) and letX; be the minimal tight set iz + s containing
x;. Sincex; € N(s) N X; N W;, it follows from Lemma3.1(c) thatX; € W;. SinceG is
k-independence freg; Z N(W;). The assumption thaw; N W* = ¢ now implies that
X;NW; NW; # @. Applying Lemma3.1(b), we deduce thaX; U(W N W;) is tight. Now,
X;Uw;n Wj) andW; contradict Lemm&.1(c) sincexg € W; N W; andW, is a maximal
dangerous set. Hence, we must haken W]*.‘ # 0 # W; N Wr. The second part of the
claim follows from (L0) and the fact thato € W; N W;. O

Suppose = 2. Using Claim3.5, we haved(s) = 1+d(s, W1 N W3) +d(s, Wo N WY).
Without loss of generality we may suppose thiéat, Wi N W3) <d(s, W N Wy). Then

d(W3) =d(s, Wa N W3) +ng(W3)<d(s, Wo N W5) + ng(Wa)
=d(Ws) — 1<k.

Thus equality must hold throughout. Henrtte, WiNW3) = d(s, WonWY) = (d(s)—1)/2,
d(s) is odd,W1 N W5 andW, N Wy are tight and the second alternative in (a) holds.
Finally, we suppose that> 3. ChooséV;, W;, W, € W, x; € (N(s)NW;) —(W;UW,).
Then Clain3.5implies thaty; € W; N W]ﬁk NW;, and hencéV; N W]’.‘ NW; # §.SinceG +s
is k-critical, we may choose a maximal tight $& in G + s with xo € Xo. Lemma3.1(c)
implies thatXo € W, forall 1<z <r. Sincex, € W/ N W* N W, we haveWw; N W* £ 0.
We can useq) to deduce thaW; N W; is tight. SlnceXo C W;NnWw;,the maX|maI|ty ofXg



44 B. Jackson, T. Jordan / Journal of Combinatorial Theory, Series B 94 (2005) 31-77

now implies thatV; "\W; = Xgforall 1<i < j<r.Applying Lemma2.15we deduce that
K = Ng(Xp) is a(k — 1)-shredder irG with b (K) = d(s). Since thek, s)-connectivity
of G + s implies thath(G) <d(s), we haveb(G) = d(s).

(b) Using (a) we havel(s) is odd and there exist maximal dangerous 3&{sW> in
G + s suchthatN(s) € W1 U Wp, xg € Wi N Wa,d(s, Wi N Wo) =1,d(s, Wi N Wz*) =
d(s, Wi N Wp) = (d(s) —1)/2>2, andW1 N W5 and Wy N W, are tight. Suppose; e
N (s) N W1N W3 and there is no admissible split containkag. Then applying (a) ta; we
find maximal dangerous se¥gs, W, with x; € W3 N Wy andd (s, W3 N Wy) = 1. Using
Lemma3.1(c) we haveW; N W5 € WzandWi N W3 € W4 Thus, Wi N W5 € WaN Wy
andd (s, W3 N Wy) > 2. This contradicts the fact thdts, Ws N W) =1. 0O

We can use this splitting result to determin&G) whenG is k-independence free. We
first solve the case whenG) is large compared td(s).

Lemma 3.6. Let G + s be a kcritical extension of a #independence free graph G and K
be a(k — 1)-shredder in G. I1f/(s) <2b(K) — 2thend(s, K) = 0.

Proof. Letbh(K) = b. Suppose: € N(s) N K and letX be the minimal tight set 7 + s
containingx. Let £ = {X1, X», ..., X,} be the leaf components &f Sinced(s) <2b — 2
we haver >2. ChooseX; € Landx; € N(s)NX;. ThenX; istight. Sincex € K = Ng(X;)
we haveX ¢ X7. Using LemmaB.1(b), we deduce thaX U X; is tight,ng(X N X;) =k
andd(s, X N X;) = 0. Hencey; ¢ X andN(X) N X; # @. Since this holds for alk; € £
andx € X N K, we have

INX)N(X1U X2... X)) 21 (14)

Furthermore, sinc& N X, # P andX N X, € X N X7 we haveX N X7 # @. Using (10)
and the fact thatl(s, X — X7) > 1 sincex € X N Ng(X3), it follows thatX* N X; = .
Using symmetry we deduce th&t N X; = @ forall X; € L.

Since X1 U X2 is dangerous angi, xo ¢ X*, we can use Lemma.1(d) to deduce
thatd(X N (X1 U X»)) <k + 1. Using the facts thaig(X N X1) = k = ng(X N X>),
Ng(X N (X1U X2)) = Ng(X N X1) UNg(X N X2),andNg(X N X;) N X; # ¢ for
eachi € {1, 2}, we have]Ng(X N X;) N X;| = 1 foreachi € {1,2} andK = Ng(X N
X1) N Ng(X N X2). Thusx € Ng(X N X1), K € X UNg(X) andX* N K = 0.
SinceX*NX; =¢foral X; € £, X*NY # @ for some non-leaf componeiitof
G — K. Using (L4) and the facts thaVg (X* N'Y) € (Ng(X) NY) U (Ng(X) N K) and
ng(X)<k — 1, we deduce thatg(X*NY)<k — 1 —r. SinceG + s is (k, s)-connected
we haved(s, Y) >d(s, X*NY)>r + 1. Thus

d(s) =d(s,Y) +d(s, X1UXo... X)) +d(s, Y1UYs...Yy_,) — Y) +d(s, K)
>@4+D+r+20b—r—1)+1>2b.

This contradicts the hypothesis thifk) <2b — 2. O
Lemma 3.7. Let G + s be a k-critical extension of a k-independence free graph G such

thatb(G) + 1<d(s) <2b(G) — 2. Then there exists an admissible split at s such, thoait
the resulting graptG’ + s, we haveb(G’) = b(G) — 1.
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Proof. Letb(G) = b and letK be a(k — 1)-shredder irG with b (K) = b and, subject to
this condition, with the maximum numbeof leaves inG + s. LetCq, Co, ..., C, be the

leaf components oK and letN(s) N C; = {x;} for 1<i <r. Sinced(s) <2b(G) — 2 we

haver >2. Sinced(s) >b(G) + 1 andr >2, we may use Theoref4to deduce without
loss of generality that there is an admissible spliir- s containingsx1. Chooseswsuch

thatsx1, sw is an admissible split irG + s. Splitting sx1, sw we obtainG’ + s where

dgris(s) = dg4s(s) —2andG’ = G + xjw.

Supposeé(G’) = b(G). ThenG has a(k — 1)-shredderk’ with b (K’) = b(G) such
thatxy, w belong to the same componeiitof G — K’. (Note that{x1, w} N K’ = @ by
Lemma3.6.) We shall prove that such&’ cannot exist irG.

Supposey, x2, ..., x, € V(C'). Sincewis also contained i’ we havei(s, C") >r+1.
Sinced(s) <2b — 2 it follows thatK’ has at least + 1 leaf components, contradicting the
maximality ofr. Hence, we may assume without loss of generality that

x2¢ C'. (15)

ThusK’ separates; andx;. Since, by Lemma.14, the subgraph o6 induced byC; U
C> U K containsk — 1 openly disjointc1x2-paths, we have

K'CC1UCUK. (16)
Claim 3.8. K and K’ are meshing local separatars

Proof. Arguing by contradiction we assume th&tand K’ do not mesh. LetC be the
component of5 — K’ containingx,. Since, everyw-path inG contains a vertex df we
haveC’ N K # ¢. Also sinceG has(k — 1) x1x-paths by Lemma.14 bothC’ andC),
are essentiak’-components. Sinck and K’ do not mesh, we have, N K = #. Hence,
C, is a connected subgraph 6f— K. Sincexz € V(C5), this implies thatC, € C» and
K' N Ca # 0 (sincekK # K’'). SinceK’ does not mesk, we haveC1 N K’ = @. Thus
C, is a connected subgraph 6f— K’. Sincex; € V(C’), it follows thatC1 € C’. Since
N(C1) = K we havek — C’ C K’. Let C; be a leaf component d&” distinct fromC.
Sincexy, w € V(C'), C"is not aleaf component &’ and henc&’; # C’. The assumption
thatK andK’ do not mesh and the fact th@t is an essentiak’ component intersecting
now givesk N C; = ¥. ThusC} is a connected subgraph 6f— K.

SinceC; andC; are leaf components &', Lemma2.14implies that there argk — 1)
openly disjoint paths iC; U C; U K’ from each vertex o’} to x2. SincekK N C’ # 4,
we havelK N (C] U C, U K')|<k — 2. ThusC] is contained in the same component of
G — K asxp, and henc€; C C». Butx; is the onlys-neighbour inC,. Thusd(s, C;) =0,
a contradiction. [J

Claim 3.9. r = 2.

Proof. Suppose >3. By Lemma3.6, x1, x2 ¢ K’. By Lemma2.14 the subgraph o6
induced byC1 U C2 U K containsk — 1 openly disjointc1xp-paths. Sinc& and K’ mesh
by Claim3.8 K’ N C3 # ¥, so|K' N (C1 U C2 U K)| <k — 2. Hence, at least one of the
abovek — 1 openly disjointc1xp-paths avoid«’. This contradictsy5). [
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We can now complete the proof of the lemma. k&t be the component off — K
containingw. Sincesx1, sw is an admissible split and; is a leaf component oK, it
follows thatC,, is not a leaf component &. Using (L6), we deduce that,, is a connected
subgraph off — K" and hence&,, C C’. Sinced(s, Cy,) =2 andx; € N(s)N(C'—Cy,) we
haved (s, C") > 3. Sinced (s) < 2b — 2, it follows thatK’ has at least three leaf components.
This contradicts the maximality afby Claim 3.9. Thus, K’ does not exist and we have
b(G)=bG)—1. O

Lemma 3.10. Let G + s be a kcritical extension of a ¥ndependence free graph G and
p be an integer such th&< p < %d(s) — 1. Then there exists a sequence of p admissible
splits at s if and only ifp <d(s) — b(G).

Proof. We first suppose that there exists a sequenpeadimissible splits ain G. Let the
resulting graph b& 1 + s. Thendg,+(s) = dg(s) — 2p andb(G1) >b(G) — p. Since
G1+ s is (k, s)-connected we must havk;, . (s) >b(G1) and hence <d(s) — b(G).
We next suppose that<d(s) — b(G). We shall show by induction gmthatG + s has a
sequence gb admissible splits & If p = 0 then there is nothing to prove. Hence, we may
assume > 1. Sincep < %d(s) —1we havel(s) >4. By Theoren8.4there is an admissible
splitats. Let the resulting graph b@,+s. If p —1<dg,+s(s) —b(G2) then we are done by
induction. Hence, we may assume tpat dg,1(s) — b(G2) +2>dg(s) — b(G). Hence,
p =dg(s)—b(G). Sincep < %d(; (s)—1, we havels (s) < 2b(G) — 2. By Lemma3.7there
exists an admissible splitasuch that the resulting grajgfs +s satisfied(G3) = b(G)—1.
It now follows by induction thaGs + s has a sequence pf— 1 admissible splits a2 [

Lemma 3.11. Let G + s be a k-critical extension of a k-independence free graph G. If
d(s)<2b(G) — 2thenay(G) = b(G) — 1.

Proof. Supposel(s) = b(G). LetK be a(k — 1)-shredder irG with 5(K) = b(G). Then
all components of; — K are leaf components. L& be the edge set of a trdeon the
vertices ofN (s). We shall show tha& + F is k-connected. If not, then we can partitigh
into three set$X, Y, Z} such thatZ| = k — 1 and no edge aff + F joins XtoY. Each pair
of vertices ofN (s) are joined by openly disjoint paths i + F, consisting ofk — 1) paths
in G (which exist by Lemm&.14) and one path id. Thus eitheiX or Y is disjoint from
N(s). AssumingX N N(s) = @, we haved(X) = n(X) <k — 1, contradicting the fact that
G + s satisfies 7). Hence G + F is ak-connected augmentation @fwith 5(G) — 1 edges.
Henceforth, we may assume tlidt) > b(G). By Lemma3.7, there exists an admissible
split atssuch that, for the resulting gragh + s, we haveb(G’) = b(G) — 1. SinceG’ + s
is ak-critical extension of5’, the lemma follows by induction ot (s) — b(G). O

Theorem 3.12. If G is k-independence free thenp(G) = max{[:(G)/2], b(G) — 1}.

Proof. Let G + s be ak-critical extension ofG. By Corollary 3.2, d(s) = t(G). If
d(s) <3thena;(G) = [t(G)/2] by Lemma2.10 Hence, we may suppose thék) > 4. If
d(s)<2b(G) — 2 thenay(G) = b(G) — 1 by Lemma3.11 Hence, we may suppose that
d(s)>2b(G) — 1.
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By Lemma3.1(Q there exists a sequence|af(s)/2] — 1 admissible splits &. Let the
resulting graph b&’ + s. ThenG’ + s is ak-critical extension ofG’, dg/1,(s) <3, and
ax(G") = [dgr44(s)/2] by Lemma2.1Q This gives the required augmenting efor G
With |F| = [dg4s(s)/2] = [1(G)/2]. U

4. Augmenting connectivity by one

Throughout this section, we assume tiat= (V, E) is a(k — 1)-connected graph on
at leastk + 1 vertices. We shall show thatdf, (G) is large compared tk, thena; (G) =
max{b(G) — 1, [t(G)/2]}. Our proof uses TheoreBi12and some results frofil5]. With
the following result we can verify the desired min—max equality wh@n) — 1> [t (G)/2].

Theorem 4.1([15]). Suppose G is & — 1)-connected graph such th&a{(G)>k and
b(G) — 1>T1t(G)/2]. Thena,(G) = b(G) — 1.

We will apply Theoremi.1to graphs which do not satistG) — 1> [¢(G)/2] using
the following concept. A sdt of new edges isaturatingfor Gif 1 (G + F) =t (G) — 2| F|.
Thus an edge = uv is saturatingif 1 (G + ¢) = t(G) — 2.

Lemma 4.2. If F is a saturating set of edges for(d — 1)-connected graph G with
b(G+ F)—1=[t(G+ F)/2] 2k — 1 thenay(G) = [t(G)/2].

Proof. By Theoremd.1the graphG + F can be madé&-connected by adding a set of
[t(G + F)/2] edges. Sinc€ is saturating, we haveG) = ¢t (G + F) + 2| F|. Therefore,
the setF U F’ is an augmenting set fds of size [1(G)/2]. Sincea,(G) > [t(G)/2], the
lemma follows. [

We shall show that ifi; (G) is large, then we can find a saturating set of edgis G so
thatG + F is k-independence free. In order to do this we need to measure how&liede
beingk-independence free. We use the following concepts. Sthise(k — 1)-connected,
we haveng(X) = k — 1 for everyk-deficient fragment o6. Following [15], we call the
(inclusionwise) minimak-deficient fragments i the k-coresof G. A k-coreB is active
in G if there exists ak — 1)-cut K with B € K. OtherwiseB is said to bepassive Let
«(G) andzn(G) denote the numbers of active, respectively, paskieeres ofG. SinceG is
(k — 1)-connected, the definition é&tindependence implies th&tis k-independence free
ifand only ifa(G) = 0. The following characterization of actikecores also follows easily
from the above definitions.

Lemma 4.3. Let B be a kcore in G. Then B is active if and onlysfG — B) = k— |B| — 1.

A setS C V is ak-deficient fragment covdor G if S N T # ¢ for everyk-deficient
fragmentT. Clearly, Sis ak-deficient fragment cover foB if and only if S covers every
k-core of G. Note thatSis a minimalk-deficient fragment cover fog if and only if the
extensionG + s obtained by joinings to each vertex o§is k-critical. We shall need the
following results from[15].
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Lemma 4.4. (a) Every minimal augmenting set for G induces a farest

(b) For every k-deficient fragment cover S fortBere exists a minimal augmenting set
Ffor GwithV(F) C S.

(c) If F is a minimal augmenting set for,6 = xy € F,andH = G+ F —e, then H has
precisely two k-cores X. FurthermoreX NY = #; x € X, y € Y; for any edge’ = x'y’
with x” € X, y' € Y, the graphH + ¢’ is k-connectedand for every kdeficient fragment
ZinH,wehav& C ZorY C Z.

Proof. Assertion (a) is given iffil5, p. 16]

To prove (b), note that sincgcovers allk-deficient fragments; becomesk-connected
when we add all edges between the verticeS of

Assertion (c) follows fronf15, Lemma 3.2] [

Based on these facts we can prove the following lemma.

Lemma 4.5. Let S be a minimal-kleficient fragment cover for G and let F be a minimal
augmenting set with (F) C S. Letdr(v) = 1and lete = uv be the leaf of F incident with
v. Let X and Y be the k-cores 6f+ F — ¢ and suppose that for a sé&t of edges we have
Kk(x,y, G+ F') >k for some vertices € X, y € Y. ThenS — {v} is ak-deficient fragment
cover ofG + F'.

Proof. Without loss of generality we may assume that X andv € Y. By the minimality
of S there exists &-coreZ of G such thatZ N S = {v}. SinceZ is alsok-deficient in
G + F — e, it must contain &-core of G + F — e, soY C Z by Lemma4.4(c). Now, since
Y is alsok-deficient inG andZ is ak-core inG, we must haveZ = Y andY N S = {v}.
For a contradiction suppose that there isdeficient fragmenP in G + F’ which is not
covered byS — {v}. ThenP N S = {v} and soP is alsok-deficient inG + F/ + F — ¢
and inG + F — e. Thus, by Lemmal.4(c), Y € P andy € P hold. Furthermore, since
G+ F' + F — e + xy is k-connected by Lemmé.4(c), we must have ¢ P U N(P) in
G+ F' + F —e.Thusx ¢ P U N(P) holds inG + F’ as well. This contradicts the fact
thatk(x, y, G+ F')>k. O

We need some further results frqtrb].

Lemma 4.6([15, Lemma 2.1, Claim I(a)] Suppose(G) >k. Then the k-cores of G are
pairwise disjoint and the number of k-cores of G is equal®). Furthermoreif 1 (G) > k+
1,then for each tcore X there is a unique maximal k-deficient fragmégt< V with the
properties thatX C Sy, andSx NY = ¢ for every k-core Y of G witlX # Y. In addition,
for two different kcoresX, Y we haveSy N Sy = #.

Lemma 4.7([15, Lemma 2.2)]. Let K and L be distinctk — 1)-cuts in G withb(K) > k.
Then L intersects precisely one component yof K.

Lemma 4.8. Suppose (G) >k+1.Let K be a(k — 1)-shredder in G withh(K) > k. Then

(a) if C = Sy for some component C 6f — K and for some k-core X then X is passive
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(b) if some component D @ — K contains precisely two k-cores, Y and no edge of G
joins Sx to Sy then both X and Y are passive

Proof. (a) Suppose tha{is active and leL. be a(k — 1)-cut with X C L. Sinceb(K) >k,
we havelL. ¢ K UC by Lemma4.7. SinceGis (k — 1)-connected and # K,G — L —C
is connected. Henc&; — L has a componer®” with C” c C. ThereforeC contains a
(minimal) k-deficient setX” with X N X’ = @, contradictingC = Sx.

(b) Suppos«is active and leL be a(k — 1)-cut with X € L. As in the proof of (a), this
implies thatG — L has a componer@ with C € D — L. SinceD contains precisely two
k-cores,Y C C and hence, sincgy is the unique maxima-deficient fragment containing
Y which is disjoint from everk-core,C € Sy must hold. On the other hand, sinCds a
component ofG — L, we haveX C N(C) and soX N N(Sy) # @. This contradicts our
assumption that no edge Gfjoins Sx to Sy. [

Recall that an edge= uv is saturatingif 1 (G +¢) = t(G) — 2. We say that twé-cores
X, Y form asaturating pairif there is a saturating edge= xy withx € X,y € Y and
otherwise that the paiX, Y is non-saturatinglIf +(G) > k + 2 andX, Y are a saturating
pair, then every edgey with x € X andy € Y is saturating. (To see this suppose that
e = xy is not saturating. Then(G +¢) > 1(G) — 1 > k+ 1 and hence thie-cores ofG + ¢
are pairwise disjoint by Lemmé.6. This implies that alk-cores ofG other thanX, Y are
k-cores ofG + e and that there is &-coreS in G + e which is disjoint from allk-cores
of G other thanX, Y. SinceS is ak-core inG + ¢, S is k-deficient inG. We may assume
thatS N X # @. By applying @) to S andX and using the minimality oK we can deduce
thatX C S. SinceX, Y is a saturating pair, this impliesN Y* # ¢ andY N S* # @. By
applying 6) to S andY we obtain thaty N S* is k-deficient inG. SincesS is k-deficient
in G + e, we must have € S U Ng(S) and henc&r N S* is a proper subset df. This
contradicts the minimality of .) We shall need the following characterization of saturating
pairs.

Lemma 4.9([15, p. 13-14). Lets(G) >k + 2 and suppose that two k-corés Y do not
form a saturating pair. Then one of the following hal@s) X € N(Sy), (b)Y € N(Sx),
(c) there exists a k-deficient fragment M wiSly, Sy C M, which is disjoint from every
k-core other tharX, Y.

For ak-coreX let v(X) be the number dk-coresY (Y # X) for which the pairX, Y is
non-saturating. The following lemma implies that an ackv@re cannot belong to many
non-saturating pairs.

Lemma 4.10. Suppose(G) >k +2and let X be an active k-core in G. The(X) <2k — 3.

Proof. Let) be the set of coreé(Y # X) for which X, Y is a non-saturating pair, and let
V' ={Y1, Yo,...,Y,} bethe set of those cores frgynfor which Lemmad.9(c) holds (with
respect toX). For eachy;, 1<i <r, let M; be ak-deficient fragment which is disjoint from
everyk-core other thaiX, ¥;. Consider two setdf;, M;, 1<i < j<r.Sincet(G) >k +2,
M; N M; is ak-deficient fragment, and hendg = M; N M; must hold. This implies that
each vertex o/ — Sy belongs to at most one s&f; .
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For a contradiction suppose thaf() >2k — 2. LetK = N(Sx) andlety” = {Y; € )’ :
M; N K = ¢}. Since|K| = k — 1 andv(X) > 2k — 2, it follows from Lemmag}.6and4.9,
that|)”| >k — 1.

SinceX is active, Lemmat.g@a) implies thath(K) <k — 1. Thus, since the vertex set
of one of the components @ — K is Sx, and|Y”| >k — 1, there is a componeil of
G — K which contains at least two ses, Y; from )”. ConsiderM;. SinceSxy C M; and
K N M; = ¢, we haveK C N(M;). SinceY; C D, we haveD — M; # #, and hence
DNN(M;) # @.Hencen(M;) > |K |+ 1 = k, contradicting the fact thalf; is ak-deficient
fragment. [

For every passivk-core B; (1<i<n(G))letF; = {X Cc V : X isk-deficientingG,
B; C X, the subgraphG[X] is connected, an& contains at most 48 activek-coreg.
Let M; = Uxcr X and letT (G) = U™Y (M; U N(M;)).

Lemma 4.11. Let B; be a passivekore for somd <i <n(G) and letX = {X1, ..., X;}
be a minimal family of members & for which U;:lxj = M;. Thent <k andn(M;)
<k(k—1). Moreover if «(G) > 5k — 8,thenM; intersects at mogi(4k — 8) active kcores.

Proof. Firstwe prove that< k. Foracontradiction suppose that k+1. By the minimality
of the family X we have thalf(j = X; — U,+; X, is non-empty for all X j <z. Note that
the setsf(j are pairwise disjoint. By applying¥ to a pairX,, X; € &, and using the facts
thatX, N X; # @ sinceB; € X, N X;, thatt >k + 1, and thaG is (k — 1)-connected,
we deduce thak, N X; is k-deficient inG. SinceB; < X, for eachX, € X, a similar
argument shows that = U;., (X, N X ;) is alsok-deficient. Note thad; — P = U’jzl)?j,

SO|M; — P|>t>k+ 1. SinceX, = X, U (PN X,)andG[X,]is connected, there exists a
neighbour ofP in X,.. Since the set¥, are pairwise disjoint, these neighbours are distinct.
Hencen(P) >t >k + 1, contradicting the fact th& is k-deficient. Thug <k. Since each
neighbour ofM; is a neighbour of some set iti, and X’ consists ok-deficient fragments,
we haven(M;) <k(k — 1).

To see the second part of the statement suppose that for Epree X’ and for some
activek-coreAwe haveX, N A # JandX, — A # @ # A — X,. Sincea(G) >5k — 8,
X, contains at mostd— 8 activek-cores, and the (activé&}cores are pairwise disjoint, we
have|V — (X, U A)| >k — 1. Now @) implies thatX, N A is k-deficient, a contradiction.
Thus every activék-core A for which A N M; # ¢ satisfiesA C X, for someX, € X.
Hence, the definition of; implies thatM; intersects at mo&t(4k — 8) activek-cores. [

We shall use the following lemmas to find a saturatingrsdr G such thaiG + F has
many passive cores. Informally, the idea is to pick a properly chosen &eatweeB and, by
adding a seF of at most 2 — 2 saturating edges between the ackiv@res ofG other than
B, makex(G + F — B) >k — |B| = r. By Lemma4.3, this will makeB passive, and will
not eliminate any of the passikecores ofG. We shall increase the connectivity Gf— B
by choosing a minimal-deficient fragment cove$for G — B of size at most — 1 and then
iteratively add one or two edges so that the new graph hasdaficient fragment cover
properly contained irs. Thus, after at most — 1 such steps (and adding at most-2 2
edges) we shall mak&passive. The first lemma tells us how to choose the akit@reB.
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Lemma 4.12. Suppose(G) <4(k—1) andx(G) > 20k (k—1)2. Then there exists an active
k-core BwithB N T(G) = 0.

Proof. Sincex(G)>20k(k —1)2 >5k — 8, Lemma4.11implies that for any passijecore
B;, the setM; intersects at mogt(4k — 8) activek-cores, andV (M;) intersects at most
k(k—1) activek-cores. Thud (G) intersects at most(G) (k(5k—9)) < 4(k—1)k(5k—5) =
20k (k — 1)2 activek-cores. Since(G) > 20k (k — 1)2, the lemma follows. [

Lemma 4.13. Supposer(G) <4k — 1) and «(G) >8k® 4 6k% — 23k — 16.Let B be an
active k-coreinGH = G — B,r = k—|B|, and S be a minimal r-deficient fragment cover

of H. Suppose every r-deficient fragment Z of H contains an active k-core of G. Then there
exists a saturating set of edges F for G such i#gt< 2, F is not incident with Band either

(G + F) > n(G); or n(G + F) = n(G), B is an active k-core iv + F,andH + F has

an r-deficient fragment covef’ which is properly contained in.S

Proof. SinceBis active,x(H) =k —1—|B|=r — 1.

By Lemmad.4there exists a minimaltaugmenting sef™* for H such thatF* is a forest
andV (F*) C S. Letdp+(v) = 1 and lete = uv be a leaf ofF*. By Lemma4.4(c), there
exist precisely twa-coresZ, W in H + F* — e withu € Z,v € W. ThenZ, W are
r-deficient inH. By an hypothesis of the lemma, there exist ackvaresX, Y of G with
X C ZandY C W.

SupposeX andY form a saturating pair i6. We may choose a saturating edgegor G
withx € X andy € Y. Thenxy ¢ E and, sincec(G) = k—1, we havec(x, y, G+xy) >k
andk(x, y, H+xy) >r. Hence eithert(G +xy) > n(G); or every activek-core ofG other
thanX, Y remains active irG + xy. If the second alternative holds thBremains active
in G + xy and, by Lemmat.5, S’ = S — v is anr-deficient fragment cover i#/ + xy.

Hence, we may assume thét Y is not a saturating pair iG. By Lemmad4.9either

(i) there exists &-deficient fragmenM in G with Sx U Sy € M which is disjoint from
everyk-core other thark, Y, or
(i) ¥ S Ng(Sx) or X < Ng(Sy).

Choosexr € X andy € Y arbitrarily and letPy, P, ..., Pr—_1 bek — 1 openly disjoint
xy-paths inG. Let 0 = U1V (P). Itis easy to see that if some edge®joins Sy to Sy,
then one of the paths, s&y, satisfiesV (P1) C Sx U Sy. On the other hand, if no edge of
G joins Sy to Sy, then (ii) cannot hold. Hence (i) holds and, either one of the pathsPgay
satisfiesV (P1) € M, or each of th& — 1 paths intersect¥y; (M). In the latter case, since
ng(M)=k—1,we havdNg(M)NP;|=1,V(P;)) CMUNgM)forall 1<i<k —1,
and henc&Vg (M) C Q andQ c MU Ng(M). We shall handle these two cases separately.

Casel: No edge of5joins Sy to Sy, (i) holds, and we havd (M) € Q € MUNg(M).

Let Cy, Ca, ..., C, be the components @ — Ng(M). Using the properties dil (M
intersects exactly twk-coresM is the union of one or more components®f Ng (M),
andNg (M) = k — 1) we can see that either, one componéntontainsSy and Sy and
is disjoint from evenk-core of G other thanX, Y andM = V(C;), or each ofSx andSy
corresponds to a component@f— Ng (M) andM = Sx U Sy.

SinceX andY are activek-cores, Lemmd.8, with K = Ng (M), implies thatp <k — 1.
Sincea(G) > (k — 2)(2k + 2) + k + 3, G has at leastk — 2)(2k + 2) + 1 activek-cores
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disjoint fromB, X, Y, andNg (M). Thus some componeut; of G — Ng(M) is disjoint
from M and contains at leask2+ 3 activek-cores distinct fronB. By Lemma4.1Q there
exists a saturating edger; with a; € A; for some activek-core A1 C Cj, A1 # B. If
(G + xa1) > n(G) + 1 then we are done. Otherwise all the activeores inG other than
X, Aj remain active inG 4 xa1. Applying Lemma4.10again, we may pick a saturating
edgeyay with ao € Ao for some activék-core A, of G + xag, with A» C C;, A2 # B.

We havex(x, vy, G + xa1 + ya2) >k, since there is a path fromto y, using the edges
xa1, yaz, and vertices ofC; only, and thus this path is openly disjoint fro@ (since
Q € MU Ng(M)). Hencex(x, y, H + xa1 + ya2) >r. Thus by Lemma.5 §' = § — v
is anr-deficient set cover il + xay + yap.

Case2: EitherV (P1) C Sx U Sy or (i) holds andV (P1) C M.

Let us call a componer® of G — Q essentialif D intersects an activi-core other
thanX, Yor B. Let D1, Dy, ..., D, be the essential components@f- Q. We say that a
componentD; is attached tahe pathP; if Ng(D;) NV (P;) # ¢ holds. LetR = Sx U Sy
if V(P1) € Sx U Sy holds and lelR = M if V(P1) € M. Then,Ris disjoint from every
activek-core other thark, Y.

Claim 4.14. At most2k — 2 essential components are attachedio

Proof. Focus on an essential componBnivhich is attached t@; and letw € W N D for
some activk-coreW # X, Y, B which has a vertex ilD. There exists a patRp from w

to a vertex ofP; whose inner vertices are ID. Sincew ¢ R andV (P1) C R, we have

D N Ng(R) # ¢. The claim follows since the essential components are pairwise disjoint
andn(R)<2k—2. O

Suppose that one of the patRsintersects at least4+ 4 activek-cores inG other than
X, Y or B. For every such activk-core A intersectingP; choose a representative vertex
a € AN P;. Since th&k-cores are pairwise disjoint, the representatives are pairwise distinct.
Order the activé&-cores intersecting; following the ordering of their representatives along
the pathP; from xtoy. By Lemma4.10 we may choose a saturating edga in G, where
aj is among the 2 + 2 rightmost representatives angbelongs to an activk-core A;. If
(G + xa1) > 7(G) + 1 then we are done. Otherwise all the activeores ofG other than
X, Aj remain active irG +xaj. Again using Lemmd.10 we may choose a saturating edge
yap in G + xai, whereay is among the R + 2 leftmost representatives. By the choice of
a1 andagy there exist two openly disjoint paths fraxnto y in G + xa1 + yap using vertices
of V(P;) only. Thusk(x, y, G + xa1 + yaz) >k. Hence, by Lemmd.5, §' = S — vis an
r-deficient set cover it + xay + yay.

Thus, we may assume that each pBtintersects at most4+ 3 activek-cores inG other
thanX, Y or B. Hence there are at least

(G) —3— (k — 1)(4k + 3) > (8> + 6k — 23 — 19) — (k — 1)(4k + 3)
= (2k 4 2)(4k? — 3k — 8)
active k-cores other thaB contained inG — Q. Note that sinceé-cores are minimak-

deficient fragments, they induce connected subgrapfs ence, eack-core contained
in G — Q is contained in a component 6f— Q. If some component o — Q contains at
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least Z + 3 activek-cores ofG other tharB then the lemma follows as in Case 1. Hence,
we may assume that there are at led$t-4 3k — 8 essential components @ — Q, each
containing an activ&-core distinct fromX, Y, andB.

Using Claim4.14 we deduce that there are at leakf 4 3k — 8 — (2k — 2) = (4k +
3)(k —2) + 1 essential componeni3; with all their attachments oRp, Ps, ..., P,_1, each
containing an active core other than Y, B. SinceG is (k — 1)-connectedr (D;) >k — 1
and henceD; has at least two attachments on at least one of the gathgs, ..., Pr_1.
Relabelling the componenf3y, ..., D, and the path®,, ..., P,_1 if necessary, we may
assume thab; has at least two attachments 8p_; for 1<i <4k + 4.

Let z; be the leftmost attachment @; on P,_;. Without loss of generality we may
assumethaty, zo, . . ., zZ4k+4 OCcur in this order orP,_1 as we pass fromtoy. By Lemma
4.10 there exists a saturating edge whereq; € A; forsome activé-coreA; € D;, where
A; # Band 1<i <2k + 2. If ©(G + ya;) >7(G) + 1 then we are done. Otherwise every
activek-core inG other thany, A; remains active irG + ya;. Using Lemma4.10again,
there exists a saturating edge; wherea; € A; for some activé&k-coreA; € D;, where
A; # B and Z + 3< j <4k + 4. Note that; is either to the left of; or z; = z;. Hence,
using the fact thaD ; has at least two attachments Bp_; and by the choice of;, z;, there
exist two openly disjoint paths i@ + xa; + ya;, using vertices fronV (P,_1) U D; U D;
only. Thereforec(x, y, G + xa; + ya;) >k, and we are done as above. This completes the
proof of the lemma. [

Lemma 4.15. Supposer(G) <4(k — 1) anda(G) >20k(k — 1)%. Then there exists a sat-
urating set of edges F for G such thdt| <2k — 2andn(G + F) >7n(G) + 1.

Proof. Let B be an activek-core inG with B N T(G) = @. Such a set exists by Lemma
412 LetH = G — B, andr = k — | B|. SinceB is active,x(H) = r — 1. Everyr-deficient
fragmentX in H is k-deficient inG and Ng(B) N X # #. HenceNg(B) is anr-deficient
fragment cover oH. Let S C Ng(B) be a minimak-deficient fragment cover df.. Since

B is k-deficient inG, we havel S| <ng(B) =k — 1.

We shall prove by induction drthat, for 0<i <k —1, there exists a saturating set of edges
F; for G such that F;| < 2i, F; is not incident withB, and eithem(G + F;) > n(G) + 1; or
(G + F;) = n(G), Bis an activk-core ofG + F;, andH + F; has arr-deficient fragment
coversS; € Swith |S;|<|S| —i. The lemma will follow since the second alternative cannot
hold with | S;| = 0 (since this would imply tha#l + F; is r-connected and hence tHais
passive inG + F;).

The statement is trivially true far= 0 taking F; = ¢. Hence, suppose that there exists
a setF; satisfying the above statement for som&€ <k — 2. If n(G + F;) >7n(G) + 1
then we can pufF; 1 = F;. Hence we may suppose th&iG + F;) = n(G), Bis an active
k-core of G + F;, andH + F; has arr-deficient fragment coves; C S with |S;|<|S| —i.
We would like to apply Lemma4.13to B andG + F;. To do this we must show th&t + F;,

B and S; satisfy the hypotheses of this lemma. We hay& + F;) = n(G) <4k — 1).
Thus,u(G + F;) = a(G) — 2|F;| >8k3 + 6k — 23 — 16.

The last property we need to verify is that evergteficient fragmenZ in G + F; — B
contains at least one actikecore of G + F;. SinceF; is a saturating set fdB, and since
thek-cores ofG are pairwise disjoint, eadticore of G + F; is ak-core ofG. Furthermore,
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sincen(G + F;) = n(G), if Ais an activek-core of G andA is ak-core of G + F; then
Ais an activek-core of G + F;. SinceZ is r-deficient inG + F; — B, it is k-deficient in
G + F;. ThusZ contains at least one coredh+ F;. If Z contains an activk-core inG + F;,
then we are done, so suppose that ekecpre of G + F; in Zis passive. LeiB; be such
ak-core. ThenB; is a passivé-core inG soG[B;] is connected. Le€ be the component
of G[Z] containingB; and letZ’ = V(C). SinceZ is k-deficient inG, Z’ is k-deficient in
G, andB C Ng(Z'). SinceBNT(G) =¥ andB € Ng(Z'), it follows thatZ’ ¢ F; and
henceZ’ contains at leastid— 7 activek-cores inG. Since|F;| <2(k — 2) = 2k — 4 and
each edge of; is incident to at most tw&-cores ofG, it follows that there exists an active
k-coreA in G with A c Z’ which is still an (activek-core inG + F;, contradicting the
assumption that evelgtcore of G + F; in Zis passive. Hencé& + F;, B andsS; satisfy the
hypotheses of Lemm&.13 Thus, there exists a saturating set of edgésr G + F; such
that| F| <2, F is not incident withB, and eithem(G + F; + F) > n(G + F;) = n(G); or
(G + F; + F) = n(G + F;) = n(G) andG + F; + F — B has arr-deficient fragment
cover S;+1 which is properly contained if;. Hence, the inductive statement holds with
Fiii=FUF. O

Lemma 4.16. Suppose(G) > 20k (k—1)2+ (4k —3) (4k —4). Then there exists a saturating
set of edges F for G such th&t+ F is k-independence free andG + F) >2k — 1.

Proof. Since every graph is 1l-independence free and every connected graph is
2-independence free, we may suppose that3. If n(G)<4(k — 1) then we may ap-

ply Lemma4.15recursively 4 — 3 — n(G) times toG to find a saturating set of edgés

for G such thatt(G + F1) >4k — 3. If n(G) > 4k — 3 we setFy = (. Applying Lemma4.10

to G + Fi, we can add saturating edges joining pairs of adtieeres until the number of
activek-cores is at mostR2— 2. Thus there exists a saturating set of edgefor G + F;

such thatu(G + Fy + F2) <2k — 2 andn(G + F1 + F2) >4k — 3. Applying Lemma4.10

to G + F1 + F», we can add saturating edges joining pairs consisting of one active and
one passivé-core until the number of activiecores decreases to zero. Thus there exists
a saturating set of edged for G + Fy + F> such thatx(G + F1 + F»> + F3) = 0 and

G+ F1+F+ F3)>22k—1. O

The main theorem of this section is the following.
Theorem 4.17.If ar(G) >20k3 then
ai(G) = maX{[1(G)/2], b(G) — 1}.

Proof. Since every graph is 1l-independence free and every connected graph is
2-independence free, the result follows from TheoBeh?if k < 2. Hence we may suppose
thatk > 3. LetG + s be ak-critical extension 0o65. By Lemma2.10we havei(s) > ax (G) +
1>20k® > k + 1. Hence, by{15, Lemmas 3.4, 3.5)ve haver(G) = d(s) >20k3. (This
equality will also follow from Lemm&.2in Sectiorb.) If b(G)—1> [t (G) /2] thenay (G) =
b(G)—1by Theorend.1and we are done. Thus, we may assumefit@t) /2] > b(G)—1

holds. We shall show that, (G) = [7(G)/2]. By Lemma4.16 there exists a saturating
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set of edge§ for G such thaiG + F is k-independence free andG + F)>2k — 1. Note
that adding a saturating edge to a grébheduces(H)/2] by exactly one ané(H) by
at most one. Thus, ift (G + F)/21<b(G + F) — 1, then there exist§’ C F such that
[t(G+ F")/2] = b(G + F’) — 1 and the theorem follows by applying Lem#&. Hence
we may assume th@t (G + F)/2] > b(G + F) — 1. SinceG + F is k-independence free,
we can apply Theore®.12to deduce thai, (G + F) = [t(G + F)/2]. Using @) and the
fact thatt (G) = t(G + F) + 2| F| we haveu, (G) = [t(G)/2], as required. [J

Theorem4.17 gives an affirmative answer to a conjecture of the second aytt&rp.
300].

5. Unsplittable extensions

In this section, we considerlacritical extensionG + s of anl-connected grapfs on
at leastk + 1 vertices in whichi(s) is large. We show that(s) = 7(G) and characterize
when there is no admissible split containing a given edge at

Lemma 5.1. LetX, Y C V betwo setswitlX NY # @. Supposeé (s) > (k —[)(k — 1) + 4.

(@) If X and Y are tight therk U Y is tight andd(X N'Y) = k.
(b) If Xis tight and Y is dangerous theiu Y is dangerous
(©) Ifd(s)y=(k -1+ 21)(k—1)+4and XandY are dangerous th&fi N Y* # @.

Proof. We prove (a). LeX, Y be tight sets withtX N Y # . By (9) we have
2k =d(X)+d¥)=>d(XNY)+d(XUY). (17)

Clearly,XNY isafragmentand hena&X NY) >k by (7). Using (L7) we havel (X UY) <k.
Thusif X* NY* # ¥ thenX U Y is also a fragment and hence is tight ahd N Y) = k.
SupposeX* NY* = @. Sinced(X UY) <k, we haven(X UY)<k —d(s, X UY). Since
Gisl-connected and: + s is k-critical, d(s, v) <k — [ forall v € V. Thus
d(s) <d(s,XUY)+d(s, N(XUY)<d(s, XUY)+ (k—Dn(XUY)

<d@s, XUY)+k—-Dk—d(s,XUY))

=Gk—-—Dk—(k—1—1d(s,XUY).
Sincek — 1 —1>0andd(s, X UY) >1, this givesi(s) < (k — ) (k — 1) 4+ 1, contradicting
the hypothesis od(s).

The proofs of (b) and (c) are similar, using the fact thidgt, X U Y)>2 in (b)
and (c). O

The following lemma shows thal(s) = ¢ (G) whend(s) is large.

Lemma 5.2. If d(s) > (k — I)(k — 1) + 4 thend(s) = t(G).
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Proof. LetF be afamily of tight sets which cove¥ (s) such thatF| is as small as possible.
Since every edge incident &s critical, such a family exists. We show that the members
of F are pairwise disjoint. Choosg, Y € F and suppose thaf N Y # ¢J. By Lemma
5.1(a), X UY is also tight. So replacing andY in F by X UY we contradict the minimality
of | F|.

Since the members of are pairwise disjoint, tight, and covéf(s), we haved(s) =
Y xer(k—n(X))<t(G). The inequalityl/(s) > (G) follows easily from ). Thusd(s) =
t(G), as required. OJ

Lemma 5.3. Letsxg be a designated edge of a k-critical extension- s of G and suppose
that there areq > (k — [ + 1)(k — 1) + 4 edges s{y # xp) incident to s for which the

pair sxg, sy is not admissible. Then there existgka— 1)-shredder K in G such that K has
g + 1leaf component€y, Cy, ..., C, in G + s, whereXg = V(Cp) is the maximal tight

set containingrg and K = Ng (Xo).

Proof. Let X be the maximal tight set i67 + s containingxg. Note that the seXg is
uniquely determined by Lemn&a1(a). Let7 = {X3, ..., X,,} be the set of all maximal
tight sets which intersedV (Xo). Note thatX; N X; = @ for 0<i < j<m by Lemma
5.1(a). Thus we havé (s, U (X;) = d(s, Xo) +d(s, U7 X;).

Since eachX; € 7 contains a neighbour ofy and Xg is tight, we haven <n(Xp) =
k—d(s, Xo). Since eaclX; € T istight andG is|-connected, we hawé(s, X;) <k —1I. So

d(s, Uy X;) < d(s, Xo) + (k — ) (k — d(s, X0))
= k(k —1) —d(s, Xo)(k — [ — 1). (18)

LetM = {y € N(s) —xp : sxo, sy is not admissiblg Since there exis{ > (k —[ +1)(k —

1) + 4 edges incident ts which are not admissible witkig, we can usel8) to deduce
thatR := M — U X; # . By Lemma2.11and by the choice df” there exists a family
of maximal dangerous seld = {Wy, ..., W,} such thatyg € W; for all 1<i<r and

R C U._,;W;. Letus assume thaw is chosen so thatis as small as possible. By Lemma
5.1(b), Xo C W; forall 1<i <r. Sinced(s, W; — Xo) <k + 1—1—d(s, Xo), we can use
(18) and the fact thag > (k — I + 1)(k — 1) + 4 to deduce that>2. ForW;, W; € WW we
haveW; N W]ik # ) by Lemma5.1(c). SinceW; U W; is not dangerous by the maximality
of W;, we may apply 9) to obtain

k+1+k+1=dW) +dW)=dW; "W)) +d(W; UW) >k +k+2. (19

Thus, equality holds throughout amig N W; is tight. SinceXg is a maximal tight set and
Xo € W; N W; we haveXo = W; N W;. Furthermore, since we have equality ir8), we
can use§) to deduce tha; N N(W;) € N(W; N W;). SoW; N N(W;) € N(Xp) and,
similarly, W; N N(W;) € N(Xo). HenceN(s) N W; N N(W;) C U ;X;. (Note that every
z € N(s) N N(Xp) is contained in one of th&;’s by the criticality of G + s.) So by the
choice ofWW, RN W; N W;k #PandRNW; N WF # ¢ follows.

By (10),

2k +2=d(W;) +d(Wj)=d(W; N W}) +d(W' N W))
+d(s, Wi = W) +d(s, Wj — W) 22k + 2
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and so we have equality throughout. Thus all edges 8tm;, other than the single edge
sxo, end inW; N W;.‘ andd(s, Xo) = 1. HenceRN W; N W} = (R N W;) — xo. Since
d(s, W; UW;) = d(W; UW,) — ng(W; UW;)<k + 2 — I, we haved(s, (W; U W) —
Xo)<k+2—1—d(s, Xo). We can now us€l@) and the factthag > (k— I+ 1)(k— 1)+ 4
to deduce that >3. Thusy) # (RN W;) —xo € W; N W N W holds for all distinct
i,j,h € {1,...,r}. Applying Lemma2.15we deduce thak = Ng(Xp) is a(k — 1)-
shredder withr 4+ 1 leaf component€, C1, ..., C, in G + s, whereV (Cp) = Xo and
V(C;))=W; — Xofor1<i<r.

We complete the proof of the lemma by showing that= R and hence that = 4.
Suppose thatd # R. ThenT # ¢ and we may choosg; € 7. SinceX1 N N (Xo) # 9,
we haveX; N K # @. SinceX1 N R =@, N(X1) NC; # @ for 0<i<r. Usingr =
|IR|>q — d(s, U/ X;), and the facts that(s, Xo) = 1, andg > (k — [ + 1)(k — 1) + 4,
we may use18) to deduce that >k + 2. This contradicts the fact that; is tight since
dX)znc(X)2r+1. O

6. Graphs containing shredders with many components

We show in this section, that 3(G) andz(G) are large compared ﬂoandB(G) —
1>71t(G)/2] thenay(G) = h(G) — 1. We need several new observations(®n- 1)-
shredders. We assume throughout this section@hat s is a k-critical extension of an
I-connected grapB, and thaK is a(k — 1)-shredder of satisfyingd (s) < 2b(K) — 2.

Lemma 6.1. Supposé(K) >4k + 3(k — I) — 1. Then

(a) the number of components C@f— K withd(s, C) >3is at mosth(K) — 2k — 1,
(b) IN(s)NK|<1,and
(c) ifd(s,x) = j>1for somex € K thenk — dg(x) = j.

Proof. Letwbe the number of componer@of G — K withd(s, C) > 3. Thend (s) > 3w +
(b(K) — w). Thus
2w < d(s) — b(K)<2h(K) — 2 — b(K) = 2b(K) + 20(K) — 2 — b(K)
= 2b(K) +35(K) — 2 — b(K).
Sinced(K)<k — [ andb(K) >4k + 3(k — I) — 1, we havew <b(K) — 2k — 1. This
proves (a).

SinceG + s is a critical extension o, each vertex inV (s) is contained in a tight set of
G + 5. Thus (b) will follow from the next claim.

Claim 6.2. At most one vertex of K belongs to a tight seGif+- s.
Proof. Suppose thatthere existtwo distinct vertiegsy,; € K andtightset$s, Y2in G+s

such thatxy € Y1,x2 € Yo. LetY = Y1 U Y> and_letD ={C: C_is a component of; —
K,CN(YUN(Y)) # @}. We haveD| < 2k, sinced (Y) <d (Y1) +d(Y2) < 2k and for every
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C € D eitherC — Y # @, in which caseV(Y) N C # @ holds, orC C Y, in which case
d(s,CNY)>=1holds by 7).

Sinceb(K) >4k +3(k — 1) — 1 we haveh(K) > 4k +2(k — ) — 1. Thus we may choose a
componenC’ of G — K suchthatC’ ¢ D.ThenC’'NN(Y) = #and hence, x2 ¢ N(C').
Hencen(C’) <k —3 andd(s, C’) > 3. Since we have at leastK ) — 2k choices forC’, this
contradicts (a). [

To prove (c), we choose atight sétontainingx. By Claim6.2 XNK = {x}. If X = {x}
then, sinceXiis tight, we havel(s, x) = k — dg(x), as required. Thus we may suppose that
X — K #¢.ByLemma2.4,d(s,x) = 1.

We first consider the case wh&rintersects two distinct componends, C» of G — K.
SinceNg(C1NX) C C1UK andNg(C1N X) € Ng(X) U {x}, we have

d(X)>d(C1NX)—14d(s,x)+d(s,C2NX)+|Ng(C2NX)NCo.

If Co C X thend(s,CoN X)>1,and ifC2 € X then|Ng(C2 N X) N C2|>1. Since
d(s,x) = Landd(C1 N X) >k, we deduce thaf(X) >k + 1. This contradicts the fact that
Xis tight.

Thus, X intersects a unique componddbf G — K. LetM = C N X. ThenNg(M) C
C UK. Since(Ng(M) — {x}) U Ng(x) € Ng(X), we may useq) to obtain

k=d(X)>dM)—1+d(s,x)+|Ng(x) — (MUNGg(M))|
>k—14d(s,x)+|Nx)— M — N(M)|.

This implies thatNg (x) € M U Ng(M). Thereforeb(K) <b(K) + 1, andx ¢ Ng(C)

for every component’ # C of G — K. Henced(s, C') >k — ng(C’") >2. ForC we have
d(s, C) >1by (7). This givesd(s) >2(b(K)— 1)+ 1+d(s, x) = 2b(K) >2b(K) — 2. Thus
equality must hold througho@(K) =b(K)+1landj(K) = 1.SinceN(s) N K = {x} by

(b), we havek — dg(x) = 8(K) = 1=d(s,x). O

We shall use the following construction to augménwith 5(G) — 1 edges in the case
whend(s, K) = 0andh(K) = IQ(G) =b.LetCy,..., Cpbethe components ¢f — K and
letw; = dg1s(s, C;), 1<i <b. Note thatw; >1 by (7). Sinced(s) <2b — 2, there exists
a treeT on b verticesCq, Co, ..., C, with degree sequenea, ..., d, such thatd; > w;,
for 1<i <b. (It will be clear from the context whether the lal&l refers to a component
of G — K or a vertex ofT.) Let F be a set of edges joining vertices 8t (s) with
dr(v) >dg+s(s, v) for everyv € V(G) and such that the graph obtained frovh— K, F)
by contractingCy, Co, ..., Cp to single vertices i$. Thus|F| = |E(T)| = b — 1. We shall
say thatG + F is aforest augmentationf G with respect ta&k andG + s, and prove that
G + F isk-connected. Note that sindg (s, K) = 0, there are n&-deficient fragments
of G contained irK by (7).

Lemma 6.3. Supposei(s, K) = 0 and letG + F be a forest augmentation of G with
respect to K ands + s. If X is a k-deficient fragment i + F then|X N K| > 2.

Proof. We proceed by contradiction. Supposés ak-deficient fragment irG + F with
X NK|<1 LetX* =V — X — Ng+r(X). ReplacingX by X* if necessary, we may
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assume that
IX*NK|>|XNK]. (20)

We first suppose that € X for some leafl of T. Sinced(s, L) <dr(L), L is a leaf
componentoKin G +s.HenceK € XUNg(X) by Lemma2.14 Itfollows thatX*NK =
@. HenceX N K = # by (20) andK < Ng(X). If X properly intersects some component
C; # L of G — K thenng(X) >k follows, contradicting the fact tha{ is k-deficient in
G+ F.SinceX™* # ¢, there exists a compone@iof G — K for whichC N X = ¢. Choose a
pathPfromLtoCinT. LetC’ be the first component for which the edgewhich enters
C’ corresponds to an edge fhwhich connectsX to V — X. For this component we have
ING+r(X)NC'| 21, song+r(X)>|K| + 1=k, as required. Thus we may assume that

LNX #L foreachleaflL of T. (22)

Choose a componeit of G — K such thatD N X # ¥ and letR be the set of edges
of F which are incident withX N D. Letes, ..., ¢, be the edges incident @ in T, which
correspond to the edges R Chooser longest pathsPy, ..., P, in T starting atD and
containing the edges,, ..., ¢,. Let A be the set of all path®;, 1< j <r, which contain
an edgeC,C, corresponding to an edggv; in F withu; € C; N X andv; € C; — X. For
every such path we hawg € Ngr(X). LetA’ = {v; : P; € A}. LetB be the set of
pathsP;, 1< j <r, which do not belong té and choose; € B. Since the first edge d#;
corresponds to an edgefrwhich is incident taD N X, every edge of; corresponds to an
edge ofF joining two vertices oi. In particular, the last edge @; is incident to a leaf. ;
of T which is distinct fromD and for whichX N L; # ¢. SinceX N L; # L; by (21), we
may choose a vertex; € Ng(X) N L;.LetB’ = {w; : P; € B}. Clearly,|A| = |A'],
|B| = |B’| and|A| + |B| = r. The above observations imply that

A UB UWNg(DNX)—(XNK)U(NGg(XNK)—X)C Ngyr(X). (22)

SinceG + s is (k, s)-connected; >k —ng (DN X). SincedA’, B’, Ng(D N X) are pairwise
disjoint, we may deduce that, ¥ N K = ¢, thenX is notk-deficient inG + F. Hence
X NK = {x}forsomex € K.

Let L be a leaf ofT distinct fromD. ThenL is a leaf component oK in G + s so
Ng(x) N L # @. Hence eithetNg(x) N L) — X # @, or X N L # ¢ and, by 1),
Ng(X) N L # @. It follows that, in both cases, we may chogse Ng(X) N L. Thus

A"UB' U(Ng(DNX))U{y} C N4 r(X).
Clearlyy ¢ Ng(D N X). SinceX s k-deficient inG + F, we must have € A’ U B’. Thus
LN (A'UB) #£¢ foreach leafL of T distinct fromD. (23)

The definitions ofd’, B’ now imply that the path®;, 1< j <r, coverT, and hence that
each edge df which is incident withD, is incident withD N X. SinceV (F) = Ng4s(s),
we haveNg45(s) N D € X. SinceD can be any component 6f — K which intersect
we may deduce that

If DNX #@ forsome componend of G — K thenNgis(s)ND C X. (24)
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Suppos& is acomponentoff — K with CNX = @. Then @3) implies thatC is a leaf of
TandA’'NC # @. Furthermore, the argument used in the derivatior28f §ivesA’ N C =
{y} = Ng(x) N L. Sincey € A’ C Ng415(s), yis the unique neighbour afin C. Thus

If CNX=@ forsomecomponent of G — K thenNg1s(s) N C C Ng(x).
(25)

Properties 24) and @5) imply that Ng+s(s) € X U Ng(X). ThusNG+5(s) N X* =0
andd(X*)<ng(X) < k. This contradicts thék, s)-connectivity ofG + s and completes
the proof of Lemmd.3. [

Lemma 6.4. Supposel(s, K) =0 andé(K) =b(K)>4k +3(k —1)—1.LetG + F be
a forest augmentation of G with respect to K afidt+ s. ThenG + F is k-connected

Proof. We proceed by contradiction. L&tbe ak-deficient fragment irG + F. ThenX*
is alsok-deficient so by Lemm#®.3, | X N K|>2 and|X* N K|>2. Since|V — (K U
XUXHIKV —(XUX"|<k — 1, there are at least; (K) — (k — 1) componentL of
G — K which are contained iX U X*. There is no edge frof{ to X* in G + F, so for
each such component eith€rC X or C € X* holds. Thus we hav&/(C) € K — X*
or Ng(C) € K — X, and song(C) <k — 3. Hencedg (s, C) >3 by (7). This contradicts
Lemma6.1(a). [

Our final step is to show how to augmedtwith 5(K) — 1 edges whed (s, K) # 0. In
this case, Lemma@&.1(b) implies that there is exactly one vertexe K which is adjacent
to s. We use the next lemma to split off all edges freito x and hence reduce to the case
whend(s, K) = 0.

Lemma 6.5. Supposei(s, x) >1 for somex € K andd(s)>(k + 1)(k — [ + 1). Then
there exists a sequence &€s, x) admissible splits at s which split off all edges from
sto x

Proof. We havel(s, x) <k—I. Suppose we get stuck after splitting off some copiexafe.
we obtain a grapl/ + s where some edgexcannot be split off. Sincéy 45 (s) > dg4s(s) —
20k—1—1)>(k—1+1)(k—1)+4,we can use Lemnta3to deduce that there isa— 1)-
shreddeX’ in H with by (K’) = dy 1 (s) and withxin one of the components é&f — K'.
Letu, v be two neighbours ofin H distinct fromx and letC,, andC, be the components of
H — K’ containingu andyv, respectively. By Lemma.14 there exisk — 1 openly disjoint
paths between andv in H containing only vertices of,,, C, andK’, and hence avoiding
X. Since all edges of (H) — E(G) are incident withx, these paths exist i@ as well.

SincebG (K) > bg (K) — (k—1) > (dg45(s) +2)/2— (k=1 Zk+1>dgs(s, V —x) —
dpg+s(s, V —x)+ 2, and each component 6f— K contains a neighbour &fin G, we can
choose the two neighbouss v of sin H + s to belong to different components— K.
But for such a choice af, v there do not exist — 1 disjoint paths frooutovin G — x,
contradicting the above claim.OJ

We can now prove our augmentation result for gra@ter which 5(G) is large.
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Theorem 6.6. Suppose that Gis I- connectédG) >4k +4k—-1)—1,t(G) > (k+1)(k—
[+ 1) andb(G) — 1> [1(G)/2]. Thenay(G) = b(G) — 1.

Proof. Let G + s be ak-critical extension of5. Thend(s) = 1(G) by Lemma5.2 LetK
be a(k — 1)-shredder irG with 5(K) = b(G). Then B(K) — 2>1(G) = d(s). Suppose
d(s, K) =0. Thenb(G) = b(K). LetG + F be a forest augmentation Gfwith respect to
KandG+s.Then|F| = b(G)—1and by Lemm#&.4, G + F is the requiredt-augmentation
of G. Hence we may assume thats, K) > 1.

Applying Lemma6.1(c), we deduce thalg (K) = dg+s(s, K) = dg+s(s, x) for some
x € K. By Lemma®6.5 we can construct a grapi + s by performing a sequence of
dg (s, x) admissible splits as which split off all edges froms to x in G + s. Since we
only split edges incident te € K to form H 4+ s, we haveG — K = H — K and so
bg(K) =by(K). Hence

dH+s(5) = dG45(s) — 2dG+5(s, X) = dG45(s) — 206(K)
< leg(K) —2—20G(K) =2bG(K) 4+ 20G(K) — 2 —20G(K)
= 2bg(K) —2=2by(K) —

Thus we havely (s) <2by (K) — 2, anddy+4(s, K) = 0. Also note that the splittings
add a setfp of g (K) new edges t@ to formH, and thatby (K) = bg(K) >b§5(K) —
(k —1)>4k + 3k —1) — 1. Let H + F1 be a forest augmentation &f with respect to
KandH + s. Then|F1| = byg(K) — 1 = bg(K) — 1, andH + Fj is k-connected by
Lemma6.4. Thus,G + Fp + F1 = H + Fj is the requireck-augmentation ofs with
06(K) + bg(K) — 1= bg(K) — 1 edges. O

We will apply Theorenb.6to graphs which do not satis@(G) —1>1t(G)/2] using
saturating edges. Recall that a $ebf new edges is saturating f@ if /(G + F) =
t(G) — 2|F|.

Lemma 6.7. If F is a saturating set of edges for arcbnnected graph G with(G +
F)Z4k+4k—-1)—-11(G+F)>(k+LDk—-1+1),andb(G+F)—1=[t(G+ F)/2],
thena, (G) = [t(G)/2].

Proof. By Theorem6.6the graphG + F can be madé&-connected by adding a sgt of
[t(G + F)/2] edges. Sinc€ is saturating, we haveG) = ¢t (G + F) + 2| F|. Therefore,
the setF U F’ is an augmenting set fdB of size [1(G)/2]. Sincea,(G) > [t(G)/2], the
lemma follows. [

7. Augmenting connectivity by at least two

Throughout this section, we assume tat (V, E) is anl-connected graph on at least
k 4+ 1 vertices and that<k — 2. We shall show that ifi; (G) is large compared tk, then
ap(G) = ma><{l3(G) —1, [t(G)/2]}. Our proof uses Theorerdsl7and6.6. We shall show
that if 4 (G) is large then either we can add a saturating set of eBgasthatG + F is
(k — 1)-connected, or els& has a(k — 2)-shredder with many components. If the latter
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occurs then we show directly that we can m&k&connected by addinfy (G)/2] edges.
We will occasionally consider two different extensions of the same graflo distinguish
between them we shall label one of themFas- s and the other a&l @ s.

Let G + s be ak-critical extension ofs. Construct gk — 1)-critical extensiorG & s of
Gfrom G + s by deleting a set of edges incidentstd.et f = (k—[1+ 1)(k — 1) + 4 be the
bound on the number of non-admissible pairs containing a fixed edge given by L&@ima

Lemma 7.1. I dg4(s) = f (k—=I+1) /(k—1) thendg 45 (s) —dGes () Z dG+s(s)/ (k—1+1).

Proof. If dggs(s) < f then the lemma is trivial. Otherwise by Lemra&(a) there exists
a family F of pairwise disjoint(k — 1)-deficient fragments irs such thatdggs(s) =
> sk —1—n(X)). SinceG + s is (k, s)-connected we hawés (s) > )~ r(k — n(X)).
Hencedg1s(s) 2dges(s) + |F|. Sincedgas(s, X)<k — [ for eachX € F, we have
|F| Zdgas(s)/(k —1). Thus,dG+5(s) ZdGas(s) + deas(s)/(k — 1) = (k — | + Ddgas
(5)/(k — ). Hence dg15(s) — dgas(s) 2dg4s(s)/(k —1+1). O

We next perform a sequence@f— 1)-admissible splits a&in G @ s and obtainG, @ s.
We do this according to the following rules.d g (s) <2f thenwe puG1 & s = G & s.
If dggs(s) =2f + 1 then we perforngk — 1)-admissible splits until eithefg, o (s) <2f,
ordeg,es(s) =2f + 1 and there is ngk — 1)-admissible split as in G1 & s. We then add
all the edges ofG + s) — (G @ s) to G1 D s and obtainG1 + s. We shall refer to the edges
of (G +5) — (G & s) asnew edgesf G1 + s.

Lemma 7.2. If dg4s(s) > f(k +1 — 1) thenG1 + s is a k-critical extension of7;.

Proof. SupposeGi + s is not (k, s)-connected. ldg,es(s)< f thenG1 @ s = G B s
andGi1 + s = G + s, contradicting the assumption th@t+ s is (k, s)-connected. Hence,
dg,es(s) > f + 1. Choose a minimal fragmedt of G1 such thatdglﬂ(X) < k. Since
dgies(X) =k — 1 we havedc;ﬁA (X) = k — 1 = dg,es(X) and no new edge af; + s
is incident withX. Sincedg,(X) >k, there exists an edgin G + s with x € X. Then
sx € E(G @s), since no new edge is incident with Hence sxis (k — 1)-critical inG & s
so there exists a minimal tight Séwith x € ¥ anddges(Y) = k — 1. Hencedg,gs (Y) =
k — 1. Working inG1 & s we may use Lemma.1(a) to deduce thaicle;S(X NY)=k—1.
Since there are no new edges incidenXtdhis glvesdGlH(X NY) =k — 1. Now the
minimality of X implies thatX < Y. Sincedgas(Y) = dg,es(Y), we now deduce that
dges(X) = dGl@S(X) Thusdges(X) = k — 1 and the minimality ofY givesX = Y.
Since no new edge is incident wi¥ithis givesdg(Y) = dges(Y) = k — 1. ThusY is
k-deficient inG + s, contradicting the fact tha® + s is (k, s)-connected.

Criticality of G1 + s follows from the criticality of G + s, since splitting off pairs of
edges frons cannot increasé(X) foranyX c v. O

Using Lemmab5.3, we can deduce that eithég, g (s) is small or else there exists a
(k — 2)-shreddeK in G1 such thatG; — K hasdg,gs(s) components. In the first case,
we show that there exists a sequence&-@dmissible splits inG1 + s such that, in the
resulting graphG) + s, G is (k — 1)-connected and then apply Theoref6 and4.17.
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We accomplish this by ensuring thatx, y, G}) >k — 1 for everyx, y € Ng,gs(s). Thisis
possible since there are many new edges and hfge(s) is large compared tdg, g (5).
We proceed incrementally using the lemmas below. In the second case, we show directly
that we can mak& k-connected by adding (G)/2] edges.

Henceforth, we shall assume th@{ + s is obtained fromG1 + s by performing a
sequence df-admissible splits and thdt C V is a cover of al(k — 1)-deficient fragments
of G. (In proving the theorem we will také = Ng,g,(s).) Let|T| = 1.

Lemma 7.3. If k(u, v, G}) >k — 1forall u, v € T thenG/ is (k — 1)-connected

Proof. Suppose5] has a fragmenX with n(X) <k — 2. Then we may choosee XN T
andv € X* N T, contradicting the fact that(u, v) >k — 1. [

Lemma 7.4. Letsz, sw € E(G’ +s) and suppose that the pait, sw is not k-admissible.
If x(z, w, G7) <k—2thenthere are at most f pairs of edgessx which are notk-admissible
in G| +s.

Proof. LetR = {sx : sz, sxis not k — admissible i’} + s}. Suppose that = |R| > f.
Then by Lemméb.3, there is ak — 1)-shreddeK in G’ with r 4+ 1 leaf components in
G’ + s such thatz as well as each vertex sx € R, is in one of these components. By
Lemma2.14 k(z, x) >k — 1 for every suckx. Takingx = w gives a contradiction. [

Lemma 7.5. Suppose thaiG/lﬂ(s) >(f+D)2k—-D(f+2)+1)+ k—2)(k—1—2).
Chooseu, v € T and suppose that(u, v, G|) = m <k — 2. Then there exists a sequence
of at most two kadmissible splits such thafor the resulting graphG’ + s, we have
k(u,v,G)) =m+ 1.

Proof. LetX, andX, bethe smallest sets which contaiandv, respectively, separateand
v, and have precisely neighbours. It is well-known that these unique smallest separators
exist. SincazG/l(Xu) = "G/l(Xv) = m<k — 2, there exist vertices € X, N NG/1+S(s)
andy € X, N NG/1+S (s). It'is also known that there exigh pathsPy, ..., P, fromuto
v, and two pathsPp and P, 1, one fromu to x and the other fronv to y such that all
thesem + 2 paths are vertex-disjoint apart fromwatindv. (Note thatu = x orv = y is
possible.) We may assume, without loss of generality, N@gs(s) N(V(Py) —x) =0
andNGflﬂ(s) N(V(Ppt1) —y) =0.Let Q = U V(P;) — {u, v}. If the pairsx, sy is
k-admissible, we have(u, v, G| + xy) >m + 1, as required. If not, we need to choose
k-admissible pairs in a more complicated way, as in the proof of Ledia

Suppose there exists a path(1<i <m) with dG/lﬂ(s, V(P)=22f+ k-1 +1.By
Lemma7.4we may choose an admissible pair, sa in G| + s such that is a neighbour
of son P; as close tw as possible. Lemma.4implies that there are at mdstdges frons
to P;(a, v]. If k(u, v, G} +xa) >m + 1 then we are done. Otherwise we may splitsb in
G + s + xa, whereb a neighbour ot on P; as close ta as possible. Lemma4implies
that there are at mosedges fronsto P;[u, b). Sinced (s, w) <k — [ for eachw € V (P;),
the vertices, b, a, y appear ornp; in this order. Hence, there exist two vertex-disjaimt
paths on vertex set (P;) U V(Po) U V(Pp41), showingk(u, v, G} + xa + yb) >m + 1,
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as required. Thus we may assume that no such path exists anddaence, V — Q) >
dg45(5) — m2f+k—-D=2(f+DQk—-2)(f+1D +1).

Let H be the graph obtained frod; — Q by deleting any edges joiningandyv. Let
Co, C1, ..., Cp41 be the components &f which each contain at least one neighbous,of
whereu, x € V(Co) andv, y € V(Cpy1). Supposei(s, C;) > f + 2 for some K j<p.
We may perform &-admissible splitx, sa for somea € C;, and then &-admissible split
sy, sbin G} + s + sa for someb € C;. These admissible pairs exist by Lemihd. It is
easy to see that(u, v, G| + xa + yb) >m + 1, as required. Thus we may assume that no
such component exists. Similarly,df(s, Co) > f + 1, then we may splity, sc for some
¢ € Cowhich is admissible witlsyin G’ + s, and we again have(u, v, G} + yc) >m +1,
as required. A similar construction holdsdts, C,1+1) > f + 1. Hence we have at least
ds,V—-0)/(f+1 =2k —2)(f+1) -+t components itd, each containing at least one
neighbour ofs.

Since each compone@it with ”G’l(C) <k—2mustcontainavertexfromandu, v € T,
there are at least2 — 2)(f + 1) componentg’;, 1<i < p, with at leask — 1 attachments
on Q. Sincem <k — 2, we have at least2+ 2 component®y, ..., D, which have two
attachments on the same pa#h,say. We now proceed as in the final part of the proof of
Lemma4.13 Leta; be the attachment db; on Py closest tau for 1< j <r. We first pick
a D; whereg; is among thef 4 1 attachment verticas; closest tai on P, and we choose
ak-admissible paisy, sb with b € D;. This pair exists by Lemm@&.4. Then we pick aDj,
whereay is among thef + 1 attachment vertices; closest tov on P; and we choose a
k-admissible paisx, sa with a € Dy,. This pair exists by Lemm@.4. Note thata; either
occurs beforer, on Py or ¢; = a;. Hence, using the fact that the componebtshave
at least two attachments dn and by the choice af;, a;, there exist two openly disjoint
uw-paths inG; +xa + yb, using vertices fronV (P1) U V (Pg) U V (Py4+1) U D; U Dy, only.
Thereforex(u, v, G} + xa + yb) >m + 1, as required. [

Applying this lemma iteratively to all pairs of verticesTnstarting withG’ +s = G1+s
and using the fact thdtis a decreasing function dfwe obtain

Corollary 7.6. Suppose that
di+sS)Z2(f+ DRk —2(f+2+0)+(k—=2)(k -1 -2) + 20%(k — 1 — 1).

Then there exists a sequence of at mégt — I — 1) k-admissible splits such thdor the
resulting graphG’, + s, we havex(G}) >k — 1.

Theorem 7.7.1f G is I-connected andy (G)>10(k — I + 2)3(k + 1)° thena(G) =
max{(b(G) — 1, [1(G)/2]}.

Proof. We havedgs(s) = 1(G) > ax(G) + 1>10(k — [ + 2)3(k + 1)° by Lemmas2.10
and5.2 If 5(G) — 1> [1(G)/2] thena;(G) = b(G) — 1 by Theorens.6and we are done.
Thus we may assume that(G)/2] > b(G) holds. We shall show that (G) = [t(G)/2].
We construcG &s, G1 @ s, andG1 + s as above. By Lemma.2, G is obtained fronG by
adding a saturating setof edges. Note that adding a saturating edge to a grap‘educes
[t(Go)/2] by exactly one and(Go) by atmostone. Thus, [t (G+ F)/2] < h(G+F)—
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then there exists” € F suchthafs(G+F')/2] = b(G+ F')—1 and the theorem follows
by applying Lemmd.7. Hence, we may assume tHatG1)/2] >b(G1) — 1. We have

1(G1) = dGy+5(5) = dG15(5) — dgas(s) =10k — [ 4 2)?(k + 1)3 (26)

by Lemmayr.1 Using Lemmé&b.3, we either haves, g, (s) <2f orelsedg,gs(s) >2f +1
and there exists & — 2)-shreddeK in G1 such thabg, (K) = dg,es(s)-

Casel: dg,gs(s) <2f.

Let T = Ng,as(s). Then|T| = t<2f. Corollary 7.6 and the fact thayf <(k — [ +
1)(k+1) — 2 imply that there exists a sequence of at mokt4/ + 1)3(k + 1)2 k-admissible
splits inG1 + s such that, for the resulting gragh, + s, we havex(G7) >k — 1. Note that
dg 45 () =20k — 1+ 2)2(k+1)3, by (26). Thus there exists a saturating set of edgés G
suchthaG} = G+ Fis (k—1)-connected and(G + F) > 2(k —{ +2)2(k+1)3. As above,
we may assume thét (G + F) /2] > b(G+F)—1>b(G+F)—1 (otherwise we are done
by Lemma6.7). SinceG + F is (k — 1)-connected, we can apply Theordni 7to deduce
thatay (G + F) = [t(G + F)/2]. Using (L) and the fact that(G) = 1 (G + F) + 2|F| we
havea, (G) = [t(G)/2], as required.

Case2: dg,¢s(s) =2 2f + 1 and there is ngk — 1)-admissible split asin G1 & s.

By Lemmab5.3, there exists & — 2)-shreddeK in G1 such thaig,(K) = dg,gs(s)
and hence each component®@f — K is a leaf component. Using Lemn2al4 and the
fact thatNg, g (s) covers all(k — 1)-deficient fragmentXin G1, we deduce:

Claim 7.8. G is (k — 2)-connected
SinceG + s is k-critical, Claim7.8and Lemma&2.4imply:

Claim 7.9. For all v € V we havedg, (s, v) <2. Furthermore dg, 1 (s, v) = 2 if and
only ifdg, (v) =k — 2.

Let G2+ s be the graph obtained frofi; + s by splitting off as mank-admissible pairs
of edgessx, sy as possible irG1 + s such thatk andy belong to the same component of
G1— K. ThenG;+s is ak-critical extension oG 5. LetCy, Co, ..., C, be the components
of Go — K. Note that these components have the same vertex sets as the components of
G1 — K and hence

r=dces(s)=22f + 1 (27)

Letdg,+s(s, Ci) = d;. Relabelling if necessary, we hade>do>> ... >d,.
Claim 7.10. dg,+s(s, K) = 0.

Proof. Supposes2 + s has an edgexwith x € K. By criticality there exists a fragment
X of G2 such thatx € X andJGzﬂ(X) = k. Since, by Claim7.8, x € Ng,(C;) for
all 1<i<r, we havex € Ng,(C;). Hence eithetNg,(X) N C; # @, or C; € X and
dG,+s(s, X N Cy) =1, forall 1<i <r. Thusé(;zﬂ(X))r > k, a contradiction. [J
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Using Lemma6.7 we may suppose that
b(G2) <[1(G2)/2] = [dgy+5(5)/2]. (28)

Claim 7.11. dh < (}_I_,d;) — 1.

Proof. Supposely> (Y ";_,d;). Sinced1 + (}_;_,d;i) = dg,+s(s) >r>2f + 1 by Claim
7.10and @7), we haved; > f + 1. Since there is nk-admissible pair of edges joinirgto
C1in G2+, it follows from Lemmab.3that there is @k — 1)-shredde in G, with each
of thed; neighbours o&in C; in distinct components ofio — K and at least one other
component containing the remaining neighboursiofG2 + s. Thusb(G2) >d; + 1, and
b(G2) >b(G2) >d1 + 1> (dG,+5(5)/2) + 1. This contradicts2g). [

Claim 7.12. Suppose X is a fragment @&, with |[X N K| <|X* N K.

(@) If ng,(X) =k — 2,then eitherX =C;,; UC;, U... U Ci, for some{iy, ip, ..., ip} C
{1,2,...,r};or X = Z; C C; forsomel<i<r.
(b) If ng,(X) =k —1,theneitherX = Z;, UC;, U... U Ci, for somefiy, i, ..., ip} C

{1,2,...,r}andZ; € Cy;0or X = Z;; U Z;, for somel<iy < ip<r, Z;j; € Cy,,
Zi, € Cpy, andnGZ(Z,»l) =k—2= nGz(Ziz)-

Proof. Suppos&NK # #. ThenX*NK # §.SinceNg,(C;) = K by Claim7.8, itfollows
thatC; £ X andC; £ X*forall1<i <r,andhencethais,(X) = |V —-(XUX*)|>r > k.
Thus we may suppose th&tn K = ¢. Let

S={ : XNC;isapropersubset af;, 1<i<r}.

Since the claim holds whe$ = ¢ we may suppose th&§| >1. LetZ; = XNC; fori € S.
By Claim7.8,ng,(Z;) >k —2. Hence|Ng,(X)N(KUC;)| >k —2and|Ng,(X)NC;| =1
foralli € S. The claim now follows using the hypothesis of (a) and (b) that X) = k—2
andng,(X) = k — 1, respectively. [

Claim 7.13. For each | 1<i <r, there exists a unique minimal subggtc V (C;) such
thatng,(Y;) =k — 2.

Proof. The existence of such a set follows from the fact th}(C;) = k — 2. To prove
unigueness we suppose to the contrary thiatand X, are two minimal subsets af;

satisfyingng,(X1) = k — 2 = ng,(X2). Thenng,(X1) = k — 2 = ng,(X2), sinceG1 is

(k — 2)-connected by Clain7.8, and the operation used in going fram to G2 (splitting

off pairs of edges frons) cannot decrease(X;). Let swbe the unique edge @1 & s

from sto C;. SinceG1 @ s is (k — 1, s)-connected, we must have € X1 N X». Since
X1UX> C C;, X1 U X2 is afragment of5,, and hence we have;, (X1 U X2) >k — 2, by
Claim 7.8. Submodularity ofi,, now implies thatg,(X1 N X2) <k — 2, contradicting
the minimality of X1 andX,. O

For each, 1<i <r, choose two distinct edgss;, sy; in G2 + s with y;, y! € ¥;. Note
that these edges exist by tlie s)-connectivity ofG,. Furthermore, by Claird.9, y; = y/,
if and only if Y; = {y;} anddg,(y;) = k — 2.



B. Jackson, T. Jordan / Journal of Combinatorial Theory, Series B 94 (2005) 31-77 67

We are now ready to construct the required augmentati@ bet G, @ s be the graph
obtained fromG, + s by adding an extra edge frosito C> if dg,+(s) is odd. Thus
dg,es(s) = 2[t(G2)/2] is even. First, we try to define a good augmenting set by a method
similar to forest augmentation. Since we need to increase the connecti\Gty loy two,
we now look for a loopless 2-connected multigrabbnr vertices whose degree sequence
isdy,dy, ..., d-, whered, = dg,as(s, C2) (S0d, is eitherd, or d> + 1, depending on
whetherdg,+ (s) is even or odd). If such a multigraph exists, it leads to a good augmenting
set in a natural way, as we shall see in Subcase 2.1. However, such a graph may not exist,
as the following example shows. L&tbe obtained fronk, ;_» by replacing some vertex
v in ther-set by a copy ofK;_14 and then connecting each vertex of tfke— 2)-set
to each vertex of thgk — 1)-set. It can be seen that the degree sequence defined by the
corresponding extensiofi; & s of Gis 4,2, 2, ..., 2. There is no loopless 2-connected
multigraph with this degree sequence. When such a multigraph does not exist, we need a
somewhat more involved method to define the augmenting set. This will be described in
Subcase 2.2.

Subcase.1: There exists a loopless 2-connected multigrdpim r vertices with degree
sequences, ds, . .., d;.

LetF be a set of edges joining the component&ef- K such thatir (v) = dg,gs (s, v)
for all v € V and such that the graph obtained frai — K, F) by contracting each
component; to a single vertex;, is H. SinceH is 2-connected, each vertexe V(H)
has at least two distinct neighboursHip and thus each componefit is joined to at least
two other components by edgeskafFurthermore, sincel is loopless, each edge Bfis
incident with two distinct components 6f; — K. Let y;, y/ be the neighbours &fin C;
as defined after Clairii.13 Since we are free to interchange the end vertices of the edges
of F within each component, we may chodsd¢o have the additional property that, for
each i <r, the two edges of incident toy; andy/ join C; to different components of
G, — K. We can now use Claim.12to deduce thaG, + F is k-connected. Suppose to
the contrary thatG, + F has a fragmenX with ng,+r(X) <k — 1. ReplacingK by X* if
necessary we may assume tpan K| <|X* N K|. By Claim7.8 ng,(X) >k — 2 and by
Claim7.12 we have one of the following four alternatives.

(@l) ng,(X) =k—2andX = C;; UC;,U...UC;, forsomep <r — 1. Suppose <r —2.
Then, the 2-connectivity dfl implies that there are two edgesfrom X to distinct
componentsC;,, C;, disjoint from X. Henceng,4+r(X) >k. Supposep = r — 1.
There are at least two edges frotto C;,, whereC;, is the unique component of
G2 — K disjoint fromX. If C; has only one vertex theNg,+ 7 (X) = V — X andX
is not a fragment. If all edges &f join X to the same vertex € C; , then we have
ngG,(Ci, —v) <k —1anddg,+s(s, Ci, —v) = 0, contradicting thék, s)-connectivity
of G2 + 5. Thus at least two edges Bfjoin X to distinct vertices of’;, and we again
havenGz+F(X) >k.

(@2) ng,(X) =k —2andX = Z; C C; forsome Ki<r.By Clam7.13 y;, y. € X.
Sincey;, y; are joined byF to distinct components ;,, C, disjoint fromC;, we again
haveng,+r(X) >k.
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(b1) ng,(X) =k—1,andX = Z;, UC;, U... U Gi, for somep<r andZz; < Cj.
Suppose X p <r — 1. Then the 2-connectivity dfl implies that there is at least one
edge ofF from X — C;, to a componenc€;, disjoint fromX. Henceng, r(X) > k.
Supposep = r. SinceGz + s is (k, s)-connected, it has an edge frsto a vertex
v e X* C C, — Z;. Since all edges of are incident to distinct componenids
joined by an edge df to some vertex ok — C;,, and again we haveg,,r(X) >k.
Supposep = 1. SinceG» + s is (k, s)-connected, it has an edge frao at least
one vertexv € Z;,. Since all edges of are incident to distinct componentsjs
joined by an edge oF to some component distinct frolfi;;, and again we have
nGy+r(X) Zk.

(b2) ng,(X) =k —1andX = Z;, U Z;, for someZz;, < C;,, Z;, € Cj,, andng,(Z;;) =
k—2=ng,(Z:,). By Claim7.13 y;,, y{l € Z;,. Sincey;,, yl.’1 are joined byF to two
distinct componentg’;,, C;, disjoint from C;,, at least one of these components is
also disjoint fromC;, and we again haveg,+r (X) > k.

ThusG, + F is k-connected. Puttingp = E(G2) — E(G), we deduce thafp U F is

the required augmenting set of edges®oof size[dg1s(s)/2] = [t(G)/2].

Subcas@.2: Thereis noloopless 2-connected multigraphwertices with degree sequence
di, d, ..., d.

Hakimi [10] characterized the degree sequences of loopless 2-connected multigraphs,
see alsql14, Corollary 3.2]

Theorem 7.14. There exists a 2-connected loopless multigraph with degree seqiighce
do>...2d.->2ifandonlyif di +do+ ... +d, isevenandly<do + d3 + ... + d,
—2r+4.

This characterization implies that in Subcase 2.2 we have eitherd, anddy >d; +
d3+..+d —2r+50rdy =d,—1andd,>d1 +d3 + .. +d, — 2r + 5. Since
dg,es(s) = d1+d,+ d3+ ... + d, anddg,q;(s) is even, both alternatives imply that

dc,es(s) <2d1+ 2r — 4. (29)

We shall use the following concept to find a good augmenting set in this subcase. Let
Ho = (V, E) be a multigraphs € V, andmy, my, ..., m, be a partition ofdy,(s).
Then an(my, my, ..., my)-detachment ofip at sis a multigraphH; obtained fromHy
by ‘splitting’ sinto g verticessy, 52, . . ., s, With degreesny, mo, ..., m,, respectively. We
refertosy, s2, ..., s, as thepiecesof sin Hy. Note that the grapH used in Subcase 2.1 can
be viewed as a loopless 2-connectéd, d;, ds.. . ., d,)-detachment as of the graphHo
consisting of exactly one vertexincident withdg, s (s)/2 loops. Inequality Z9) tells us
that if this detachmert does not exist, the is ‘large’ compared tdg, g, (s). We modify
our approach in this case by finding a loopless 2-conngateds, . . ., d,)-detachment of
the multigraph obtained froG. @ s) — K —U;_,C; by adding a suitable number of loops
to s. The pieces o in the detachment will represent the componertsCs, ..., C,. We
use the following lemma frorfiL4] to construct the required detachment.

Given a multigraptH andv1, vo, ..., v, € V(H), letb(vy, vo, ..., v,) be the number
of components o — {vy, v2, ..., Uy}.
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Lemma 7.15([14, Corollary 3.3)). Let Hy = (V, E) be a multigraphs € V andmj1,
my, ..., my beapartition ot (s) into at least two positive integgrsuch thain, >mo > - - -
>mgy >2. Lete(u) denote the number of loops incident to each vertex HinThen Hy
has a looples2-connectedmy, mo, ..., m,)-detachment at s if and only if

(a) Hopis 2-edge-connected

(b) b(v) +e(v)=1forallveV —s,

() ma+mz+---+my=b(s)+e(s) +q—2,and

(d) d(s,V —v)+e(s)=q +b(s,v)—1forallv eV —s.

Let G3 + s be the multigraph obtained frotG, © s) — K — U/_,C; by addingp =
(dg,es(s) — 2d1)/2 — 1 loops ats. Note thaip is a non-negative integer by Claimlland
the fact thatig,q, (s) is even. Applying Lemm&.15to G3 + s we deduce:

Claim 7.16. G3 + s has a looples2-connectedds, ds, . .., d,—1)-detachmentd; at §
whered; = d, + d, — 2.

Proof. We haved; + dz + ... + dy—1 = dg,gs(s) —d1 — 2 = 2p + d1 = dgy45(5)
S0 (d3.d3, ..., d,—1) partitionsdg,;s(s). SinceGz @ s is (k, s)-connected andy3 is
connected and loopless, it follows th@g + s satisfies Lemmd.15a) and Lemm@&.15b).
Using d; >2 for all 3<i<r — 1 and @9), we haved; + d, <dg,gs(s) — d1 — 2(r —
3) <dG,es(5) —dG,es(5)/24+r —2—2(r —3) = dg,es(s)/2—r+4. Thudz+. . .+d,—1 =
dg,es(s) —d1 — dy — dr > dGres(s) — d1 — dg,es(s)/2+r —4 =1+ e(s) +r — 4,
proving that Lemmé&r.15c) holds forG3 + s. To show that Lemma&.15d) holds focus
on a vertexv of C1. Considering the graptio — (K + v) and using Clain¥.9, we have
b(G2) 2bg,(v) +r — 14 f, wheref = 2 if dg,es(s, v) = 2 andf = 0, otherwise, since
if dg,@s(v) = 2 thendg,(v) = k — 2. By (28), h(G2) < [1(G2)/2] = dg,es(s)/2. Hence
dG,es(s)/22bg,(v) +r — 1+ . Thus

dGa+s(s, V(C1) —v) +e(s) = d1 — dgyes(s, v) + e(s)
=dG,es(5)/2 —1—dg,es(s, v)
2 bg,(V)+r — 14+ —1—dg,es(s, v)
2 (r —2) + bga4s(s,v) — 1,

as required. [J

Labelthe detached verticesB{ ascy, ¢3, ca. .., cr—1Wheredy, (¢;) = d; for3<i <r—
1 anddpy, (c2) = d;. The edgee = c;y1 is in E(Hy) for some 2 j <r — 1. We next
subdivide the edge with a new vertex, to form the multigraphH,, and then ‘flip’ some
edges fromr; to ¢, in H> preserving 2-connectivity and increasing the degree aip to
d, while maintaining the property that andy; are joined to different pieces ef We use
the following result to accomplish this.

Lemma 7.17([14, Corollary 2.17). Lett >3be aninteger. LetH be alooplexonnected
multigraph x, y € V(H) andxz; € E(H — y) for 1<i<t. Ift >d(y) —d(y, x) + 1,then
H — xz; + yz; is loopless an@-connected for some1<i <z.
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We construct the new multigrapits from Hz as follows. Ifd, = 2 then we puHz = Hb.

If d, >3thenwe use Lemmal7tofindasetofedges = {c2z; € E(Hp) : 1<i<d,—2}
suchthatyy] ¢ SandHs = Ho—S+{c,z; : 1<i<d,—2}is 2-connected and loopless.
Thisis possible sincéy, (c,) = 2,dp,(cr, c2) <1,antdp, (c2) = dy+d, —2>d, +d, —2.

In H3we haveyic, € E(Ha), yicr ¢ E(H3),du;(ci) = d; for 3<i <r, anddp,(c2) = d,.
(Note that we could have used Lemma.5directly to construct a 2-connected loopless
detachment with the same degree sequenégdiom G3 + s plus one extra loop & The
reason we go vid, and H> is to ensure thag; andy] are adjacent to distinct pieces of
in H3.)

LetF be a set of edges joining the component&ef- K such thatir (v) = dg,gs (s, v)
for all v € V — K and such that the graph obtained frgw — K, F)) by contracting
Cy,...,C.t0c2,c3,...,cr, respectively, isHs. Since Hs is 2-connected, each vertex
in H3 has at least two distinct neighbours. Sindg is loopless, every edge &f which
is incident to a componenrt;, 2<i <r, is incident to distinct components ¢f; — K.
Let y;, yf be the neighbours ofin C; as defined after Clairid.13 Since we are free to
interchange the end vertices of the edgeE wfithin each component;, for 2<i <r we
may choosé to have the additional property that, fox2 <r, the two edges df incident
to y; andy; join C; to different vertices oz — K — C;, which either belong to different
components o&; — K — C;, or both belong t@”1. Furthermore, sincg; andy; are joined
to different detached vertices iiz, the two edges oF incident toy; andy; join Cy to
different components af» — K — C1.

We can now use Claini.12to deduce thatG, + F is k-connected as in Subcase 2.1.
Putting Fop = E(G2) — E(G) we deduce thatp U F is the required augmenting set of
edges foiG of size[dg+5(s)/2] = [t(G)/2]. O

8. Algorithmic aspects and corollaries

In this section, we discuss the algorithmic aspects of our results and also show that our
main theorems imply (partial) solutions to a number of conjectures in this area.

8.1. Algorithms

The proofs of our min—max theorems (Theorefris7 and7.7) are algorithmic and lead
to a polynomial algorithm which finds an optimal augmenting set with respéditioany
I-connected input grapB and targek >1 + 1, provideda; (G) > 10(k — I + 2)3(k + 1)3 (or
ar(G) =20k3, if k = I + 1). As we shall see, the running time in this case can be bounded
by 0(n®), even ifk is part of the input. Our algorithm for the general case first decides
whethera, (G) is large, compared t&, or not. Since, by Lemma.10 a(G) is large if
and only ifd(s) is large in ak-critical extensionG + s of G, the first step is to create such
an extension. It (G) is small then our algorithm performs an exhaustive search on all
possible augmenting sefiswith V(F) € N(s) and outputs the smallest augmenting set
which makess k-connected. The number of possibilities depends only since| N (s)| is
also small. We shall present the algorithm as a sequence of sub-algorithms. Most of the steps
of these algorithms are easy to implement in polynomial time by network flow techniques.
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8.1.1. CRITICAL EXTENSION
Input A graphG and an integek > 1.
Output A k-critical extensiorG + s of G.
Stepl: Add a new vertexto G and maxl, k — d(v)} edges fronsto each vertex of
G. (This gives &k, s)-connected extensioi ® s of G by Lemma2.4.)
Step2: Delete edges incident &greedily until the remaining grapfi + s is ak-critical
extension. (We check whether each edge deletion presgryvesconnectivity using a
max-flow computation.)

8.1.2. EXHAUSTIVE SEARCH

Input A k-critical extensionG + s of a graphG.

Output An optimalk-augmenting set fo.

For each set of edgéswith V (F) € N(s), check whethe& + F isk-connected. Choose
the smallest suck-augmenting set.

The following lemma implies that the output of EXHAUSTIVE SEARCH is indeed an
optimalk-augmentation foG.

Lemma 8.1. LetG + s be a(k, s)-connected extension of a graph Then there exists an
optimal kaugmenting set F for G with (F) C N (s).

Proof. Let S = N(s) and letF be an optimal augmenting set with respeck for which
c(F) =), cr {u, v} —S|is as small as possible. Suppes€) is positive and letv € F

be an edge withu, v} — S # . SinceF is optimal, we have«(G + F —uv) = k —1
and, by Lemmat.4(c), it follows thatG + F — uv has precisely twd-cores (i.e. minimal
k-deficient fragments), Y. Clearly, X andY arek-deficient fragments is. Thus, since

G + s is (k, s)-connected, we must hawen X # ¢ # S N Y. Lemmad.4(c) also implies
that by takingF’ = F — uv + xy for a pairx, y of vertices withx € SN X andy e SNY

we have thatG + F’ is k-connected. NowF’| = |F| andc(F’) < ¢(F), contradicting the
choice ofF. This proves that(F) = 0 must hold, and hence the required augmenting set
exists. [

It follows that, if a; (G) is small, then we only need to perforp k-connectivity tests,

wherec, = 0(2(ak;G))) depends only otk, to find an optimak-augmentation foG us-

ing CRITICAL EXTENSION and EXHAUSTIVE SEARCH. If4(G) is large then our
augmentation algorithm has several sub-algorithms, according to the different subcases
in our proofs. In what follows we give a sketch of these algorithms to verify that they
can be run in polynomial time. We do not attempt to work out the details of an efficient
implementation.

8.1.3. CORES

Input A (k — 1)-connected grapty = (V, E).

Output The setC of all k-cores and the set of all activek-cores inG.

For each non-adjacent pairv € V such thatc(u, v) = k — 1, find the minimal (with
respect to inclusion) sef§,, X, such thatt € X,,, v € X, andn(X,) = k — 1 = n(X,).
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LetC’ be the union of the se{s(,,, X, } over all pairs, v, and letC consist of the minimal
membersof’. LetA={X €C: k(G- X)=k—1—|X|}.

Note that CORES can be used to test {ka— 1)-connected grapt is k-independence
free by checking wheth&® has any activ&-cores. We do not know if there is a polynomial
algorithm to determine whether an arbitrary grapk-isdependence free.

Cheriyan and Thurimell§4] give a polynomial algorithm for determining. (G) for a
(k — 1)-connected grap® and finding all(k — 1)-shredderK in G with bg(K) = b(G).

We can use this to give a polynomial algorithm for finding an optikraligmentation of a

(k — 1)-connected-independence free graph. Note, however, that it is unlikely that there
exists an efficient algorithm to determibg(G) for an arbitrary grapke. This follows since

the problem of determining whethég(G) >k for some XKk <|V| is NP-complete by
Bauer et al[1].

8.1.4. INDEPENDENCE FREE AUGMENTATION

Input A (k — 1)-connectek-independence free grah

Output An optimalk-augmenting seff for G with |F| = max{b(G) — 1, [t(G)/2]}.

We first construct &-critical extensionG + s of G using CRITICAL EXTENSION.
We haved(s) = #(G) by Corollary 3.2 We construct the required sEtby finding a
sequence of admissible splits @(as in the proofs of Lemma3.7, 3.10and 3.11 and
TheorenB.12) to giveG1 + s With dg,+4(s) € {3, b(G1)}. We then puF = F1U F> where
F1 = E(G1) — E(G) andF» is the edge set of a tree With(F2) = Ng,+4(s).

We next give algorithms for finding optimklaugmentations for a graghwhena (G)
is large. The first two algorithms determine whetdras adominating shreddethat is to
say a(k — 1)-shreddeK with b (K) = b(G) and H(K) — 2>1(G), and find an optimal
k-augmenting set whe@ does have such a shredder.

8.1.5. DOMINATING SHREDDER

Input A k-critical extensiorG + s of anl-connected grap® for whichdg 45 (s) > k(k —

[+1)+2.

Output We find a dominating shredd&rin G or deduce that no such shredder exists.
We construct a familyC of (k — 1)-shredders in such a way tht| is polynomial in| V|
and, if there is a dominating shreddéin G, thenkK € K. Once we havéC, we complete

the algorithm by computing(K’) for all K’ € K.

For each triplex, u, v, wherex € V andu, v € Ngis(s) — x, first we try to split off
all copies of the edgesx (if there are any). Suppose that all copies can be split off, and
let the resulting graph b€, + s. Then, we try to find a s€tP1, Po, ..., Pr_1} of openly
disjointuv-paths inG, . If we succeed, then we 1@ (x, u, v) = U= P, C(x, u, v) = {C :

C is acomponent of; — Q(x, u, v)},

Ki(x,u,v) ={Ng(C): C € C(x,u,v) andng(C) = k — 1},
Kao(x,u,v) ={Ng(C)U{q}:C eC(x,u,v),ng(C)=k —2,q € Q — {u, v}}.

Let K be the union of the sefS; (x, u, v) U K2(x, u, v) over all choices of, u, v. Clearly,
IKI< (5)n2.



B. Jackson, T. Jordan / Journal of Combinatorial Theory, Series B 94 (2005) 31-77 73

Lemma 8.2. If G has a dominating shredder K théh € K.

Proof. Suppose there is@ — 1)-shreddeK with d(s) <2b(G) — 2 = 2b(K) — 2. Then
Lemma6.limplies thatfN(s) N K| <1, and ifx € N(s) N K thendg(x) = k — d(s, x),
b(K) = b(K) + d(s, x), and we can split off all copies @k (in any order) by admissible
splittings. By splitting off these copie#(s) is reduced by (s, x) andb(K) is reduced
by d(s, x). Henced(s) <2b(K) — 2 holds in the resulting grapfi.. This implies thaK
has at least two leaf componer@sC’ in G,. By Lemma2.14there existt — 1 openly
disjoint paths from: € N(s)NCtov € N(s)NC’'.Clearly,0 C KUCUC'andK C Q
hold, whereQ is the union of the vertex sets of these paths. Moreover, sineek, the
components o6& — K andG, — K are the same. Lemntalalso implies thatG — K has
at least 2 + 1> 3 component® with dg(s, D) <2, and henceg(D) >k — 2. Thus,
there is a compone®’ of G — K, which is a component af — Q, and satisfies that either
K = Ng(D')or K = Ng(D') + ¢q forsomeg € Q — {u, v}.

It follows that for some triplex,u,v we have K € Ki(x,u,v) U Ka(x, u, v),
as required. [J

Note that if DOMINATING SHREDDER finds a dominating shredéevhen/ = k —1,
then we havel(s, K) = 0 andbg(K) = b(K) by Theorend.1

8.1.6. DOMINATING SHREDDER AUGMENTATION

Input A k-critical extensiorG + s of anl-connected grap@ for whichdg 45 (s) > k(k —

[+ 1) + 2, and a dominating shreddeérfor G.

Output An optimal augmenting sdt for G with |F| = b(G) — 1.

We construcF by splitting off all edges frorsto K and then adding a forest augmentation,
as described in Lemm&5and after Lemm&.1

8.1.7. LARGE AUGMENT BY ONE

Input A k-critical extensiorG + s of a (k — 1)-connected grapty = (V, E) for which

dG1s(s)>20k3 + 1.

Output An optimal augmenting sét for G with |F| = max{b(G) — 1, [1(G)/2]}.

We use DOMINATING SHREDDER, DOMINATING SHREDDER AUGMENTATION,
CORE, and the proof techniques of Lemn#ag 4.15and4.16to find a saturating set
of edgesFi such that eitheir; is an optimalk-augmenting set fo6G with |F| = max
{b(G) — 1, [t(G)/2]}, or G + F1 is k-independence free and has no dominating shredder.
In the former case we puf = Fi. In the latter case we use INDEPENDENCE FREE
AUGMENTATION to find ak-augmenting sek» for G + F; and putF = F1 U F>.

Note that when we increase the number of paskizeres by making an actidecore
passive in LARGE AUGMENT BY ONE, we do not need to comptiigs). We choose an
arbitrary activek-coreB and, if we fail to makeB passive (which mean8 N T(G) # 0),
then we choose a different actikecore.

8.1.8. LARGE AUGMENT
Input A k-critical extensionG + s of a graphG = (V, E) for whichdg(s) > 10k —
1+2)3%k + 1%+ 1.
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Output An optimal augmenting sét for G with |F| = maxh(G) — 1, [1(G)/2]}.

We use DOMINATING SHREDDER, DOMINATING SHREDDERAUGMENTATION,
and the proof techniques of Lemnm&3 and7.5to find a saturating set of edg€s such that
either Fy is an optimak-augmenting set foG with | F1| = max{h(G) — 1, [t(G)/2]}, or
G + F1is (k — 1)-connected, has no dominating shredder,&sg, (s) — 2| Fy| >20k3 +1,
or G + Fy has ak-augmenting seF>» of size [¢(G + F1)/2] (which can be constructed
using detachments as in the proof of Case 2 of Theorem In the first case we put
F = F1. In the second case we use LARGE AUGMENT BY ONE to finkk@augmenting
setFs3 for G + F1 of size[t(G + F1)/2] and putF = F1 U F3. In the third case we put
F = F U F.

8.1.9. AUGMENT

Input An |-connected grapt and an integet > 1.

Output An optimalk-augmenting sdft for G.

Construct a-critical extensionG + s for G using CRITICAL EXTENSION. Ifk =
I + 1 anddg.s(s)>20k3 + 1 then apply LARGE AUGMENT BY ONE. If <k — 2 and
dG4s(s) =10k — I + 2)3(k + 1)3 + 1 then apply LARGE AUGMENT. Otherwise apply
EXHAUSTIVE SEARCH.

As noted above, most of the steps of the above algorithms are easy to implement in
polynomial time by network flow techniques. The only exception is finding the required
loopless 2-connected detachments as in the proof of Case 2 of Th&ofewe shall not
discuss this in this paper but remark that there is a simple algorithm whichHinidst
exists, and we also have a similarly simple and efficient algorithm which fiade/henH
does not exist.

Before stating our bound on the running time of our algorithm AUGMENT, we note
that by inserting a preprocessing step, which works in linear time, we can make the in-
put graph sparse, and hence reduce the running time, as followss l=et(V, E) and
k be the input of our problem. Let = |V| andm = |E|. It was shown in3,19] that
G = (V, E) has a spanning subgraghl = (V, E’) with |E'|<k(n — 1) satisfying
K(u, v, G') = min{k, k(u, v, G)} for each pairu, v € V. It can be seen that by replac-
ing G by G’ we do not change thiedeficient fragments (or their deficiencies) and that for
any augmenting sét the graphG + F is k-connected if and only i;’ + F is k-connected.

Thus we can work witl;” and assume that = O (kn). Note also tha# (s) = O (kn) inany
k-critical extensiorG + s of G. By using these facts and efficient network flow algorithms

for the basic operations (such as finding admissible splittings, checking whether an edge is
k-critical, etc) we can conclude with the following theorem.

Theorem 8.3. Given antconnected graph G and a positive integeoldr algorithm AUG-
MENT finds an optimal k-augmenting set;J{G) > 10(k — +2)3(k+1)2 then the running
time isO (kn®). Otherwise the running time i€ (cxn®).

We close this subsection by noting that we can also use the theory developed in this paper
to derive a near-optimal algorithm for the vertex connectivity augmentation problem which
is similar to the one given ifiL3].
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8.1.10. NEAR-OPTIMAL AUGMENT

Input An |-connected grapt and an integek > 1.

Output A k-augmenting st for G with |F| <ax (G) + %k(k —1+1) 4+ 1.

Construct &-critical extensionG + s for G using CRITICAL EXTENSION. We first
suppose thalg(s) > k(k —1+ 1)+ 2. We use DOMINATING SHREDDER to determine
if G has a dominating shredder. If it does then we use DOMINATING SHREDDER AUG-
MENTATION, to find an optimak-augmenting set foG. If G does not have a dominating
shredder then, by Lemnta3, we can split off edges fromsuch that, in the resulting graph
G1 + s, we have eithedg,(s) > k(k — [ + 1) + 2 andG, has a dominating shredder,
ork(k —1+ 1)+ 1<dg +s(s) <k(k — [ + 1) + 2. In the former case we can use DOM-
INATING SHREDDER and DOMINATING SHREDDER AUGMENTATION, to find an
optimalk-augmenting set fdB. In the latter case, Lemnfa7implies that we may construct
a minimal augmenting st for G1 with V(F1) € Ng,44(s). Let F = F1 U F», where
F» = E(G1) — E(G). Lemma2.9implies that| Fo| <dg,+s(s) — 1. Sincer (G) = dg+s(s)
andt(G1) = dg,+(s) we have|F|< 31(G) + 3dg,45(s) <ax(G) + Sk(k — 1+ 1) + 1.
Finally, if dg+s(s) < k(k — 1 + 1) 4+ 2, then we construct a minimal augmenting Bet
for G with V(F) C Ng45(s). Lemma2.10implies that| F| <ax (G) + %dcﬂ(s)gak(G)

+ Sk(k —1+1) + 1.
The running time of NEAR-OPTIMAL AUGMENT i) (n%).

8.2. Corollaries

Our main results (Theorem&17 and7.7) imply (partial) solutions to several related
conjectures. The extremal version of the connectivity augmentation problem is to find, for
given parameters, k, ¢, the smallest integem for which everyk-connected graph on
vertices can be madg + ¢)-connected by addinm new edges. Several special cases of
this problem were solved if17] and it was conjectured that (at leashifs large enough
compared tk) the extremal value ahforr>2,k>2is[nt/2] (or |nt/2], depending on
the parities of, k, 1). Sinceb(G) — 1<n, the min-max equality of Theorefh7 shows
that if n is large enough and>2 thena; (G) is maximized if and only ifG is (almost)
k-regular. This proves the conjecture (whers large compared tk), by noting that such
(almost) regular graphs exist fée> 2.

A different version of this problem, when the graphs to be augmentddragular, was
studied in[9]. It was conjectured there that @ is a k-regulark-connected graph on
vertices, andh is even and large comparedkothenG can be madeék + 1)-connected by
addingr /2 edges. IiGisk-regularb(K) <k for any cut of sizek. Thus ifnis large enough,
we have mafp(G) —1, [1(G)/2]} = n/2. Now the conjecture follows from Theorehil7.

A similar question is whether, (T) = f(zvev(r) (k —d(v))™)/2] holds when grapf
is a tree, whera™ = max{0, x} for all integersx. It is known that the minimum number
of edges needed to make a tieedge-connected (or an arborescekeglge- ok-vertex-
connected) is determined by the sum of the (out)degree-deficiencies of its vertices. As above,
using the fact thab(G) — 1<n, Theorem7.7 implies (whenn, and hence alsoy (T), is
large compared tk) that if k > 3 thena, (T) = [¢t(T)/2]. Thatis,ar(T) is determined by
the total deficiency of a family of pairwise disjoint subsetd@f"). SinceT is a tree, each
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memberX of this family induces a forest. This implies that there exists a vartexX with
k—d(v) >k —n(X). Therefore, we can find a family consisting of singletons with the same
total deficiency. This yields an affirmative answer to our question provided andn is
large compared t&. Note that the answer is negative foe 2.

Frank and Jord48, Corollary 4.8]prove that everyk — 1)-connected grapty = (V, E)
can be madk-connected by adding a debf new edges such thév, F) consists of vertex-
disjoint paths. They conjectured that suchrazan be found among the optimal augmenting
sets as well. We can verify this, provided G) is large enough. In this case, we may use the
min—max formula of Theorem.17. If a; (G) = [¢(G)/2] then an optimal augmenting setis
a collection of vertex-disjoint paths of length one or twaylfG) = b(G)—1, then a careful
analysis of the forest augmentation method shows that we can find an optimal augmenting
setF satisfyingdr (v) <2 forallv € V. SinceF is a forest, it induces vertex-disjoint paths,
as claimed.
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