
Journal of Combinatorial Theory, Series B 94 (2005) 31–77
www.elsevier.com/locate/jctb

Independence free graphs and vertex connectivity
augmentation�

Bill Jacksona,1, Tibor Jordánb,2
aSchool of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS,

England, UK
bDepartment of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary

Received 9 May 2002
Available online 11 January 2005

Abstract

Given an undirected graphG and a positive integerk, the k-vertex-connectivity augmentation
problem is to find a smallest setF of new edges for whichG+ F is k-vertex-connected. Polynomial
algorithms for this problem have been found only fork�4 and a major open question in graph
connectivity is whether this problem is solvable in polynomial time in general.
In this paper, we develop an algorithm which delivers an optimal solution in polynomial time for

every fixedk. In the case when the size of an optimal solution is large compared tok, our algorithm
is polynomial for allk. We also derive a min–max formula for the size of a smallest augmenting set
in this case. A key step in our proofs is a complete solution of the augmentation problem for a new
family of graphs which we callk-independence free graphs.We also prove new splitting off theorems
for vertex connectivity.
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1. Introduction

An undirected graphG = (V ,E) is k-vertex-connected, or more simplyk-connected, if
|V |�k+1 and the deletion of anyk−1 or fewer vertices leaves a connected graph. Given a
graphG = (V ,E) and a positive integerk, thek-vertex-connectivity augmentation problem
is to find a smallest setF of new edges for whichG′ = (V ,E ∪ F) is k-connected. This
problem (and a number of versions with different connectivity requirements and/or edge
weights) is an important and well-studied optimization problem in network design. The
complexity of the vertex-connectivity augmentation problem is one of themost challenging
open questions of this area. It is open even if the graphG to be augmented is(k − 1)-
vertex-connected. Polynomial algorithms have been developed only fork = 2,3,4 by
Eswaran and Tarjan[5], Watanabe and Nakamura[22] and Hsu[11], respectively. Values
of k close to |V| =n are also of interest. The casek = n−1 is easy,k= n−2 is equivalent to
finding a maximum matching, andk= n−3 is open. Near-optimal solutions can be found
in polynomial time for everyk, see[13,12].
In this paper, we give an algorithm which delivers an optimal solution in polynomial

time for any fixedk�2. We also obtain a min–max formula which determines the size of
an optimal solution when it is large compared tok. In this case, the running time of the
algorithm isO(n6), wheren is the size of the input graph. When the size of an optimal
solution is small compared tok, the running time is bounded byO(ckn

3), whereck is a
constant ifk is fixed. A key step in our proofs is a complete solution of the augmentation
problem for a new family of graphs which we callk-independence free graphs. We follow
some of the ideas of the approach of[15], which obtained a near-optimal solution in the
special case when the graph to be augmented is(k − 1)-connected. We also develop new
‘splitting off’ theorems fork-vertex-connectivity.
We remark that the other three basic augmentation problems (where one wants to make

G k-edge-connected or wants to make a digraphk-edge- ork-vertex-connected) have been
shown to be polynomially solvable. These results are due to Watanabe and Nakamura
[21], Frank[6], and Frank and Jordán[8], respectively. For more results on connectivity
augmentation and its algorithmic aspects, see the survey papers byFrank[7] andNagamochi
[20], respectively. In the remainder of this section, we introduce some definitions and our
new lower bounds for the size of an augmenting set which makesG k-vertex-connected.
We also state our main min–max results.
In what follows we deal with finite undirected graphs. We shall reserve the term ‘graph’

for graphs without loops or multiple edges and use ‘multigraph’ if loops and multiple edges
are allowed. LetG = (V ,E) be a multigraph,v ∈ V andX ⊆ V − v. We usedG(v)
to denote thedegreeof v in G anddG(v,X) for the number of edges ofG from v to X.
Let NG(X) denote the set ofneighboursof X, that is,NG(X) = {v ∈ V − X : uv ∈ E

for someu ∈ X}, andnG(X) denote|NG(X)|. (We will suppress the subscriptG in the
above functions when it is obvious to which graph we are referring.) We useX∗ to denote
V −X −NG(X). We say thatX is afragmentof G if X 
= ∅ 
= X∗. A k-deficient fragment
is a fragmentX for whichn(X) < k, for some integerk. For two verticesx, y ofGwe shall
use�(x, y,G) to denote themaximum number of openly disjoint paths fromx toy inG.We
use�(G) to denote the minimum of�(x, y,G) over all pairs of vertices ofG. By Menger’s
theorem�(G) equals the minimum size of a vertex cut inG, unlessG is complete.
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LetGbe a graph with at leastk+1 vertices. Ak-augmenting setforG is a set of edgesF
such thatG+F is k-connected. (When the value ofk is obvious we shall refer toF simply
as anaugmenting setforG.) Letak(G) denote the size of a smallestk-augmenting set forG.
It is easy to see that everyk-augmenting set forGmust contain at leastk−n(X) edges from
X to X∗ for every fragmentX. By summing up these ‘deficiencies’ over pairwise disjoint
k-deficient fragments, we may obtain a useful lower bound onak(G), similar to the one
used in the corresponding edge-connectivity augmentation problem. Let

tk(G) = max{
r∑

i=1

k − n(Xi) : X1, . . . , Xr are pairwise disjoint fragments inV }.

Then

ak(G)��tk(G)/2�. (1)

Another lower bound forak(G) comes from ‘shredders’. ForK ⊂ V letbG(K), or simply
b(K) when it is clear to which graph we are referring to, denote the number of components
in G − K. We say thatK is ans-shredder(or simply ashredder) in G if |K| = s and
b(K)�3. Letbk(G) = max{b(K) : K is a(k − 1)− shredder inG}. Since(G+ F)−K

has to be connected for everyk-augmenting setF and every(k − 1)-shredderK, we have
|F |�b(K)− 1. This gives the second lower bound:

ak(G)�bk(G)− 1. (2)

These lower bounds extend the two natural lower bounds used for example in[5,11,15].
Although these bounds suffice to characterizeak(G) for k�3, there are examples showing
thatak(G) can be strictly larger than the maximum of these lower bounds. For example,
if we takeG to be the complete bipartite graphK3,3 with target connectivityk = 4, we
havet4(G) = 6, b4(G) = 3 anda4(G) = 4. We shall show in Section3 that ak(G) =
max{bk(G) − 1, �tk(G)/2�} whenG is a ‘k-independence free graph’. We use this result
in Section4 to show that ifG is (k − 1)-connected andak(G) is large compared tok,
then again we haveak(G) = max{bk(G) − 1, �tk(G)/2�}. Our proof technique is to find
a set of edgesF1 such thatak(G + F1) = ak(G) − |F1| andG + F1 is k-independence
free. The same result is not valid if we remove the hypothesis thatG is (k − 1)-connected.
To see this consider the graphG obtained fromKm,k−2 by adding a new vertexx and
joining x to j vertices in them set of theKm,k−2, wherej < k < m. Thenbk(G) = m,
tk(G) = 2m+ k−2j andak(G) = m−1+ k− j . We shall see in Section7, however, that
if we modify the definition ofbk(G) slightly, then we may obtain an analogous min–max
theorem for augmenting graphs of arbitrary connectivity. For a(k − 1)-shredderK of G
we define�(K) = max{0,max{k − d(x) : x ∈ K}} and b̂(K) = b(K) + �(K). We let
b̂k(G) = max{b̂(K) : K is a(k − 1)− shredder inG}. It is easy to see that

ak(G)� b̂k(G)− 1.

We shall prove in Section7 that ifG is a graph of arbitrary connectivity andak(G) is large
compared tok, then

ak(G) = max{b̂k(G)− 1, �tk(G)/2�}.
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Our proof technique is to find a set of edgesF1 such thatak(G + F1) = ak(G) − |F1|
and eitherG + F1 is (k − 1)-connected orG + F1 is (k − 2)-connected and has a special
structure. In the former case, we apply the result of Section4 toG+F1. In the latter case, we
find an optimalk-augmenting set forG+F1 using a result on ‘detachments’of 2-connected
graphs.
Our proofs are algorithmic and give rise to polynomial algorithms for finding an optimal

k-augmenting set in each of the cases mentioned above. In the remaining case, whenak(G)

is small compared tok, we simply check all possiblek-augmenting sets (spanned by a small
set of vertices) to find an optimal solution. This is the only part where our algorithm is
polynomial only ifk is fixed.
In what follows, we shall suppress the subscriptk in the parameterstk(G), bk(G), b̂k(G)

when the value ofk is obvious.

2. Preliminaries

In this section, we first introduce some submodular inequalities for the functionn and
then describe the ‘splitting off’ method. We also prove some preliminary results on edge
splittings and shredders.

2.1. Submodular inequalities

The following inequalities are fundamental to our proof technique. Inequality (4) is well-
known, see, for example[15].

Proposition 2.1. In a graphH = (V ,E) every pairX, Y ⊆ V satisfies

n(X)+ n(Y )= n(X ∩ Y )+ n(X ∪ Y )+ | (N(X) ∩N(Y ))−N(X ∩ Y )|
+| (N(X) ∩ Y )−N(X ∩ Y )| + | (N(Y ) ∩X)−N(X ∩ Y )|. (3)

Proof. Readers may find it helpful to follow the proof given below if they imagineV (G)

represented by a 3× 3 grid, in which the two pairs of opposite sides represent(X,X∗) and
(Y, Y ∗), respectively, and the 9 subsquares represent the corresponding partition ofV (G)

into 9 subsets. Then (3) follows from the following equalities:

n(X) = |N(X) ∩ Y | + |N(X) ∩N(Y )| + |N(X) ∩ Y ∗|,

n(Y ) = |X ∩N(Y )| + |N(X) ∩N(Y )| + |X∗ ∩N(Y )|,

n(X ∪ Y ) = |N(X) ∩ Y ∗| + |N(X) ∩N(Y )| + |X∗ ∩N(Y )|
and

n(X ∩ Y )= |N(X ∩ Y ) ∩X| + |N(X ∩ Y ) ∩ Y |
+|N(X ∩ Y ) ∩ (N(X) ∩N(Y )) |. �
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Proposition 2.2. In a graphH = (V ,E) every pairX, Y ⊆ V satisfies

n(X)+ n(Y ) � n(X ∩ Y )+ n(X ∪ Y ), (4)

n(X)+ n(Y ) � n(X ∩ Y ∗)+ n(Y ∩X∗). (5)

Proof. Inequality (4) follows immediately from (3). Inequality (5) canbeproved in a similar
way to Proposition2.1 �

The following inequality is new andmay be applicable in other vertex-connectivity prob-
lems as well.

Proposition 2.3. In a graphH = (V ,E) every tripleX, Y,Z ⊆ V satisfies

n(X)+ n(Y )+ n(Z) � n(X ∩ Y ∩ Z)+ n(X ∩ Y ∗ ∩ Z∗)+ n(X∗ ∩ Y ∗ ∩ Z)

+n(X∗ ∩ Y ∩ Z∗)− |N(X) ∩N(Y ) ∩N(Z)|. (6)

Proof. Readers may find it helpful to follow the proof given below if they imagineV (G)

represented by a 3×3×3 grid, in which the three pairs of opposite faces represent(X,X∗),
(Y, Y ∗), and(Z,Z∗), respectively, and the27subcubes represent thecorrespondingpartition
of V (G) into 27 subsets. We have

n(X)= |N(X) ∩ Y ∩ Z| + |N(X) ∩N(Y ) ∩ Z| + |N(X) ∩ Y ∗ ∩ Z|
+|N(X) ∩ Y ∩N(Z)| + |N(X) ∩N(Y ) ∩N(Z)| + |N(X) ∩ Y ∗ ∩N(Z)|
+|N(X) ∩ Y ∩ Z∗| + |N(X) ∩N(Y ) ∩ Z∗| + |N(X) ∩ Y ∗ ∩ Z∗|

and

n(X ∩ Y ∩ Z) � |X ∩ Y ∩N(Z)| + |X ∩N(Y ) ∩ Z| + |X ∩N(Y ) ∩N(Z)|
+|N(X) ∩ Y ∩ Z| + |N(X) ∩ Y ∩N(Z)| + |N(X) ∩N(Y ) ∩ Z|
+|N(X) ∩N(Y ) ∩N(Z)|.

The lemma follows from the above (in)-equalities and similar (in)-equalities forn(Y ), n(Z),
n(X ∩ Y ∗ ∩ Z∗), n(X∗ ∩ Y ∗ ∩ Z) andn(X∗ ∩ Y ∩ Z∗). �

2.2. Extensions and splittings

In the so-called ‘splitting off method’one extends the input graphGby a new vertexsand
a set of appropriately chosen edges incident tosand then obtains an optimal augmenting set
by splitting off pairs of edges incident tos. This approach was initiated by Cai and Sun[2]
for thek-edge-connectivity augmentation problem and further developed and generalized
by Frank[6]. Here, we adapt the method to vertex-connectivity and prove several basic
properties of the extended graph as well as the splittable pairs.
Given the input graphG = (V ,E), anextensionG + s = (V + s, E + F) of G is

obtained by adding a new vertexsand a setF of new edges froms toV. Note thatF may
contain multiple edges even thoughG does not, and henceG + s may be a multigraph. In
G+ s, we defineX∗ = V −X −NG(X) andd̄(X) = nG(X)+ d(s,X) for everyX ⊆ V .
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We say thatG+ s is (k, s)-connectedif |V |�k + 1 and

d̄(X)�k for every fragmentX of G. (7)

If, in addition,F is an inclusionwise minimal set with respect to (7), then we say thatG+ s

is ak-critical extensionofG. In this case, theminimality ofF implies that every edgesuisk-
critical, that is, deletingsufromG+s destroys (7). (Thus, an edgesuisk-critical if and only
if there exists a fragmentXofGwith u ∈ X andd̄(X) = k.) A fragmentXwith d(s,X)�1
and d̄(X) = k is calledtight. A fragmentX with d(s,X)�2 andd̄(X)�k + 1 is called
dangerous. Observe that ifG is l-connected then for everyv ∈ V we haved(s, v)�k − l

in any k-critical extension ofG. The following lemma characterizes when we can have
d(s, v)�2.

Lemma 2.4. LetG + s be a k-critical extension of G. Supposed(s, v)�2 for somev ∈
V . Let X be a fragment of G withv ∈ X and |X|�2. Then d̄(X) > k. Furthermore,
dG+s(v) = k.

Proof. If d̄(X) = k then d̄(X − v)�k − d(s, v) + 1 < k which contradicts (7). Thus
d̄(X) > k. SinceG + s is k-critical we may choose a tight setY in G + s with v ∈ Y . The
first part of the lemma implies thatY = {v}. HencedG+s(v) = d̄(v) = k. �

Since the functiond(s,X) is modular on the subsets ofV inG+ s, Propositions2.1–2.3
yield the following (in)equalities.

Proposition 2.5. In a graphG+ s every pairX, Y ⊆ V satisfies

d̄(X)+ d̄(Y )= d̄(X ∩ Y )+ d̄(X ∪ Y )+ | (N(X) ∩N(Y ))−N(X ∩ Y )|
+| (N(X) ∩ Y )−N(X ∩ Y )| + | (N(Y ) ∩X)−N(X ∩ Y )|, (8)

d̄(X)+ d̄(Y ) � d̄(X ∩ Y )+ d̄(X ∪ Y ), (9)

d̄(X)+ d̄(Y ) � d̄(X ∩ Y ∗)+ d̄(Y ∩X∗)+ d(s,X − Y ∗)+ d(s, Y −X∗). (10)

Proposition 2.6. In a graphG+ s every tripleX, Y,Z ⊆ V satisfies

d̄(X)+ d̄(Y )+ d̄(Z)

� d̄(X ∩ Y ∩ Z)+ d̄(X ∩ Y ∗ ∩ Z∗)+ d̄(X∗ ∩ Y ∗ ∩ Z)+ d̄(X∗ ∩ Y ∩ Z∗)
−|NG(X) ∩NG(Y ) ∩NG(Z)| + 2d(s,X ∩ Y ∩ Z). (11)

Lemma 2.7. Let G + s be a (k, s)-connected extension of G. Then there exists a k-
augmenting set F of G withV (F) ⊆ N(s).

Proof. Let F be a set of edges such thatA = N(s) induces a complete graph inH =
G + F . SupposeH is not k-connected. Then there exists ak-deficient fragmentX in H.
SinceA induces a clique inH, we have eitherA∩X = ∅ orA∩X∗ = ∅.Assuming, without
loss of generality, thatA ∩ X = ∅, we haved̄G+s(X) = nH (X) < k. This contradicts the
hypothesis thatG+ s is (k, s)-connected. �
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We can use Lemma2.7to obtain upper and lower bounds ofak(G) in terms ofdG+s(s).
The following result is an easy consequence of a theorem of Mader[18, Satz 1]. It was used
in [15, p. 16]in the special case whenG is (k − 1)-connected.

Theorem 2.8. Let F be a minimal k-augmenting set for a graph G and let B be the set of
those vertices of G which have degree at leastk + 1 in G + F . Then F induces a forest
on B.

Lemma 2.9. Let G + s be a (k, s)-connected extension of G and let A be a minimal
k-augmenting set for G in which every edge in A connects two vertices ofN(s). Then
|A|�d(s)− 1.

Proof. LetB = {v ∈ N(s) : dG+A(v)�k+1} and letC = N(s)−B. SincedG+A(x) = k

anddG+s(x)�k, we havedA(x)�d(s, x) for eachx ∈ C. By Theorem2.8, B induces a
forest inA. Let eA(B) andeA(C) denote the number of those edges ofA which connect
two vertices ofB and ofC, respectively. The previous observations imply the following
inequality.

|A| = eA(C)+ dA(B,C)+ eA(B)�
∑

x∈C
dA(x)+ |B| − 1

� (d(s)− |B|)+ |B| − 1= d(s)− 1.

This proves the lemma.�

To obtain a lower bound onak(G) in terms ofd(s), we introduce a new parameter. Let
G = (V ,E) be a graph.We say that a fragmentXofG separatesa pair of verticesu, v ∈ V

if {u, v}∩X 
= ∅ 
= {u, v}∩X∗.A familyF of fragments ofG ishalf-disjointif every pair of
vertices ofG is separated by atmost two fragments inF . Lett ′(G) = max{∑X∈F k−n(X)}
where the maximum is taken over all half-disjoint familiesF of k-deficient fragments inG.
Note that every family of pairwisedisjoint fragments is half-disjoint andhencet ′(G)� t (G).
Since everyk-augmenting set forGmust contain at leastk − n(X) edges fromX toX∗ for
every fragmentX of G, we obtain the lower bound:

ak(G)��t ′(G)/2�. (12)

Lemma 2.10. LetG+ s be a k-critical extension of a graph G. Then

�d(s)/2��ak(G)�d(s)− 1.

Proof. The last inequality follows immediately fromLemma2.9. To verify the first inequal-
itywe choosea familyX = {X1, . . . , Xm}of tight fragments ofGsuch thatN(s) ⊆ ∪m

i=1Xi

and such thatm is minimum and
∑m

i=1 |Xi | is minimum. Such a family exists since the
edges incident tos in G + s arek-critical. We claim that for every 1� i < j�m either
Xi ∩ Xj = ∅ or at least one ofX∗

i ⊆ N(Xj ) orX∗
j ⊆ N(Xi) holds. Note that in the latter

case no pair of vertices can simultaneously be separated byXi andXj .
To verify the claim, suppose thatXi∩Xj 
= ∅. Thenby theminimality ofmthe setXi∪Xj

cannot be tight. Thus (9) implies thatX∗
i ∩ X∗

j = ∅. Hence, either one ofX∗
i ⊆ N(Xj ) or
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X∗
j ⊆ N(Xi) holds orXi ∩ X∗

j andXj ∩ X∗
i are both non-empty. In the former case we

are done. In the latter case, we apply (10) to Xi andXj and conclude thatXi ∩ X∗
j and

Xj ∩ X∗
i are both tight and all the edges froms toXi ∪ Xj enter(Xi ∩ X∗

j ) ∪ (Xj ∩ X∗
i ).

Thus we could replaceXi andXj in X by two strictly smaller setsXi ∩X∗
j andXj ∩X∗

i ,
contradicting the choice ofX . This proves the claim.
Tofinish theproof of the lemma,observe that

∑m
i=1 k−n(Xi) = ∑m

i=1 d(s,Xi)�d(s). In
other words, the sum of ‘k-deficiencies’of the fragments inX is at leastd(s).We shall show
thatX is half-disjoint. Suppose on the contrary that some pairu, v ∈ V is simultaneously
separated by three sets inX , sayX1, X2, X3. By the above claim,X1, X2, X3 are pairwise
disjoint. This contradicts the fact that they each separateu, v and hence{u, v} ∩ Xi 
= ∅
for all 1� i�3. HenceX is half-disjoint andd(s)� t ′(G), as required. �

LetG + s be a(k, s)-connected extension ofG. Splitting offtwo edgessu, sv in G + s

means deletingsu, sv and adding a new edgeuv. Note that if we perform a sequence of
splittings atsstarting with graphG+ s, and denote the resulting graph byG′ + s, thenG′
is the graph obtained fromG by adding the split edges. A split isk-admissibleif the graph
obtained by the splitting also satisfies (7). We will also say that the pair of edgessu, sv is
k-admissible, or simplyadmissiblewhen the valuek is obvious. Notice that ifG + s has
no edges incident tos then (7) is equivalent to thek-connectivity ofG. Hence, it would
be desirable to know, whenG + s is ak-critical extension andd(s) is even, that there is
a sequence of admissible splittings such thats is an isolated vertex in the resulting graph
G′ + s. In this case we would have|E(G′) − E(G)| = dG(s)/2, and, using the fact that
ak(G)�d(s)/2 by Lemma2.10, the graphG′ would be anoptimal k-augmentation ofG.
This approach works for thek-edge-connectivity augmentation problem[6] but does not
always work in the vertex connectivity case. The reason is that such ‘complete splittings’do
not necessarily exist. On the other hand, we shall prove results which are ‘close enough’ to
yield an optimal algorithm fork-connectivity augmentation using the splitting off method,
which is polynomial fork fixed.
Pairs of edgessx, sy which do not givek-admissible splits can be characterized by

tight and dangerous ‘certificates’ as follows. The proof of the following simple lemma is
omitted.

Lemma 2.11. Let G + s be a (k, s)-connected extension of G andx, y ∈ N(s). Split-
ting off the pairsx, sy is not k-admissible inG + s if and only if one of the following
holds:

(i) there exists a tight set T withx ∈ T , y ∈ N(T ),
(ii) there exists a tight set U withy ∈ U , x ∈ N(U),
(iii) there exists a dangerous set W withx, y ∈ W .

2.3. Local separators and shredders

For two verticesu, v ∈ V auv-cutis a setK ⊆ V − {u, v} for which there is nouv-path
in G − K. A setS ⊂ V is a local separatorif there existu, v ∈ V − S such thatS is
an inclusionwise minimaluv-cut. We also sayS is a local uv-separatorand we call the
components ofG − S containingu andv essential componentsof S (with respect to the
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pair u, v). Note thatSmay be a local separator with respect to several pairs of vertices
and hence it may have more than two essential components. Clearly,N(C) = S for every
essential componentC of S. If S is a localuv-separator andT is a localxy-separator then
we sayT meshes Sif T intersects the two essential components ofS containingu andv,
respectively.

Lemma 2.12. If T meshes S then S intersects every essential component of T(and hence S
meshes T).

Proof. SupposeS is auv-separator and letCu, Cv be the two essential components ofS
containingu andv respectively. LetC be an essential component ofT. We need to show
S intersectsC. Choosew ∈ V (C). Without loss of generality,w /∈ S andw /∈ V (Cv).
Chooset ∈ T ∩ Cv. Thent /∈ S. Let P be a path in the subgraph ofC ∪ T from w to t
such thatP ∩ T = {t}. ThenP contains a vertex ofSsinceSseparatesw from t. Hence
C ∩ S 
= ∅. �

Lemma2.12extends a result of Cheriyan and Thurimella[4, Lemma 4.3(1)]. The next
lemma extends a key observation from the same paper[4, Proposition 3.1]and will be used
when we discuss algorithms in Section8.

Lemma 2.13. Let K be a local uv-separator of sizek−1and suppose that there existk−1
openly-disjoint pathsP1, . . . , Pk−1 from u to v in G. LetQ = ∪k−1

i=1V (Pi).

(a) For each component C ofG−K eitherC ∩ {u, v} 
= ∅ or C is a component ofG−Q.
(b) If K has at least three essential components thenK = N(C) for some component C of

G−Q.

Proof. (a) SinceK is a localuv-separator of sizek − 1, K contains exactly one vertex
from each pathP1, . . . , Pk−1. LetCu,Cv, C be distinct components ofK with u ∈ Cu and
v ∈ Cv. ThenQ−K ⊆ Cu ∪ Cv. ThusC ∩Q = ∅. HenceC is a component ofG−Q.
(b) SupposeKhas at least three essential components.ThenwechooseC to be anessential

component ofK distinct fromCu,Cv. ThenK = N(C) holds by (a). �

Let K be a(k − 1)-shredder ofG andG + s be a(k, s)-connected extension ofG. A
componentCofG−K is called aleaf component of K inG+ s if d(s, C) = 1 holds. Note
thatd(s, C′)�1 for each componentC′ ofG−K by (7). The next lemma is easy to verify
by (7).

Lemma 2.14. LetG+ s be a(k, s)-connected extension of a graph G and K be a(k − 1)-
shredder in G.

(a) LetC1, C2 be leaf components of K inG + s. Then there existk − 1 openly-disjoint
paths in the subgraph of G induced byC1 ∪ C2 ∪ K from every vertex ofC1 to every
vertex ofC2.

(b) If d(s)�2b(K)−2 then K has at least two leaf components,K is a local separator and
every leaf component of K is an essential component of K in G.
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Proof. Assertion (a) follows from (7). Assertion (b) follows from the fact thatd(s, C)�1
for every componentC of G−K, and from (a). �

We shall use the following lemma to find(k − 1)-shredders with many components in a
graphGwhen some edge incident tos in G+ s belongs to many non-admissible pairs.

Lemma 2.15. LetG+s be a(k, s)-connected extension of a graphG. Suppose there exist r
dangerous setsW1,W2, . . . ,Wr and a tight setX0 inG+ s such thatr�3,Wi ∩Wj = X0,
andWi ∩ W ∗

j ∩ W ∗
h 
= ∅ for all distinct i, j, h ∈ {1,2, . . . , r}. ThenK = NG(X0) is

a (k − 1)-shredder in G with leaf componentsC0, C1, . . . , Cr , whereV (C0) = X0 and
V (Ci) = Wi −X0 for all 1� i�r.

Proof. Applying (11) andusing the facts that:d(s,Wi∩Wj∩Wh)�1, sinceWi∩Wj∩Wh =
X0, andX0 is tight; andnG(Wi) = d̄(Wi) − d(s,Wi)�k − 1 sinceWi is dangerous; we
obtain

3k + 3 � d̄(Wi)+ d̄(Wj )+ d̄(Wh)� d̄(Wi ∩Wj ∩Wh)+ d̄(Wi ∩W ∗
j ∩W ∗

h )

+d̄(Wj ∩W ∗
i ∩W ∗

h )+ d̄(Wh ∩W ∗
i ∩W ∗

j )

−|NG(Wi) ∩NG(Wj ) ∩NG(Wh)| + 2d(s,Wi ∩Wj ∩Wh)

� 4k − |NG(Wi) ∩NG(Wj ) ∩NG(Wh)| + 2�3k + 3. (13)

Thus equality must hold throughout. Henced(s,X0) = 1, and|NG(Wi) ∩ NG(Wj ) ∩
NG(Wh)| = nG(Wi) = k − 1. Thus,NG(Wi) = NG(Wj ) for all i, j ∈ {1,2, . . . , r}.
This implies thatNG(Wi) ∩ Wj = ∅ for all i, j ∈ {1,2, . . . , r} and hence thatNG(X0) ⊆
NG(Wi). Sinced̄(X0) = k, d(s,X0) = 1 andnG(Wi) = k − 1; we haveNG(X0) =
NG(Wi) = K, say, for alli ∈ {1,2, . . . , r}.
The fact thatWi ∩ NG(Wj ) = ∅ for all i, j ∈ {1,2, . . . , r} also implies thatWi is the

disjoint union ofWi ∩Wj ∩Wh andWi ∩W ∗
j ∩W ∗

h . ThusWi ∩W ∗
j ∩W ∗

h = Wi −X0 for all

i, j, h ∈ {1,2, . . . , r}. Equality in (13) implies thatd̄(Wi) = k+1. SincenG(Wi) = k−1,
we haved(s,Wi) = 2. The fact thatd(s,X0) = 1 now implies thatd(s,Wi − X0) = 1.
SinceNG(Wi) = K we haveNG(W

∗
i ) ⊆ K for all i ∈ {1,2, . . . , r}. ThusNG(Wi −X0) =

NG(Wi∩W ∗
j ∩W ∗

h ) ⊆ K. Sinced(s,Wi−X0) = 1and|K| = k−1wehaveNG(Wi−X0) =
K. It follows thatK is the required(k − 1)-shredder inG. �

Note that the existence of a(k− 1)-shredderK as described in Lemma2.15certifies that
no pair of edges froms to∪r

i=0Ci is k-admissible since each of the setsV (Ci) ∪ V (Cj ) is
dangerous.

3. Independence free graphs

In this section, we give a complete solution of thek-connectivity augmentation problem
for a special family of graphs which we callk-independence free graphs. This result is a key
step in our proofs concerning arbitrary graphs. However, we shall only need a special case
of the main result of this section: when we augment the connectivity of a(k−1)-connected
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k-independence free graph by one. This is important from an algorithmic point of view,
since, as we shall see in Section8.1, we are able to check whether a(k − 1)-connected
graph isk-independence free. Thus, the reader may decide to focus on this special case at
first reading.
LetG = (V ,E) be a graph andkbe an integer. LetX1, X2 be disjoint non-empty subsets

of V. We say(X1, X2) is ak-deficient pairif d(X1, X2) = 0 and|V − (X1 ∪X2)|�k − 1.
We say twok-deficient pairs(X1, X2) and(Y1, Y2) areindependentif for somei ∈ {1,2}
we have eitherXi ⊆ V − (Y1 ∪ Y2) or Yi ⊆ V − (X1 ∪ X2). In this case no edge can
simultaneously connectX1 toX2 andY1 to Y2 and hence the two pairs give ‘independent
constraints’ in thek-augmentation problem forG. We sayG is k-independence freeif G
does not have two independentk-deficient pairs. The following observations follow from
these definitions.

1. If (X1, X2) is ak-deficient pair inG thenX1 is ak-deficient fragment.
2. If X is ak-deficient fragment inG then(X,X∗) is ak-deficient pair.
3. (k − 1)-connected chordal graphs arek-independence free.
4. Graphs with minimum degree at least 2k − 2 arek-independence free.
5. All graphs are 1-independence free and all connected graphs are 2-independence free.
6. A graph with no edges and at leastk + 1 vertices is notk-independence free for any

k�2.
7. If G is k-independence free andH is obtained by adding edges toG thenH is also

k-independence free.
8. A k-independence free graph isl-independence free for alll�k.

In general, amain difficulty in vertex-connectivity problems is that vertex cuts (and hence
tight and dangerous sets) can cross each other in many different ways. In the case of an
independence free graphG, we can overcome these difficulties and provide both a complete
characterization of the case when there is no admissible split containing a specified edge
in an extension ofG, and a min/max formula which determines the number of edges in an
optimalk-augmentation forG.

Lemma 3.1. LetG+ s be a(k, s)-connected extension of a k-independence free graph G
andX, Y be fragments of G.

(a) If X andY are tight then either:X∪Y is tight,X∩Y 
= ∅ andd̄(X∩Y ) = k; orX∩Y ∗
andY ∩X∗ are both tight andd(s,X − Y ∗) = 0 = d(s, Y −X∗).

(b) If X is a minimal tight set andY is tight then eitherX∪Y is right, d(s,X∩Y ) = 0 and
nG(X ∩ Y ) = k; or X ⊆ Y ; or X ⊆ Y ∗.

(c) If X is a tight set andY is amaximal dangerous set then eitherX ⊆ Y or d(s,X∩Y ) = 0.
(d) If X is a tight set, Y is a dangerous set andd(s, Y − X∗) + d(s,X − Y ∗)�2 then

X ∩ Y 
= ∅ and d̄(X ∩ Y )�k + 1.

Proof. (a)SupposeX∩Y ∗, Y∩X∗ 
= ∅. Then (10) implies thatd̄(X∩Y ∗) = k = d̄(Y∩X∗)
andd(s,X − Y ∗) = 0 = d(s, Y − X∗). ThusX ∩ Y ∗ andY ∩ X∗ are both tight. Hence,
we may assume that eitherX ∩ Y ∗ or Y ∩ X∗ is empty. SinceG is k-independence free,
it follows thatX∗ ∩ Y ∗ 
= ∅ 
= X ∩ Y (for example ifX ∩ Y ∗ = ∅ = X∗ ∩ Y ∗ then
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Y ∗ ⊆ V − (X ∪ X∗), and(X,X∗) and(Y, Y ∗) are independentk-deficient pairs). Thus
X ∪ Y is a fragment inG. Using (9) we deduce thatX ∪ Y is tight andd̄(X ∩ Y ) = k.
(b) This follows from (a) using the minimality ofX.
(c) SupposeX 
⊆ Y andd(s,X ∩ Y )�1. If X ∩ Y ∗ 
= ∅ 
= Y ∩X∗ then we can use (10)

to obtain the contradiction

2k + 1� d̄(X)+ d̄(Y )� d̄(X ∩ Y ∗)+ d̄(Y ∩X∗)+ 2�2k + 2.

Thus eitherX ∩ Y ∗ or Y ∩X∗ is empty and, sinceG is k-independence free,X∗ ∩ Y ∗ 
= ∅.
ThusX ∪ Y is a fragment inG. Using (9) we deduce thatX ∪ Y is dangerous contradicting
the maximality ofY.
(d) Using (10), we deduce that eitherX ∩ Y ∗ or Y ∩ X∗ is empty and, sinceG is k-

independence free,X ∩ Y 
= ∅ 
= X∗ ∩ Y ∗. We can now use (9) to deduce that̄d(X ∩
Y )�k + 1. �

Using Lemma3.1we deduce

Corollary 3.2. If G + s is a k-critical extension of a k-independence free graph G then
d(s) = t (G). Furthermore, there exists a unique minimal tight set inG + s containing x
for eachx ∈ N(s).

Proof. Let F be a family of tight sets which coverN(s) such that
∑

X∈F |X| is as small
as possible. Since every edge incident tos is k-critical, such a family exists. We show that
the members ofF are pairwise disjoint. ChooseX, Y ∈ F and suppose thatX ∩ Y 
= ∅.
By Lemma3.1(a) we may replaceX andY in F either byX ∪ Y , or byX ∩ Y ∗ andY ∩X∗.
Both alternatives contradict the minimality of

∑
X∈F |X|. Since the members ofF are

pairwise disjoint, tight, and coverN(s), we haved(s) = ∑
X∈F (k − nG(X)) � t (G). The

inequalityd(s)� t (G) follows easily from (7). Thusd(s) = t (G), as required.
The second assertion of the corollary follows immediately from criticality and Lemma

3.1(b). �

Lemma 3.3. LetG + s be a k-critical extension of a k-independence free graph G and
x1, x2 ∈ N(s). Then the pairsx1, sx2 is not k-admissible for splitting inG + s if and only
if there exists a dangerous set W inG+ s with x1, x2 ∈ W .

Proof. Suppose the lemma is false. Using Lemma2.11we may assume without loss of
generality that there exists a tight setX1 in G + s such thatx1 ∈ X1 andx2 ∈ NG(X1).
Let X2 be the minimal tight set inG + s containingx2. Sincex2 ∈ N(s) ∩ (X2 − X∗

1),
it follows from Lemma3.1(a) thatX1 ∪ X2 is a tight, and hence dangerous, set inG + s

containingx1, x2. �

Theorem 3.4. LetG + s be a k-critical extension of a k-independence free graph G and
x0 ∈ N(s).

(a) There is no k-admissible split inG + s containingsx0 if and only if either: d(s) =
b(G); or d(s) is odd and there exist maximal dangerous setsW1,W2 inG+ s such that
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N(s) ⊆ W1∪W2, x0 ∈ W1∩W2, d(s,W1∩W2) = 1,d(s,W1∩W ∗
2 ) = (d(s)−1)/2 =

d(s,W ∗
1 ∩W2), andW1 ∩W ∗

2 andW2 ∩W ∗
1 are tight.

(b) If there is no admissible split containingsx0 and3 
= d(s) 
= b(G) then there is an
admissible split containingsx1 for all x1 ∈ N(s)− x0.

Proof. Note that sinceG+ s is ak-critical extension,d(s)�2.
(a)Using Lemma3.3,wemay choose a family of dangerous setsW = {W1,W2, . . . ,Wr}

in G + s such thatx0 ∈ ∩r
i=1Wi , N(s) ⊆ ∪r

i=1Wi andr is as small as possible. We may
assume that each set inW is a maximal dangerous set inG + s. If r = 1 thenN(s) ⊆ W1
and

d̄(W ∗
1 ) = nG(W

∗
1 )�nG(W1)�k + 1− d(s,W1)�k − 1,

sinceW1 is dangerous. This contradicts the fact thatG+ s is (k, s)-connected. Hencer�2.

Claim 3.5. LetWi,Wj ∈ W. ThenWi ∩W ∗
j 
= ∅ 
= Wj ∩W ∗

i andd(s,Wi −W ∗
j ) = 1=

d(s,Wj −W ∗
i ).

Proof. SupposeWi∩W ∗
j = ∅. SinceG isk-independence free, it follows thatW ∗

i ∩W ∗
j 
= ∅

and henceWi ∪ Wj is a fragment ofG. The minimality ofr now implies thatWi ∪ Wj is
not dangerous, and henced̄(Wi ∪Wj)�k + 2. Applying (9) we obtain

2k + 2� d̄(Wi)+ d̄(Wj )� d̄(Wi ∩Wj)+ d̄(Wi ∪Wj)�2k + 2.

Hence equality holds throughout. Thusd̄(Wi ∩Wj) = k and, sincex0 ∈ Wi ∩Wj ,Wi ∩Wj

is tight.
Choosexi ∈ N(s) ∩ (Wi −Wj) and letXi be the minimal tight set inG+ s containing

xi . Sincexi ∈ N(s) ∩ Xi ∩ Wi , it follows from Lemma3.1(c) thatXi ⊆ Wi . SinceG is
k-independence free,Xi 
⊆ N(Wj). The assumption thatWi ∩ W ∗

j = ∅ now implies that
Xi ∩Wi ∩Wj 
= ∅. Applying Lemma3.1(b), we deduce thatXi ∪ (Wi ∩Wj) is tight. Now,
Xi ∪ (Wi ∩Wj) andWj contradict Lemma3.1(c) sincex0 ∈ Wi ∩Wj andWj is a maximal
dangerous set. Hence, we must haveWi ∩ W ∗

j 
= ∅ 
= Wj ∩ W ∗
i . The second part of the

claim follows from (10) and the fact thatx0 ∈ Wi ∩Wj . �

Supposer = 2. Using Claim3.5, we haved(s) = 1+ d(s,W1∩W ∗
2 )+ d(s,W2∩W ∗

1 ).
Without loss of generality we may suppose thatd(s,W1 ∩W ∗

2 )�d(s,W2 ∩W ∗
1 ). Then

d̄(W ∗
2 )= d(s,W1 ∩W ∗

2 )+ nG(W
∗
2 )�d(s,W2 ∩W ∗

1 )+ nG(W2)

= d̄(W2)− 1�k.

Thusequalitymusthold throughout.Henced(s,W1∩W ∗
2 ) = d(s,W2∩W ∗

1 ) = (d(s)−1)/2,
d(s) is odd,W1 ∩W ∗

2 andW2 ∩W ∗
1 are tight and the second alternative in (a) holds.

Finally, we suppose thatr�3. ChooseWi,Wj ,Wh ∈ W, xi ∈ (N(s)∩Wi)−(Wj ∪Wh).
ThenClaim3.5implies thatxi ∈ Wi∩W ∗

j ∩W ∗
h , and henceWi∩W ∗

j ∩W ∗
h 
= ∅. SinceG+s

is k-critical, we may choose a maximal tight setX0 in G + s with x0 ∈ X0. Lemma3.1(c)
implies thatX0 ⊆ Wt for all 1� t�r. Sincexh ∈ W ∗

i ∩W ∗
j ∩Wh we haveW ∗

i ∩W ∗
j 
= ∅.

We can use (9) to deduce thatWi ∩Wj is tight. SinceX0 ⊆ Wi ∩Wj , the maximality ofX0
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now implies thatWi ∩Wj = X0 for all 1� i < j�r.Applying Lemma2.15we deduce that
K = NG(X0) is a(k − 1)-shredder inGwith bG(K) = d(s). Since the(k, s)-connectivity
of G+ s implies thatb(G)�d(s), we haveb(G) = d(s).
(b) Using (a) we haved(s) is odd and there exist maximal dangerous setsW1,W2 in

G + s such thatN(s) ⊆ W1 ∪ W2, x0 ∈ W1 ∩ W2, d(s,W1 ∩ W2) = 1, d(s,W1 ∩ W ∗
2 ) =

d(s,W ∗
1 ∩ W2) = (d(s) − 1)/2�2, andW1 ∩ W ∗

2 andW ∗
1 ∩ W2 are tight. Supposex1 ∈

N(s)∩W1∩W ∗
2 and there is no admissible split containingsx1. Then applying (a) tox1 we

find maximal dangerous setsW3,W4 with x1 ∈ W3 ∩ W4 andd(s,W3 ∩ W4) = 1. Using
Lemma3.1(c) we haveW1 ∩W ∗

2 ⊆ W3 andW1 ∩W ∗
2 ⊆ W4. Thus,W1 ∩W ∗

2 ⊆ W3 ∩W4
andd(s,W3 ∩W4)�2. This contradicts the fact thatd(s,W3 ∩W4) = 1. �

We can use this splitting result to determineak(G) whenG is k-independence free. We
first solve the case whenb(G) is large compared tod(s).

Lemma 3.6. LetG + s be a k-critical extension of a k-independence free graph G and K
be a(k − 1)-shredder in G. Ifd(s)�2b(K)− 2 thend(s,K) = 0.

Proof. Let b(K) = b. Supposex ∈ N(s) ∩ K and letX be the minimal tight set inG + s

containingx. LetL = {X1, X2, . . . , Xr} be the leaf components ofK. Sinced(s)�2b − 2
wehaver�2.ChooseXi ∈ Landxi ∈ N(s)∩Xi . ThenXi is tight. Sincex ∈ K = NG(Xi)

we haveX 
⊆ X∗
i . Using Lemma3.1(b), we deduce thatX ∪ Xi is tight,nG(X ∩ Xi) = k

andd(s,X ∩Xi) = 0. Hence,xi /∈ X andN(X)∩Xi 
= ∅. Since this holds for allXi ∈ L
andx ∈ X ∩K, we have

|N(X) ∩ (X1 ∪X2 . . . Xr)|�r. (14)

Furthermore, sinceX ∩ X2 
= ∅ andX ∩ X2 ⊆ X ∩ X∗
1 we haveX ∩ X∗

1 
= ∅. Using (10)
and the fact thatd(s,X − X∗

1)�1 sincex ∈ X ∩ NG(X1), it follows thatX∗ ∩ X1 = ∅.
Using symmetry we deduce thatX∗ ∩Xi = ∅ for all Xi ∈ L.
SinceX1 ∪ X2 is dangerous andx1, x2 /∈ X∗, we can use Lemma3.1(d) to deduce

that d̄(X ∩ (X1 ∪ X2))�k + 1. Using the facts thatnG(X ∩ X1) = k = nG(X ∩ X2),
NG(X ∩ (X1 ∪ X2)) = NG(X ∩ X1) ∪ NG(X ∩ X2), andNG(X ∩ Xi) ∩ Xi 
= ∅ for
eachi ∈ {1,2}, we have|NG(X ∩ Xi) ∩ Xi | = 1 for eachi ∈ {1,2} andK = NG(X ∩
X1) ∩ NG(X ∩ X2). Thus x ∈ NG(X ∩ X1), K ⊆ X ∪ NG(X) andX∗ ∩ K = ∅.
SinceX∗ ∩ Xi = ∅ for all Xi ∈ L, X∗ ∩ Y 
= ∅ for some non-leaf componentY of
G − K. Using (14) and the facts thatNG(X

∗ ∩ Y ) ⊆ (NG(X) ∩ Y ) ∪ (NG(X) ∩ K) and
nG(X)�k − 1, we deduce thatnG(X∗ ∩ Y )�k − 1− r. SinceG + s is (k, s)-connected
we haved(s, Y )�d(s,X∗ ∩ Y )�r + 1. Thus

d(s) = d(s, Y )+ d(s,X1 ∪X2 . . . Xr)+ d(s, (Y1 ∪ Y2 . . . Yb−r )− Y )+ d(s,K)

� (r + 1)+ r + 2(b − r − 1)+ 1�2b.

This contradicts the hypothesis thatd(s)�2b − 2. �

Lemma 3.7. LetG + s be a k-critical extension of a k-independence free graph G such
thatb(G) + 1�d(s)�2b(G) − 2.Then there exists an admissible split at s such that, for
the resulting graphG′ + s, we haveb(G′) = b(G)− 1.
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Proof. Let b(G) = b and letK be a(k − 1)-shredder inGwith bG(K) = b and, subject to
this condition, with the maximum numberr of leaves inG + s. LetC1, C2, . . . , Cr be the
leaf components ofK and letN(s) ∩ Ci = {xi} for 1� i�r. Sinced(s)�2b(G) − 2 we
haver�2. Sinced(s)�b(G) + 1 andr�2, we may use Theorem3.4 to deduce without
loss of generality that there is an admissible split inG+ s containingsx1. Chooseswsuch
that sx1, sw is an admissible split inG + s. Splitting sx1, sw we obtainG′ + s where
dG′+s(s) = dG+s(s)− 2 andG′ = G+ x1w.
Supposeb(G′) = b(G). ThenG has a(k − 1)-shredderK ′ with bG(K

′) = b(G) such
thatx1, w belong to the same componentC′ of G − K ′. (Note that{x1, w} ∩ K ′ = ∅ by
Lemma3.6.) We shall prove that such aK ′ cannot exist inG.
Supposex1, x2, . . . , xr ∈ V (C′). Sincew is also contained inC′ wehaved(s, C′)�r+1.

Sinced(s)�2b− 2 it follows thatK ′ has at leastr + 1 leaf components, contradicting the
maximality ofr. Hence, we may assume without loss of generality that

x2 /∈ C′. (15)

ThusK ′ separatesx1 andx2. Since, by Lemma2.14, the subgraph ofG induced byC1 ∪
C2 ∪K containsk − 1 openly disjointx1x2-paths, we have

K ′ ⊆ C1 ∪ C2 ∪K. (16)

Claim 3.8. K andK ′ are meshing local separators.

Proof. Arguing by contradiction we assume thatK andK ′ do not mesh. LetC′
2 be the

component ofG−K ′ containingx2. Since, everyx1w-path inG contains a vertex ofK we
haveC′ ∩ K 
= ∅. Also sinceG has(k − 1) x1x2-paths by Lemma2.14, bothC′ andC′

2
are essentialK ′-components. SinceK andK ′ do not mesh, we haveC′

2 ∩ K = ∅. Hence,
C′
2 is a connected subgraph ofG − K. Sincex2 ∈ V (C′

2), this implies thatC
′
2 ⊆ C2 and

K ′ ∩ C2 
= ∅ (sinceK 
= K ′). SinceK ′ does not meshK, we haveC1 ∩ K ′ = ∅. Thus
C1 is a connected subgraph ofG − K ′. Sincex1 ∈ V (C′), it follows thatC1 ⊆ C′. Since
N(C1) = K we haveK − C′ ⊆ K ′. LetC′

1 be a leaf component ofK ′ distinct fromC′
2.

Sincex1, w ∈ V (C′),C′ is not a leaf component ofK ′ and henceC′
1 
= C′. The assumption

thatK andK ′ do not mesh and the fact thatC′ is an essentialK ′ component intersectingK
now givesK ∩ C′

1 = ∅. ThusC′
1 is a connected subgraph ofG−K.

SinceC′
1 andC

′
2 are leaf components ofK

′, Lemma2.14implies that there are(k − 1)
openly disjoint paths inC′

1 ∪ C′
2 ∪ K ′ from each vertex ofC′

1 to x2. SinceK ∩ C′ 
= ∅,
we have|K ∩ (C′

1 ∪ C′
2 ∪ K ′)|�k − 2. ThusC′

1 is contained in the same component of
G−K asx2, and henceC′

1 ⊆ C2. Butx2 is the onlys-neighbour inC2. Thusd(s, C′
1) = 0,

a contradiction. �

Claim 3.9. r = 2.

Proof. Supposer�3. By Lemma3.6, x1, x2 /∈ K ′. By Lemma2.14, the subgraph ofG
induced byC1 ∪ C2 ∪ K containsk − 1 openly disjointx1x2-paths. SinceK andK ′ mesh
by Claim3.8, K ′ ∩ C3 
= ∅, so |K ′ ∩ (C1 ∪ C2 ∪ K)|�k − 2. Hence, at least one of the
abovek − 1 openly disjointx1x2-paths avoidsK ′. This contradicts (15). �
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We can now complete the proof of the lemma. LetCw be the component ofG − K

containingw. Sincesx1, sw is an admissible split andC1 is a leaf component ofK, it
follows thatCw is not a leaf component ofK. Using (16), we deduce thatCw is a connected
subgraph ofG−K ′ and henceCw ⊆ C′. Sinced(s, Cw)�2 andx1 ∈ N(s)∩(C′ −Cw)we
haved(s, C′)�3. Sinced(s)�2b−2, it follows thatK ′ has at least three leaf components.
This contradicts the maximality ofr by Claim3.9. Thus,K ′ does not exist and we have
b(G′) = b(G)− 1. �

Lemma 3.10. LetG + s be a k-critical extension of a k-independence free graph G and
p be an integer such that0�p� 1

2d(s) − 1.Then there exists a sequence of p admissible
splits at s if and only ifp�d(s)− b(G).

Proof. We first suppose that there exists a sequence ofp admissible splits ats inG. Let the
resulting graph beG1 + s. ThendG1+s(s) = dG(s) − 2p andb(G1)�b(G) − p. Since
G1 + s is (k, s)-connected we must havedG1+s(s)�b(G1) and hencep�d(s)− b(G).
We next suppose thatp�d(s)− b(G). We shall show by induction onp thatG+ s has a

sequence ofpadmissible splits ats. If p = 0 then there is nothing to prove. Hence, we may
assumep�1. Sincep� 1

2d(s)−1we haved(s)�4. By Theorem3.4there is an admissible
split ats. Let the resulting graph beG2+s. If p−1�dG2+s(s)−b(G2) thenwe are done by
induction. Hence, we may assume thatp�dG2+s(s)− b(G2)+ 2�dG(s)− b(G). Hence,
p = dG(s)−b(G). Sincep� 1

2dG(s)−1, we havedG(s)�2b(G)−2. By Lemma3.7there
exists anadmissible split atssuch that the resulting graphG3+s satisfiesb(G3) = b(G)−1.
It now follows by induction thatG3 + s has a sequence ofp− 1 admissible splits ats. �

Lemma 3.11. LetG + s be a k-critical extension of a k-independence free graph G. If
d(s)�2b(G)− 2 thenak(G) = b(G)− 1.

Proof. Supposed(s) = b(G). LetK be a(k − 1)-shredder inGwith b(K) = b(G). Then
all components ofG − K are leaf components. LetF be the edge set of a treeT on the
vertices ofN(s). We shall show thatG + F is k-connected. If not, then we can partitionV
into three sets{X, Y,Z} such that|Z| = k−1 and no edge ofG+F joinsX toY. Each pair
of vertices ofN(s) are joined bykopenly disjoint paths inG+F , consisting of(k−1) paths
in G (which exist by Lemma2.14) and one path inT. Thus eitherX orY is disjoint from
N(s). AssumingX ∩N(s) = ∅, we haved̄(X) = n(X)�k − 1, contradicting the fact that
G+ s satisfies (7). Hence,G+F is ak-connected augmentation ofGwith b(G)−1 edges.
Henceforth, wemay assume thatd(s) > b(G). By Lemma3.7, there exists an admissible

split atssuch that, for the resulting graphG′ + s, we haveb(G′) = b(G)−1. SinceG′ + s

is ak-critical extension ofG′, the lemma follows by induction ondG+s(s)− b(G). �

Theorem 3.12. If G is k-independence free thenak(G) = max{�t (G)/2�, b(G)− 1} .

Proof. Let G + s be a k-critical extension ofG. By Corollary 3.2, d(s) = t (G). If
d(s)�3 thenak(G) = �t (G)/2� by Lemma2.10. Hence, we may suppose thatd(s)�4. If
d(s)�2b(G) − 2 thenak(G) = b(G) − 1 by Lemma3.11. Hence, we may suppose that
d(s)�2b(G)− 1.
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By Lemma3.10, there exists a sequence of�d(s)/2� − 1 admissible splits ats. Let the
resulting graph beG′ + s. ThenG′ + s is ak-critical extension ofG′, dG′+s(s)�3, and
ak(G

′) = �dG′+s(s)/2� by Lemma2.10. This gives the required augmenting setF for G
with |F | = �dG+s(s)/2� = �t (G)/2�. �

4. Augmenting connectivity by one

Throughout this section, we assume thatG = (V ,E) is a (k − 1)-connected graph on
at leastk + 1 vertices. We shall show that ifak(G) is large compared tok, thenak(G) =
max{b(G)− 1, �t (G)/2�}. Our proof uses Theorem3.12and some results from[15]. With
the following result we can verify the desiredmin–max equality whenb(G)−1��t (G)/2�.
Theorem 4.1([15] ). Suppose G is a(k − 1)-connected graph such thatb(G)�k and
b(G)− 1��t (G)/2�. Thenak(G) = b(G)− 1.

We will apply Theorem4.1 to graphs which do not satisfyb(G) − 1��t (G)/2� using
the following concept. A setF of new edges issaturatingforG if t (G+F) = t (G)−2|F |.
Thus an edgee = uv is saturatingif t (G+ e) = t (G)− 2.

Lemma 4.2. If F is a saturating set of edges for a(k − 1)-connected graph G with
b(G+ F)− 1= �t (G+ F)/2��k − 1 thenak(G) = �t (G)/2�.

Proof. By Theorem4.1 the graphG + F can be madek-connected by adding a setF ′ of
�t (G+ F)/2� edges. SinceF is saturating, we havet (G) = t (G+ F)+ 2|F |. Therefore,
the setF ∪ F ′ is an augmenting set forG of size�t (G)/2�. Sinceak(G)��t (G)/2�, the
lemma follows. �

We shall show that ifak(G) is large, then we can find a saturating set of edgesF forG so
thatG+F is k-independence free. In order to do this we need to measure how closeG is to
beingk-independence free. We use the following concepts. SinceG is (k − 1)-connected,
we havenG(X) = k − 1 for everyk-deficient fragment ofG. Following [15], we call the
(inclusionwise) minimalk-deficient fragments inG thek-coresof G. A k-coreB is active
in G if there exists a(k − 1)-cut K with B ⊆ K. OtherwiseB is said to bepassive. Let
�(G) and�(G) denote the numbers of active, respectively, passive,k-cores ofG. SinceG is
(k − 1)-connected, the definition ofk-independence implies thatG is k-independence free
if and only if�(G) = 0. The following characterization of activek-cores also follows easily
from the above definitions.

Lemma 4.3. Let B be a k-core in G. Then B is active if and only if�(G−B) = k−|B|−1.

A setS ⊆ V is ak-deficient fragment coverfor G if S ∩ T 
= ∅ for everyk-deficient
fragmentT. Clearly,S is ak-deficient fragment cover forG if and only if Scovers every
k-core ofG. Note thatS is a minimalk-deficient fragment cover forG if and only if the
extensionG + s obtained by joinings to each vertex ofS is k-critical. We shall need the
following results from[15].
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Lemma 4.4. (a)Every minimal augmenting set for G induces a forest.
(b) For every k-deficient fragment cover S for G, there exists a minimal augmenting set

F for G withV (F) ⊆ S.
(c) If F is a minimal augmenting set for G, e = xy ∈ F , andH = G+F − e, then H has

precisely two k-cores X,Y. FurthermoreX ∩ Y = ∅; x ∈ X, y ∈ Y ; for any edgee′ = x′y′
with x′ ∈ X, y′ ∈ Y , the graphH + e′ is k-connected; and, for every k-deficient fragment
Z in H, we haveX ⊆ Z or Y ⊆ Z.

Proof. Assertion (a) is given in[15, p. 16].
To prove (b), note that sinceScovers allk-deficient fragments,G becomesk-connected

when we add all edges between the vertices ofS.
Assertion (c) follows from[15, Lemma 3.2]. �

Based on these facts we can prove the following lemma.

Lemma 4.5. Let S be a minimal k-deficient fragment cover for G and let F be a minimal
augmenting set withV (F) ⊆ S. LetdF (v) = 1and lete = uv be the leaf of F incident with
v. Let X andY be the k-cores ofG + F − e and suppose that for a setF ′ of edges we have
�(x, y,G+F ′)�k for some verticesx ∈ X, y ∈ Y .ThenS − {v} is ak-deficient fragment
cover ofG+ F ′.

Proof. Without loss of generality wemay assume thatu ∈ X andv ∈ Y . By theminimality
of S, there exists ak-coreZ of G such thatZ ∩ S = {v}. SinceZ is alsok-deficient in
G+F − e, it must contain ak-core ofG+F − e, soY ⊆ Z by Lemma4.4(c). Now, since
Y is alsok-deficient inG andZ is ak-core inG, we must haveZ = Y andY ∩ S = {v}.
For a contradiction suppose that there is ak-deficient fragmentP in G + F ′ which is not
covered byS − {v}. ThenP ∩ S = {v} and soP is alsok-deficient inG + F ′ + F − e

and inG + F − e. Thus, by Lemma4.4(c), Y ⊆ P andy ∈ P hold. Furthermore, since
G + F ′ + F − e + xy is k-connected by Lemma4.4(c), we must havex /∈ P ∪ N(P ) in
G + F ′ + F − e. Thusx /∈ P ∪ N(P ) holds inG + F ′ as well. This contradicts the fact
that�(x, y,G+ F ′)�k. �

We need some further results from[15].

Lemma 4.6([15, Lemma 2.1, Claim I(a)]). Supposet (G)�k. Then the k-cores of G are
pairwise disjoint and the number of k-cores ofG is equal tot (G).Furthermore, if t (G)�k+
1, then for each k-core X, there is a unique maximal k-deficient fragmentSX ⊆ V with the
properties thatX ⊆ SX, andSX ∩ Y = ∅ for every k-coreY of G withX 
= Y . In addition,
for two different k-coresX, Y we haveSX ∩ SY = ∅.

Lemma 4.7([15, Lemma 2.2]). Let K and L be distinct(k − 1)-cuts in G withb(K)�k.
Then L intersects precisely one component D ofG−K.

Lemma 4.8. Supposet (G)�k+1.Let K be a(k − 1)-shredder in G withb(K)�k. Then

(a) if C = SX for some component C ofG−K and for some k-core X then X is passive,
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(b) if some component D ofG − K contains precisely two k-coresX, Y and no edge of G
joinsSX to SY then both X andY are passive.

Proof. (a) Suppose thatX is active and letL be a(k − 1)-cut withX ⊆ L. Sinceb(K)�k,
we haveL ⊂ K ∪C by Lemma4.7. SinceG is (k− 1)-connected andL 
= K,G−L−C

is connected. Hence,G − L has a componentC′′ with C′′ ⊂ C. Therefore,C contains a
(minimal)k-deficient setX′ with X ∩X′ = ∅, contradictingC = SX.
(b) SupposeX is active and letL be a(k− 1)-cut withX ⊆ L. As in the proof of (a), this

implies thatG − L has a componentC with C ⊆ D − L. SinceD contains precisely two
k-cores,Y ⊂ C and hence, sinceSY is the unique maximalk-deficient fragment containing
Ywhich is disjoint from everyk-core,C ⊆ SY must hold. On the other hand, sinceC is a
component ofG − L, we haveX ⊆ N(C) and soX ∩ N(SY ) 
= ∅. This contradicts our
assumption that no edge ofG joinsSX to SY . �

Recall that an edgee = uv is saturatingif t (G+ e) = t (G)−2.We say that twok-cores
X, Y form asaturating pairif there is a saturating edgee = xy with x ∈ X, y ∈ Y and
otherwise that the pairX, Y is non-saturating. If t (G) � k + 2 andX, Y are a saturating
pair, then every edgexy with x ∈ X andy ∈ Y is saturating. (To see this suppose that
e = xy is not saturating. Thent (G+e) � t (G)−1� k+1 and hence thek-cores ofG+e

are pairwise disjoint by Lemma4.6. This implies that allk-cores ofG other thanX, Y are
k-cores ofG + e and that there is ak-coreS in G + e which is disjoint from allk-cores
of G other thanX, Y . SinceS is ak-core inG + e, S is k-deficient inG. We may assume
thatS ∩X 
= ∅. By applying (4) to S andX and using the minimality ofX we can deduce
thatX ⊆ S. SinceX, Y is a saturating pair, this impliesS ∩ Y ∗ 
= ∅ andY ∩ S∗ 
= ∅. By
applying (5) to S andY we obtain thatY ∩ S∗ is k-deficient inG. SinceS is k-deficient
in G + e, we must havey ∈ S ∪ NG(S) and henceY ∩ S∗ is a proper subset ofY . This
contradicts the minimality ofY .)We shall need the following characterization of saturating
pairs.

Lemma 4.9([15, p. 13–14]). Let t (G)�k + 2 and suppose that two k-coresX, Y do not
form a saturating pair. Then one of the following holds: (a)X ⊆ N(SY ), (b) Y ⊆ N(SX),
(c) there exists a k-deficient fragment M withSX, SY ⊂ M, which is disjoint from every
k-core other thanX, Y .

For ak-coreX let �(X) be the number ofk-coresY (Y 
= X) for which the pairX, Y is
non-saturating. The following lemma implies that an activek-core cannot belong to many
non-saturating pairs.

Lemma 4.10. Supposet (G)�k+2and let X be an active k-core in G. Then�(X)�2k−3.

Proof. LetY be the set of coresY (Y 
= X) for whichX, Y is a non-saturating pair, and let
Y ′ = {Y1, Y2, . . . , Yr} be the set of those cores fromY for which Lemma4.9(c) holds (with
respect toX). For eachYi , 1� i�r, letMi be ak-deficient fragment which is disjoint from
everyk-core other thanX, Yi . Consider two setsMi,Mj , 1� i < j�r. Sincet (G)�k+2,
Mi ∩Mj is ak-deficient fragment, and henceSX = Mi ∩Mj must hold. This implies that
each vertex ofV − SX belongs to at most one setMi .
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For a contradiction suppose that�(X)�2k−2. LetK = N(SX) and letY ′′ = {Yi ∈ Y ′ :
Mi ∩K = ∅}. Since|K| = k − 1 and�(X)�2k − 2, it follows from Lemmas4.6and4.9,
that|Y ′′|�k − 1.
SinceX is active, Lemma4.8(a) implies thatb(K)�k − 1. Thus, since the vertex set

of one of the components ofG − K is SX, and|Y ′′|�k − 1, there is a componentD of
G−K which contains at least two setsYi, Yj fromY ′′. ConsiderMi . SinceSX ⊂ Mi and
K ∩ Mi = ∅, we haveK ⊂ N(Mi). SinceYj ⊂ D, we haveD − Mi 
= ∅, and hence
D∩N(Mi) 
= ∅. Hencen(Mi)� |K|+1= k, contradicting the fact thatMi is ak-deficient
fragment. �

For every passivek-coreBi (1� i��(G)) let Fi = {X ⊂ V : X is k-deficient inG,
Bi ⊆ X, the subgraphG[X] is connected, andX contains at most 4k−8 activek-cores}.
LetMi = ∪X∈Fi

X and letT (G) = ∪�(G)
i=1 (Mi ∪N(Mi)).

Lemma 4.11. LetBi be a passive k-core for some1� i��(G) and letX = {X1, . . . , Xt }
be a minimal family of members ofFi for which∪t

j=1Xj = Mi . Thent�k and n(Mi)

�k(k−1).Moreover, if �(G)�5k−8, thenMi intersects at mostk(4k−8) active k-cores.

Proof. Firstweprove thatt�k. For a contradiction suppose thatt�k+1.By theminimality
of the familyX we have thatX̂j = Xj − ∪r 
=jXr is non-empty for all 1�j� t . Note that
the setsX̂j are pairwise disjoint. By applying (4) to a pairXr,Xj ∈ X , and using the facts
thatXr ∩ Xj 
= ∅ sinceBi ⊆ Xr ∩ Xj , that t�k + 1, and thatG is (k − 1)-connected,
we deduce thatXr ∩ Xj is k-deficient inG. SinceBi ⊆ Xr for eachXr ∈ X , a similar
argument shows thatP = ∪j 
=r (Xr ∩Xj) is alsok-deficient. Note thatMi −P = ∪t

j=1X̂j ,

so|Mi −P |� t�k+ 1. SinceXr = X̂r ∪ (P ∩Xr) andG[Xr ] is connected, there exists a
neighbour ofP in X̂r . Since the setŝXr are pairwise disjoint, these neighbours are distinct.
Hencen(P )� t�k + 1, contradicting the fact thatP is k-deficient. Thust�k. Since each
neighbour ofMi is a neighbour of some set inX , andX consists ofk-deficient fragments,
we haven(Mi)�k(k − 1).
To see the second part of the statement suppose that for someXr ∈ X and for some

activek-coreA we haveXr ∩ A 
= ∅ andXr − A 
= ∅ 
= A − Xr . Since�(G)�5k − 8,
Xr contains at most 4k− 8 activek-cores, and the (active)k-cores are pairwise disjoint, we
have|V − (Xr ∪ A)|�k − 1. Now (4) implies thatXr ∩ A is k-deficient, a contradiction.
Thus every activek-coreA for whichA ∩ Mi 
= ∅ satisfiesA ⊂ Xr for someXr ∈ X .
Hence, the definition ofFi implies thatMi intersects at mostk(4k−8) activek-cores. �

We shall use the following lemmas to find a saturating setF for G such thatG + F has
many passive cores. Informally, the idea is to pick a properly chosen activek-coreBand, by
adding a setF of at most 2k−2 saturating edges between the activek-cores ofGother than
B, make�(G + F − B)�k − |B| = r. By Lemma4.3, this will makeB passive, and will
not eliminate any of the passivek-cores ofG. We shall increase the connectivity ofG− B

by choosing aminimalr-deficient fragment coverSforG−B of size at mostk−1 and then
iteratively add one or two edges so that the new graph has anr-deficient fragment cover
properly contained inS. Thus, after at mostk − 1 such steps (and adding at most 2k − 2
edges) we shall makeB passive. The first lemma tells us how to choose the activek-coreB.
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Lemma 4.12. Suppose�(G)�4(k−1) and�(G)�20k(k−1)2.Then there exists an active
k-core B withB ∩ T (G) = ∅.
Proof. Since�(G)�20k(k−1)2�5k−8, Lemma4.11implies that for any passivek-core
Bi , the setMi intersects at mostk(4k − 8) activek-cores, andN(Mi) intersects at most
k(k−1)activek-cores.ThusT (G) intersects atmost�(G)(k(5k−9)) < 4(k−1)k(5k−5) =
20k(k − 1)2 activek-cores. Since�(G)�20k(k − 1)2, the lemma follows. �

Lemma 4.13. Suppose�(G)�4(k − 1) and�(G)�8k3 + 6k2 − 23k − 16.Let B be an
active k-core in G,H = G−B, r = k−|B|, and S be aminimal r-deficient fragment cover
of H. Suppose every r-deficient fragment Z of H contains an active k-core of G. Then there
exists a saturating set of edges F for G such that|F |�2,F is not incident with B, and either
�(G+ F) > �(G); or �(G+ F) = �(G), B is an active k-core inG+ F , andH + F has
an r-deficient fragment coverS′ which is properly contained in S.

Proof. SinceB is active,�(H) = k − 1− |B| = r − 1.
By Lemma4.4there exists a minimalr-augmenting setF ∗ for H such thatF ∗ is a forest

andV (F ∗) ⊆ S. Let dF ∗(v) = 1 and lete = uv be a leaf ofF ∗. By Lemma4.4(c), there
exist precisely twor-coresZ,W in H + F ∗ − e with u ∈ Z, v ∈ W . ThenZ,W are
r-deficient inH. By an hypothesis of the lemma, there exist activek-coresX, Y of Gwith
X ⊆ Z andY ⊆ W .
SupposeX andY form a saturating pair inG. We may choose a saturating edgexy for G

with x ∈ X andy ∈ Y . Thenxy /∈ E and, since�(G) = k−1, we have�(x, y,G+xy)�k

and�(x, y,H +xy)�r. Hence either�(G+xy) > �(G); or every activek-core ofGother
thanX, Y remains active inG + xy. If the second alternative holds thenB remains active
in G+ xy and, by Lemma4.5, S′ = S − v is anr-deficient fragment cover inH + xy.
Hence, we may assume thatX, Y is not a saturating pair inG. By Lemma4.9either

(i) there exists ak-deficient fragmentM in G with SX ∪ SY ⊆ M which is disjoint from
everyk-core other thanX, Y , or

(ii) Y ⊆ NG(SX) orX ⊆ NG(SY ).
Choosex ∈ X andy ∈ Y arbitrarily and letP1, P2, . . . , Pk−1 bek − 1 openly disjoint

xy-paths inG. LetQ = ∪k−1
i=1V (Pi). It is easy to see that if some edge ofG joinsSX to SY ,

then one of the paths, sayP1, satisfiesV (P1) ⊆ SX ∪ SY . On the other hand, if no edge of
G joinsSX to SY , then (ii) cannot hold. Hence (i) holds and, either one of the paths, sayP1,
satisfiesV (P1) ⊆ M, or each of thek − 1 paths intersectsNG(M). In the latter case, since
nG(M) = k − 1, we have|NG(M) ∩ Pi | = 1,V (Pi) ⊆ M ∪ NG(M) for all 1� i�k − 1,
and henceNG(M) ⊂ Q andQ ⊂ M∪NG(M).We shall handle these two cases separately.
Case1:NoedgeofG joinsSX toSY , (i) holds, andwehaveNG(M) ⊂ Q ⊂ M∪NG(M).
Let C1, C2, . . . , Cp be the components ofG − NG(M). Using the properties ofM (M

intersects exactly twok-cores,M is the union of one or more components ofG−NG(M),
andNG(M) = k − 1) we can see that either, one componentCi containsSX andSY and
is disjoint from everyk-core ofG other thanX, Y andM = V (Ci), or each ofSX andSY
corresponds to a component ofG−NG(M) andM = SX ∪ SY .
SinceX andYare activek-cores, Lemma4.8, withK = NG(M), implies thatp�k − 1.

Since�(G)�(k − 2)(2k + 2) + k + 3,G has at least(k − 2)(2k + 2) + 1 activek-cores
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disjoint fromB, X, Y, andNG(M). Thus some componentCj of G − NG(M) is disjoint
fromM and contains at least 2k + 3 activek-cores distinct fromB. By Lemma4.10, there
exists a saturating edgexa1 with a1 ∈ A1 for some activek-coreA1 ⊂ Cj , A1 
= B. If
�(G+ xa1)��(G)+ 1 then we are done. Otherwise all the activek-cores inG other than
X,A1 remain active inG + xa1. Applying Lemma4.10again, we may pick a saturating
edgeya2 with a2 ∈ A2 for some activek-coreA2 of G+ xa1, with A2 ⊂ Cj , A2 
= B.
We have�(x, y,G + xa1 + ya2)�k, since there is a path fromx to y, using the edges

xa1, ya2, and vertices ofCj only, and thus this path is openly disjoint fromQ (since
Q ⊆ M ∪ NG(M)). Hence�(x, y,H + xa1 + ya2)�r. Thus by Lemma4.5, S′ = S − v

is anr-deficient set cover inH + xa1 + ya2.
Case2: EitherV (P1) ⊆ SX ∪ SY or (i) holds andV (P1) ⊆ M.
Let us call a componentD of G − Q essentialif D intersects an activek-core other

thanX,Yor B. LetD1,D2, . . . , Dp be the essential components ofG − Q. We say that a
componentDi is attached tothe pathPj if NG(Di)∩ V (Pj ) 
= ∅ holds. LetR = SX ∪ SY
if V (P1) ⊆ SX ∪ SY holds and letR = M if V (P1) ⊆ M. Then,R is disjoint from every
activek-core other thanX, Y .

Claim 4.14. At most2k − 2 essential components are attached toP1.

Proof. Focus on an essential componentD which is attached toP1 and letw ∈ W ∩D for
some activek-coreW 
= X, Y,B which has a vertex inD. There exists a pathPD from w
to a vertex ofP1 whose inner vertices are inD. Sincew /∈ R andV (P1) ⊆ R, we have
D ∩ NG(R) 
= ∅. The claim follows since the essential components are pairwise disjoint
andn(R)�2k − 2. �

Suppose that one of the pathsPi intersects at least 4k + 4 activek-cores inG other than
X, Y or B. For every such activek-coreA intersectingPi choose a representative vertex
a ∈ A∩Pi . Since thek-cores are pairwise disjoint, the representatives are pairwise distinct.
Order the activek-cores intersectingPi following the ordering of their representatives along
the pathPi from x to y. By Lemma4.10, we may choose a saturating edgexa1 inG, where
a1 is among the 2k + 2 rightmost representatives anda1 belongs to an activek-coreA1. If
�(G+ xa1)��(G)+ 1 then we are done. Otherwise all the activek-cores ofG other than
X,A1 remain active inG+xa1.Again using Lemma4.10, wemay choose a saturating edge
ya2 in G + xa1, wherea2 is among the 2k + 2 leftmost representatives. By the choice of
a1 anda2 there exist two openly disjoint paths fromx to y inG+ xa1 + ya2 using vertices
of V (Pi) only. Thus�(x, y,G + xa1 + ya2)�k. Hence, by Lemma4.5, S′ = S − v is an
r-deficient set cover inH + xa1 + ya2.
Thus, wemay assume that each pathPi intersects at most 4k+3 activek-cores inGother

thanX,YorB. Hence there are at least

�(G)− 3− (k − 1)(4k + 3) � (8k3 + 6k2 − 23k − 19)− (k − 1)(4k + 3)

= (2k + 2)(4k2 − 3k − 8)

activek-cores other thanB contained inG − Q. Note that sincek-cores are minimalk-
deficient fragments, they induce connected subgraphs inG. Hence, eachk-core contained
inG−Q is contained in a component ofG−Q. If some component ofG−Q contains at



B. Jackson, T. Jordán / Journal of Combinatorial Theory, Series B 94 (2005) 31–77 53

least 2k + 3 activek-cores ofG other thanB then the lemma follows as in Case 1. Hence,
we may assume that there are at least 4k2 − 3k − 8 essential components inG − Q, each
containing an activek-core distinct fromX,Y, andB.
Using Claim4.14, we deduce that there are at least 4k2 − 3k − 8− (2k − 2) = (4k +

3)(k−2)+1 essential componentsDi with all their attachments onP2, P3, . . . , Pk−1, each
containing an active core other thanX, Y,B. SinceG is (k − 1)-connected,n(Di)�k − 1
and henceDi has at least two attachments on at least one of the pathsP2, P3, . . . , Pk−1.
Relabelling the componentsD1, . . . , Dp and the pathsP2, . . . , Pk−1 if necessary, we may
assume thatDi has at least two attachments onPk−1 for 1� i�4k + 4.
Let zi be the leftmost attachment ofDi on Pk−1. Without loss of generality we may

assume thatz1, z2, . . . , z4k+4 occur in this order onPk−1 as we pass fromx toy. By Lemma
4.10, there exists a saturating edgeyai whereai ∈ Ai for someactivek-coreAi ⊆ Di , where
Ai 
= B and 1� i�2k + 2. If �(G + yai)��(G) + 1 then we are done. Otherwise every
activek-core inG other thanY,Ai remains active inG + yai . Using Lemma4.10again,
there exists a saturating edgexaj whereaj ∈ Aj for some activek-coreAj ⊆ Dj , where
Aj 
= B and 2k + 3�j�4k + 4. Note thatzi is either to the left ofzj or zi = zj . Hence,
using the fact thatDj has at least two attachments onPk−1 and by the choice ofzi, zj , there
exist two openly disjoint paths inG+ xaj + yai , using vertices fromV (Pk−1)∪Di ∪Dj

only. Therefore�(x, y,G+ xaj + yai)�k, and we are done as above. This completes the
proof of the lemma. �

Lemma 4.15. Suppose�(G)�4(k − 1) and�(G)�20k(k − 1)2. Then there exists a sat-
urating set of edges F for G such that|F |�2k − 2 and�(G+ F)��(G)+ 1.

Proof. Let B be an activek-core inG with B ∩ T (G) = ∅. Such a set exists by Lemma
4.12. LetH = G−B, andr = k− |B|. SinceB is active,�(H) = r − 1. Everyr-deficient
fragmentX in H is k-deficient inG andNG(B) ∩ X 
= ∅. HenceNG(B) is anr-deficient
fragment cover ofH. Let S ⊆ NG(B) be a minimalr-deficient fragment cover ofH. Since
B is k-deficient inG, we have|S|�nG(B) = k − 1.
We shall prove by induction oni that, for 0� i�k−1, there exists a saturating set of edges

Fi for G such that|Fi |�2i, Fi is not incident withB, and either�(G+ Fi)��(G)+ 1; or
�(G+Fi) = �(G),B is an activek-core ofG+Fi , andH +Fi has anr-deficient fragment
coverSi ⊆ S with |Si |� |S|− i. The lemma will follow since the second alternative cannot
hold with |Si | = 0 (since this would imply thatH + Fi is r-connected and hence thatB is
passive inG+ Fi).
The statement is trivially true fori = 0 takingFi = ∅. Hence, suppose that there exists

a setFi satisfying the above statement for some 0� i�k − 2. If �(G + Fi)��(G) + 1
then we can putFi+1 = Fi . Hence we may suppose that�(G+ Fi) = �(G), B is an active
k-core ofG+ Fi , andH + Fi has anr-deficient fragment coverSi ⊆ S with |Si |� |S| − i.
We would like to apply Lemma4.13toBandG+Fi . To do this we must show thatG+Fi ,
B andSi satisfy the hypotheses of this lemma. We have�(G + Fi) = �(G)�4(k − 1).
Thus,�(G+ Fi) = �(G)− 2|Fi |�8k3 + 6k2 − 23k − 16.
The last property we need to verify is that everyr-deficient fragmentZ in G + Fi − B

contains at least one activek-core ofG + Fi . SinceFi is a saturating set forG, and since
thek-cores ofG are pairwise disjoint, eachk-core ofG+Fi is ak-core ofG. Furthermore,
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since�(G + Fi) = �(G), if A is an activek-core ofG andA is ak-core ofG + Fi then
A is an activek-core ofG + Fi . SinceZ is r-deficient inG + Fi − B, it is k-deficient in
G+Fi . ThusZcontains at least one core inG+Fi . If Zcontains an activek-core inG+Fi ,
then we are done, so suppose that everyk-core ofG + Fi in Z is passive. LetBj be such
ak-core. ThenBj is a passivek-core inG soG[Bj ] is connected. LetC be the component
of G[Z] containingBj and letZ′ = V (C). SinceZ is k-deficient inG, Z′ is k-deficient in
G, andB ⊆ NG(Z

′). SinceB ∩ T (G) = ∅ andB ⊆ NG(Z
′), it follows thatZ′ /∈ Fj and

henceZ′ contains at least 4k − 7 activek-cores inG. Since|Fi |�2(k − 2) = 2k − 4 and
each edge ofFi is incident to at most twok-cores ofG, it follows that there exists an active
k-coreA in G with A ⊂ Z′ which is still an (active)k-core inG + Fi , contradicting the
assumption that everyk-core ofG+ Fi in Z is passive. HenceG+ Fi , B andSi satisfy the
hypotheses of Lemma4.13. Thus, there exists a saturating set of edgesF for G + Fi such
that|F |�2,F is not incident withB, and either�(G+ Fi + F) > �(G+ Fi) = �(G); or
�(G + Fi + F) = �(G + Fi) = �(G) andG + Fi + F − B has anr-deficient fragment
coverSi+1 which is properly contained inSi . Hence, the inductive statement holds with
Fi+1 = Fi ∪ F . �

Lemma 4.16. Supposet (G)�20k(k−1)2+(4k−3)(4k−4).Then there exists a saturating
set of edges F for G such thatG+ F is k-independence free andt (G+ F)�2k − 1.

Proof. Since every graph is 1-independence free and every connected graph is
2-independence free, we may suppose thatk�3. If �(G)�4(k − 1) then we may ap-
ply Lemma4.15recursively 4k − 3− �(G) times toG to find a saturating set of edgesF1
forGsuch that�(G+F1)�4k−3. If �(G)�4k−3 we setF1 = ∅. Applying Lemma4.10
toG + F1, we can add saturating edges joining pairs of activek-cores until the number of
activek-cores is at most 2k − 2. Thus there exists a saturating set of edgesF2 for G + F1
such that�(G+ F1 + F2)�2k − 2 and�(G+ F1 + F2)�4k − 3. Applying Lemma4.10
to G + F1 + F2, we can add saturating edges joining pairs consisting of one active and
one passivek-core until the number of activek-cores decreases to zero. Thus there exists
a saturating set of edgesF3 for G + F1 + F2 such that�(G + F1 + F2 + F3) = 0 and
�(G+ F1 + F2 + F3)�2k − 1. �

The main theorem of this section is the following.

Theorem 4.17. If ak(G)�20k3 then

ak(G) = max{�t (G)/2�, b(G)− 1}.

Proof. Since every graph is 1-independence free and every connected graph is
2-independence free, the result follows fromTheorem3.12if k�2. Hence wemay suppose
thatk�3. LetG+s be ak-critical extension ofG. By Lemma2.10we haved(s)�ak(G)+
1�20k3 > k + 1. Hence, by[15, Lemmas 3.4, 3.5]we havet (G) = d(s)�20k3. (This
equalitywill also follow fromLemma5.2inSection5.) If b(G)−1��t (G)/2� thenak(G) =
b(G)−1 byTheorem4.1andwe are done. Thus, wemay assume that�t (G)/2� > b(G)−1
holds. We shall show thatak(G) = �t (G)/2�. By Lemma4.16, there exists a saturating
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set of edgesF for G such thatG+ F is k-independence free andt (G+ F)�2k − 1. Note
that adding a saturating edge to a graphH reduces�t (H)/2� by exactly one andb(H) by
at most one. Thus, if�t (G + F)/2��b(G + F) − 1, then there existsF ′ ⊆ F such that
�t (G+ F ′)/2� = b(G+ F ′)− 1 and the theorem follows by applying Lemma4.2. Hence
we may assume that�t (G+F)/2� > b(G+F)− 1. SinceG+F is k-independence free,
we can apply Theorem3.12to deduce thatak(G+ F) = �t (G+ F)/2�. Using (1) and the
fact thatt (G) = t (G+ F)+ 2|F | we haveak(G) = �t (G)/2�, as required. �

Theorem4.17gives an affirmative answer to a conjecture of the second author,[16, p.
300].

5. Unsplittable extensions

In this section, we consider ak-critical extensionG + s of an l-connected graphG on
at leastk + 1 vertices in whichd(s) is large. We show thatd(s) = t (G) and characterize
when there is no admissible split containing a given edge ats.

Lemma 5.1. LetX, Y ⊂ V be two sets withX∩Y 
= ∅.Supposed(s)�(k− l)(k−1)+4.

(a) If X andY are tight thenX ∪ Y is tight andd̄(X ∩ Y ) = k.
(b) If X is tight andY is dangerous thenX ∪ Y is dangerous.
(c) If d(s)�(k − l + 1)(k − 1)+ 4 and X andY are dangerous thenX∗ ∩ Y ∗ 
= ∅.

Proof. We prove (a). LetX, Y be tight sets withX ∩ Y 
= ∅. By (9) we have
2k = d̄(X)+ d̄(Y )� d̄(X ∩ Y )+ d̄(X ∪ Y ). (17)

Clearly,X∩Y is a fragment andhencēd(X∩Y )�k by (7). Using (17)wehaved̄(X∪Y )�k.
Thus ifX∗ ∩ Y ∗ 
= ∅ thenX ∪ Y is also a fragment and hence is tight andd̄(X ∩ Y ) = k.
SupposeX∗ ∩ Y ∗ = ∅. Sinced̄(X ∪ Y )�k, we haven(X ∪ Y )�k− d(s,X ∪ Y ). Since

G is l-connected andG+ s is k-critical, d(s, v)�k − l for all v ∈ V . Thus

d(s) � d(s,X ∪ Y )+ d(s,N(X ∪ Y ))�d(s,X ∪ Y )+ (k − l)n(X ∪ Y )

� d(s,X ∪ Y )+ (k − l)(k − d(s,X ∪ Y ))

= (k − l)k − (k − l − 1)d(s,X ∪ Y ).

Sincek− l − 1�0 andd(s,X ∪ Y )�1, this givesd(s)�(k− l)(k− 1)+ 1, contradicting
the hypothesis ond(s).
The proofs of (b) and (c) are similar, using the fact thatd(s,X ∪ Y )�2 in (b)

and (c). �

The following lemma shows thatd(s) = t (G) whend(s) is large.

Lemma 5.2. If d(s)�(k − l)(k − 1)+ 4 thend(s) = t (G).
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Proof. LetF be a family of tight sets which coverN(s) such that|F | is as small as possible.
Since every edge incident tos is critical, such a family exists. We show that the members
of F are pairwise disjoint. ChooseX, Y ∈ F and suppose thatX ∩ Y 
= ∅. By Lemma
5.1(a),X∪Y is also tight. So replacingXandY inF byX∪Y we contradict the minimality
of |F |.
Since the members ofF are pairwise disjoint, tight, and coverN(s), we haved(s) =∑
X∈F (k−n(X))� t (G). The inequalityd(s)� t (G) follows easily from (7). Thusd(s) =

t (G), as required. �

Lemma 5.3. Letsx0 be a designated edge of a k-critical extensionG+ s of G and suppose
that there areq�(k − l + 1)(k − 1) + 4 edges sy(y 
= x0) incident to s for which the
pair sx0, sy is not admissible. Then there exists a(k − 1)-shredder K in G such that K has
q + 1 leaf componentsC0, C1, . . . , Cq in G + s, whereX0 = V (C0) is the maximal tight
set containingx0 andK = NG(X0).

Proof. Let X0 be the maximal tight set inG + s containingx0. Note that the setX0 is
uniquely determined by Lemma5.1(a). LetT = {X1, . . . , Xm} be the set of all maximal
tight sets which intersectN(X0). Note thatXi ∩ Xj = ∅ for 0� i < j�m by Lemma
5.1(a). Thus we haved(s,∪m

i=0Xi) = d(s,X0)+ d(s,∪m
i=1Xi).

Since eachXi ∈ T contains a neighbour ofX0 andX0 is tight, we havem�n(X0) =
k−d(s,X0). Since eachXi ∈ T is tight andG is l-connected, we haved(s,Xi)�k− l. So

d(s,∪m
i=0Xi) � d(s,X0)+ (k − l)(k − d(s,X0))

= k(k − l)− d(s,X0)(k − l − 1). (18)

LetM = {y ∈ N(s)−x0 : sx0, sy is not admissible}. Since there existq�(k− l+1)(k−
1) + 4 edges incident toswhich are not admissible withsx0, we can use (18) to deduce
thatR := M − ∪m

i=0Xi 
= ∅. By Lemma2.11and by the choice ofT there exists a family
of maximal dangerous setsW = {W1, . . . ,Wr} such thatx0 ∈ Wi for all 1� i�r and
R ⊆ ∪r

j=1Wi . Let us assume thatW is chosen so thatr is as small as possible. By Lemma
5.1(b),X0 ⊆ Wi for all 1� i�r. Sinced(s,Wi −X0)�k + 1− l − d(s,X0), we can use
(18) and the fact thatq�(k − l + 1)(k − 1)+ 4 to deduce thatr�2. ForWi,Wj ∈ W we
haveW ∗

i ∩W ∗
j 
= ∅ by Lemma5.1(c). SinceWi ∪Wj is not dangerous by the maximality

ofWi , we may apply (9) to obtain

k + 1+ k + 1� d̄(Wi)+ d̄(Wj )� d̄(Wi ∩Wj)+ d̄(Wi ∪Wj)�k + k + 2. (19)

Thus, equality holds throughout andWi ∩Wj is tight. SinceX0 is a maximal tight set and
X0 ⊆ Wi ∩ Wj we haveX0 = Wi ∩ Wj . Furthermore, since we have equality in (19), we
can use (8) to deduce thatWj ∩ N(Wi) ⊆ N(Wi ∩ Wj). SoWj ∩ N(Wi) ⊆ N(X0) and,
similarly,Wi ∩N(Wj) ⊆ N(X0). HenceN(s)∩Wi ∩N(Wj) ⊆ ∪m

i=0Xi . (Note that every
z ∈ N(s) ∩ N(X0) is contained in one of theXi ’s by the criticality ofG + s.) So by the
choice ofW, R ∩Wi ∩W ∗

j 
= ∅ andR ∩Wj ∩W ∗
i 
= ∅ follows.

By (10),

2k + 2= d̄(Wi)+ d̄(Wj )� d̄(Wi ∩W ∗
j )+ d̄(W ∗

i ∩Wj)

+d(s,Wi −W ∗
j )+ d(s,Wj −W ∗

i )�2k + 2
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and so we have equality throughout. Thus all edges froms toWi , other than the single edge
sx0, end inWi ∩ W ∗

j andd(s,X0) = 1. HenceR ∩ Wj ∩ W ∗
i = (R ∩ Wj) − x0. Since

d(s,Wi ∪ Wj) = d̄(Wi ∪ Wj) − nG(Wi ∪ Wj)�k + 2− l, we haved(s, (Wi ∪ Wj) −
X0)�k+2− l−d(s,X0).We can now use (18) and the fact thatq�(k− l+1)(k−1)+4
to deduce thatr�3. Thus∅ 
= (R ∩ Wj) − x0 ⊆ Wj ∩ W ∗

i ∩ W ∗
h holds for all distinct

i, j, h ∈ {1, . . . , r}. Applying Lemma2.15we deduce thatK = NG(X0) is a (k − 1)-
shredder withr + 1 leaf componentsC0, C1, . . . , Cr in G + s, whereV (C0) = X0 and
V (Ci) = Wi −X0 for 1� i�r.
We complete the proof of the lemma by showing thatM = R and hence thatr = q.

Suppose thatM 
= R. ThenT 
= ∅ and we may chooseX1 ∈ T . SinceX1 ∩ N(X0) 
= ∅,
we haveX1 ∩ K 
= ∅. SinceX1 ∩ R = ∅, N(X1) ∩ Ci 
= ∅ for 0� i�r. Using r =
|R|�q − d(s,∪m

i=0Xi), and the facts thatd(s,X0) = 1, andq�(k − l + 1)(k − 1) + 4,
we may use (18) to deduce thatr�k + 2. This contradicts the fact thatX1 is tight since
d̄(X1)�nG(X1)�r + 1. �

6. Graphs containing shredders with many components

We show in this section, that if̂b(G) and t (G) are large compared tok and b̂(G) −
1��t (G)/2� then ak(G) = b̂(G) − 1. We need several new observations on(k − 1)-
shredders. We assume throughout this section thatG + s is a k-critical extension of an
l-connected graphG, and thatK is a(k − 1)-shredder ofG satisfyingd(s)�2b̂(K)− 2.

Lemma 6.1. Supposêb(K)�4k + 3(k − l)− 1.Then

(a) the number of components C ofG−K with d(s, C)�3 is at mostb(K)− 2k − 1,
(b) |N(s) ∩K|�1,and
(c) if d(s, x) = j�1 for somex ∈ K thenk − dG(x) = j .

Proof. Letwbe the number of componentsCofG−K with d(s, C)�3. Thend(s)�3w+
(b(K)− w). Thus

2w � d(s)− b(K)�2b̂(K)− 2− b(K) = 2b(K)+ 2�(K)− 2− b(K)

= 2b(K)+ 3�(K)− 2− b̂(K).

Since�(K)�k − l and b̂(K)�4k + 3(k − l) − 1, we havew�b(K) − 2k − 1. This
proves (a).
SinceG+ s is a critical extension ofG, each vertex inN(s) is contained in a tight set of

G+ s. Thus (b) will follow from the next claim.

Claim 6.2. At most one vertex of K belongs to a tight set inG+ s.

Proof. Suppose that there exist twodistinct verticesx1, x2 ∈ K and tight setsY1, Y2 inG+s

such thatx1 ∈ Y1, x2 ∈ Y2. Let Y = Y1 ∪ Y2 and letD = {C : C is a component ofG −
K,C∩ (Y ∪N(Y )) 
= ∅}.We have|D|�2k, sinced̄(Y )� d̄(Y1)+ d̄(Y2)�2k and for every
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C ∈ D eitherC − Y 
= ∅, in which caseN(Y ) ∩ C 
= ∅ holds, orC ⊂ Y , in which case
d(s, C ∩ Y )�1 holds by (7).
Sinceb̂(K)�4k+3(k− l)−1 we haveb(K)�4k+2(k− l)−1. Thus wemay choose a

componentC′ ofG−K such thatC′ /∈ D. ThenC′ ∩N(Y ) = ∅ and hencex1, x2 /∈ N(C′).
Hencen(C′)�k−3 andd(s, C′)�3. Since we have at leastb(K)−2k choices forC′, this
contradicts (a). �

To prove (c), we choose a tight setXcontainingx. By Claim6.2,X∩K = {x}. If X = {x}
then, sinceX is tight, we haved(s, x) = k− dG(x), as required. Thus we may suppose that
X −K 
= ∅. By Lemma2.4, d(s, x) = 1.
We first consider the case whenX intersects two distinct componentsC1, C2 of G − K.

SinceNG(C1 ∩X) ⊆ C1 ∪K andNG(C1 ∩X) ⊆ NG(X) ∪ {x}, we have
d̄(X)� d̄(C1 ∩X)− 1+ d(s, x)+ d(s, C2 ∩X)+ |NG(C2 ∩X) ∩ C2|.

If C2 ⊆ X thend(s, C2 ∩ X)�1, and ifC2 
⊆ X then |NG(C2 ∩ X) ∩ C2|�1. Since
d(s, x) = 1 andd̄(C1 ∩X)�k, we deduce that̄d(X)�k+ 1. This contradicts the fact that
X is tight.
Thus,X intersects a unique componentC of G − K. LetM = C ∩ X. ThenNG(M) ⊆

C ∪K. Since(NG(M)− {x}) ∪NG(x) ⊆ NG(X), we may use (7) to obtain

k = d̄(X) � d̄(M)− 1+ d(s, x)+ |NG(x)− (M ∪NG(M))|
� k − 1+ d(s, x)+ |N(x)−M −N(M)|.

This implies thatNG(x) ⊆ M ∪ NG(M). Thereforeb̂(K)�b(K) + 1, andx /∈ NG(C
′)

for every componentC′ 
= C of G − K. Henced(s, C′)�k − nG(C
′)�2. ForCwe have

d(s, C)�1 by (7). This givesd(s)�2(b(K)−1)+1+d(s, x) = 2b(K)�2b̂(K)−2. Thus
equality must hold throughoutb̂(K) = b(K)+ 1 and�(K) = 1. SinceN(s)∩K = {x} by
(b), we havek − dG(x) = �(K) = 1= d(s, x). �

We shall use the following construction to augmentG with b̂(G) − 1 edges in the case
whend(s,K) = 0 andb(K) = b̂(G) = b. LetC1, . . . , Cb be the components ofG−K and
let wi = dG+s(s, Ci), 1� i�b. Note thatwi �1 by (7). Sinced(s)�2b − 2, there exists
a treeT on b verticesC1, C2, . . . , Cb with degree sequenced1, . . . , db such thatdi �wi ,
for 1� i�b. (It will be clear from the context whether the labelCi refers to a component
of G − K or a vertex ofT.) Let F be a set of edges joining vertices ofNG+s(s) with
dF (v)�dG+s(s, v) for everyv ∈ V (G) and such that the graph obtained from(V −K,F)

by contractingC1, C2, . . . , Cb to single vertices isT. Thus|F | = |E(T )| = b−1.We shall
say thatG + F is a forest augmentationof Gwith respect toK andG + s, and prove that
G + F is k-connected. Note that sincedG+s(s,K) = 0, there are nok-deficient fragments
of G contained inK by (7).

Lemma 6.3. Supposed(s,K) = 0 and letG + F be a forest augmentation of G with
respect to K andG+ s. If X is a k-deficient fragment inG+ F then|X ∩K|�2.

Proof. We proceed by contradiction. SupposeX is ak-deficient fragment inG + F with
|X ∩ K|�1. LetX∗ = V − X − NG+F (X). ReplacingX by X∗ if necessary, we may
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assume that

|X∗ ∩K|� |X ∩K|. (20)

We first suppose thatL ⊆ X for some leafL of T. Sinced(s, L)�dT (L), L is a leaf
component ofK inG+s. HenceK ⊆ X∪NG(X) by Lemma2.14. It follows thatX∗∩K =
∅. HenceX ∩ K = ∅ by (20) andK ⊆ NG(X). If X properly intersects some component
Ci 
= L of G − K thennG(X)�k follows, contradicting the fact thatX is k-deficient in
G+F . SinceX∗ 
= ∅, there exists a componentCofG−K for whichC∩X = ∅. Choose a
pathP fromL toC in T. LetC′ be the first component for which the edge onPwhich enters
C′ corresponds to an edge inF which connectsX to V − X. For this component we have
|NG+F (X) ∩ C′|�1, sonG+F (X)� |K| + 1= k, as required. Thus we may assume that

L ∩X 
= L for each leafL of T . (21)

Choose a componentD of G − K such thatD ∩ X 
= ∅ and letR be the set of edges
of F which are incident withX ∩ D. Let e1, . . . , er be the edges incident toD in T, which
correspond to the edges inR. Chooser longest pathsP1, . . . , Pr in T starting atD and
containing the edgese1, . . . , er . LetA be the set of all pathsPj , 1�j�r, which contain
an edgeCsCt corresponding to an edgeujvj in F with uj ∈ Cs ∩X andvj ∈ Ct −X. For
every such path we havevj ∈ NG+F (X). LetA′ = {vj : Pj ∈ A}. Let B be the set of
pathsPj , 1�j�r, which do not belong toAand choosePj ∈ B. Since the first edge ofPj
corresponds to an edge inFwhich is incident toD∩X, every edge ofPj corresponds to an
edge ofF joining two vertices ofX. In particular, the last edge ofPj is incident to a leafLj

of Twhich is distinct fromD and for whichX ∩ Lj 
= ∅. SinceX ∩ Lj 
= Lj by (21), we
may choose a vertexwj ∈ NG(X) ∩ Lj . LetB ′ = {wj : Pj ∈ B}. Clearly,|A| = |A′|,
|B| = |B ′| and|A| + |B| = r. The above observations imply that

A′ ∪ B ′ ∪ (NG(D ∩X)− (X ∩K)) ∪ (NG(X ∩K)−X) ⊆ NG+F (X). (22)

SinceG+ s is (k, s)-connected,r�k−nG(D∩X). SinceA′, B ′, NG(D∩X) are pairwise
disjoint, we may deduce that, ifX ∩ K = ∅, thenX is not k-deficient inG + F . Hence
X ∩K = {x} for somex ∈ K.
Let L be a leaf ofT distinct fromD. ThenL is a leaf component ofK in G + s so

NG(x) ∩ L 
= ∅. Hence either(NG(x) ∩ L) − X 
= ∅, or X ∩ L 
= ∅ and, by (21),
NG(X) ∩ L 
= ∅. It follows that, in both cases, we may choosey ∈ NG(X) ∩ L. Thus

A′ ∪ B ′ ∪ (NG(D ∩X)) ∪ {y} ⊆ NG+F (X).

Clearlyy /∈ NG(D ∩X). SinceX is k-deficient inG+F , we must havey ∈ A′ ∪B ′. Thus

L ∩ (A′ ∪ B ′) 
= ∅ for each leafL of T distinct fromD. (23)

The definitions ofA′, B ′ now imply that the pathsPj , 1�j�r, coverT, and hence that
each edge ofF which is incident withD, is incident withD ∩X. SinceV (F) = NG+s(s),
we haveNG+s(s) ∩ D ⊆ X. SinceD can be any component ofG − K which intersectsX
we may deduce that

If D ∩X 
= ∅ for some componentD of G−K thenNG+s(s) ∩D ⊆ X. (24)
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SupposeC is a component ofG−K withC∩X = ∅. Then (23) implies thatC is a leaf of
TandA′ ∩C 
= ∅. Furthermore, the argument used in the derivation of (23) givesA′ ∩C =
{y} = NG(x) ∩ L. Sincey ∈ A′ ⊆ NG+s(s), y is the unique neighbour ofs in C. Thus

If C ∩X = ∅ for some componentC of G−K thenNG+s(s) ∩ C ⊆ NG(x).

(25)

Properties (24) and (25) imply thatNG+s(s) ⊆ X ∪ NG(X). ThusNG+s(s) ∩ X∗ = ∅
andd̄(X∗)�nG(X) < k. This contradicts the(k, s)-connectivity ofG + s and completes
the proof of Lemma6.3. �

Lemma 6.4. Supposed(s,K) = 0 and b̂(K) = b(K)�4k + 3(k − l)− 1.LetG+ F be
a forest augmentation of G with respect to K andG+ s. ThenG+ F is k-connected.

Proof. We proceed by contradiction. LetX be ak-deficient fragment inG + F . ThenX∗
is alsok-deficient so by Lemma6.3, |X ∩ K|�2 and|X∗ ∩ K|�2. Since|V − (K ∪
X ∪ X∗)|�V − (X ∪ X∗)|�k − 1, there are at leastbG(K) − (k − 1) componentsC of
G − K which are contained inX ∪ X∗. There is no edge fromX to X∗ in G + F , so for
each such component eitherC ⊆ X or C ⊆ X∗ holds. Thus we haveNG(C) ⊆ K − X∗
or NG(C) ⊆ K − X, and sonG(C)�k − 3. HencedG(s, C)�3 by (7). This contradicts
Lemma6.1(a). �

Our final step is to show how to augmentGwith b̂(K)− 1 edges whend(s,K) 
= 0. In
this case, Lemma6.1(b) implies that there is exactly one vertexx ∈ K which is adjacent
to s. We use the next lemma to split off all edges froms to x and hence reduce to the case
whend(s,K) = 0.

Lemma 6.5. Supposed(s, x)�1 for somex ∈ K and d(s)�(k + 1)(k − l + 1). Then
there exists a sequence ofd(s, x) admissible splits at s which split off all edges from
s to x.

Proof. Wehaved(s, x)�k−l. Supposeweget stuckafter splittingoff somecopiesofsx, i.e.
we obtain a graphH+s where some edgesxcannot be split off. SincedH+s(s)�dG+s(s)−
2(k− l−1)�(k− l+1)(k−1)+4, we can use Lemma5.3to deduce that there is a(k−1)-
shredderK ′ in H with bH (K ′) = dH+s(s) and withx in one of the components ofH −K ′.
Letu, v be two neighbours ofs inH distinct fromxand letCu andCv be the components of
H −K ′ containingu andv, respectively. By Lemma2.14, there existk − 1 openly disjoint
paths betweenu andv in H containing only vertices ofCu, Cv andK ′, and hence avoiding
x. Since all edges ofE(H)− E(G) are incident withx, these paths exist inG as well.
SincebG(K)� b̂G(K)− (k− l)�(dG+s(s)+2)/2− (k− l)�k+1�dG+s(s, V −x)−

dH+s(s, V − x)+ 2, and each component ofG−K contains a neighbour ofs inG, we can
choose the two neighboursu, v of s in H + s to belong to different components inG−K.
But for such a choice ofu, v there do not existk − 1 disjoint paths fromu to v in G − x,
contradicting the above claim.�

We can now prove our augmentation result for graphsG for which b̂(G) is large.
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Theorem 6.6. Suppose that G is l-connected, b̂(G)�4k+4(k− l)−1, t (G)�(k+1)(k−
l + 1) and b̂(G)− 1��t (G)/2�. Thenak(G) = b̂(G)− 1.

Proof. LetG + s be ak-critical extension ofG. Thend(s) = t (G) by Lemma5.2. LetK
be a(k − 1)-shredder inG with b̂(K) = b̂(G). Then 2̂b(K) − 2� t (G) = d(s). Suppose
d(s,K) = 0. Thenb̂(G) = b(K). LetG+F be a forest augmentation ofGwith respect to
K andG+s. Then|F | = b(G)−1 and by Lemma6.4,G+F is the requiredk-augmentation
of G. Hence we may assume thatd(s,K)�1.
Applying Lemma6.1(c), we deduce that�G(K) = dG+s(s,K) = dG+s(s, x) for some

x ∈ K. By Lemma6.5, we can construct a graphH + s by performing a sequence of
dG(s, x) admissible splits ats which split off all edges froms to x in G + s. Since we
only split edges incident tox ∈ K to formH + s, we haveG − K = H − K and so
bG(K) = bH (K). Hence

dH+s(s) = dG+s(s)− 2dG+s(s, x) = dG+s(s)− 2�G(K)

� 2b̂G(K)− 2− 2�G(K) = 2bG(K)+ 2�G(K)− 2− 2�G(K)

= 2bG(K)− 2 = 2bH (K)− 2.

Thus we havedH+s(s)�2bH (K) − 2, anddH+s(s,K) = 0. Also note that the splittings
add a setF0 of �G(K) new edges toG to formH, and thatbH (K) = bG(K)�b∗

G(K) −
(k − l)�4k + 3(k − l) − 1. LetH + F1 be a forest augmentation ofH with respect to
K andH + s. Then |F1| = bH (K) − 1 = bG(K) − 1, andH + F1 is k-connected by
Lemma6.4. Thus,G + F0 + F1 = H + F1 is the requiredk-augmentation ofG with
�G(K)+ bG(K)− 1= b̂G(K)− 1 edges. �

We will apply Theorem6.6 to graphs which do not satisfŷb(G) − 1��t (G)/2� using
saturating edges. Recall that a setF of new edges is saturating forG if t (G + F) =
t (G)− 2|F |.

Lemma 6.7. If F is a saturating set of edges for an l-connected graph G witĥb(G +
F)�4k+4(k− l)−1, t (G+F)�(k+1)(k− l+1), andb̂(G+F)−1= �t (G+F)/2�,
thenak(G) = �t (G)/2�.

Proof. By Theorem6.6 the graphG + F can be madek-connected by adding a setF ′ of
�t (G+ F)/2� edges. SinceF is saturating, we havet (G) = t (G+ F)+ 2|F |. Therefore,
the setF ∪ F ′ is an augmenting set forG of size�t (G)/2�. Sinceak(G)��t (G)/2�, the
lemma follows. �

7. Augmenting connectivity by at least two

Throughout this section, we assume thatG = (V ,E) is anl-connected graph on at least
k + 1 vertices and thatl�k − 2. We shall show that ifak(G) is large compared tok, then
ak(G) = max{b̂(G)−1, �t (G)/2�}. Our proof uses Theorems4.17and6.6.We shall show
that if ak(G) is large then either we can add a saturating set of edgesF so thatG + F is
(k − 1)-connected, or elseG has a(k − 2)-shredder with many components. If the latter
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occurs then we show directly that we can makeG k-connected by adding�t (G)/2� edges.
We will occasionally consider two different extensions of the same graphH. To distinguish
between them we shall label one of them asH + s and the other asH ⊕ s.
LetG+ s be ak-critical extension ofG. Construct a(k − 1)-critical extensionG⊕ s of

G fromG+ s by deleting a set of edges incident tos. Letf = (k− l+1)(k−1)+4 be the
bound on the number of non-admissible pairs containing a fixed edge given by Lemma5.3.

Lemma 7.1. If dG+s(s)�f (k−l+1)/(k−l) thendG+s(s)−dG⊕s(s)�dG+s(s)/(k−l+1).

Proof. If dG⊕s(s)�f then the lemma is trivial. Otherwise by Lemma5.2(a) there exists
a family F of pairwise disjoint(k − 1)-deficient fragments inG such thatdG⊕s(s) =∑

F (k − 1− n(X)). SinceG+ s is (k, s)-connected we havedG+s(s)�
∑

F (k − n(X)).
HencedG+s(s)�dG⊕s(s) + |F |. SincedG⊕s(s, X)�k − l for eachX ∈ F , we have
|F |�dG⊕s(s)/(k − l). Thus,dG+s(s)�dG⊕s(s) + dG⊕s(s)/(k − l) = (k − l + 1)dG⊕s

(s)/(k − l). Hence,dG+s(s)− dG⊕s(s)�dG+s(s)/(k − l + 1). �

We next perform a sequence of(k−1)-admissible splits ats inG⊕ s and obtainG1⊕ s.
We do this according to the following rules. IfdG⊕s(s)�2f then we putG1 ⊕ s = G⊕ s.
If dG⊕s(s)�2f + 1 then we perform(k − 1)-admissible splits until eitherdG1⊕s(s)�2f ,
or dG1⊕s(s)�2f + 1 and there is no(k − 1)-admissible split ats in G1 ⊕ s. We then add
all the edges of(G+ s)− (G⊕ s) toG1⊕ s and obtainG1+ s. We shall refer to the edges
of (G+ s)− (G⊕ s) asnew edgesof G1 + s.

Lemma 7.2. If dG+s(s)�f (k + l − 1) thenG1 + s is a k-critical extension ofG1.

Proof. SupposeG1 + s is not (k, s)-connected. IfdG1⊕s(s)�f thenG1 ⊕ s = G ⊕ s

andG1 + s = G+ s, contradicting the assumption thatG+ s is (k, s)-connected. Hence,
dG1⊕s(s)�f + 1. Choose a minimal fragmentX of G1 such thatd̄G1+s(X) < k. Since
d̄G1⊕s(X)�k − 1 we haved̄G1+s(X) = k − 1 = d̄G1⊕s(X) and no new edge ofG1 + s

is incident withX. Sinced̄G+s(X)�k, there exists an edgesx in G + s with x ∈ X. Then
sx ∈ E(G⊕ s), since no new edge is incident withX. Hence,sxis (k−1)-critical inG⊕ s

so there exists a minimal tight setYwith x ∈ Y andd̄G⊕s(Y ) = k − 1. Henced̄G1⊕s(Y ) =
k−1.Working inG1⊕ s wemay use Lemma5.1(a) to deduce that̄dG1⊕s(X∩Y ) = k−1.
Since there are no new edges incident toX, this givesd̄G1+s(X ∩ Y ) = k − 1. Now the
minimality of X implies thatX ⊆ Y . Sinced̄G⊕s(Y ) = d̄G1⊕s(Y ), we now deduce that
d̄G⊕s(X) = d̄G1⊕s(X). Thus d̄G⊕s(X) = k − 1 and the minimality ofY givesX = Y .
Since no new edge is incident withX this givesd̄G+s(Y ) = d̄G⊕s(Y ) = k − 1. ThusY is
k-deficient inG+ s, contradicting the fact thatG+ s is (k, s)-connected.
Criticality of G1 + s follows from the criticality ofG + s, since splitting off pairs of

edges fromscannot increasēd(X) for anyX ⊆ V . �

Using Lemma5.3, we can deduce that eitherdG1⊕s(s) is small or else there exists a
(k − 2)-shredderK in G1 such thatG1 − K hasdG1⊕s(s) components. In the first case,
we show that there exists a sequence ofk-admissible splits inG1 + s such that, in the
resulting graphG′

1 + s, G′
1 is (k − 1)-connected and then apply Theorems6.6 and4.17.
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We accomplish this by ensuring that�(x, y,G′
1)�k−1 for everyx, y ∈ NG1⊕s(s). This is

possible since there aremany new edges and hencedG1+s(s) is large compared todG1⊕s(s).
We proceed incrementally using the lemmas below. In the second case, we show directly
that we can makeG k-connected by adding�t (G)/2� edges.
Henceforth, we shall assume thatG′

1 + s is obtained fromG1 + s by performing a
sequence ofk-admissible splits and thatT ⊆ V is a cover of all(k−1)-deficient fragments
of G′

1. (In proving the theorem we will takeT = NG1⊕s(s).) Let |T | = �.

Lemma 7.3. If �(u, v,G′
1)�k − 1 for all u, v ∈ T thenG′

1 is (k − 1)-connected.

Proof. SupposeG′
1 has a fragmentXwith n(X)�k − 2. Then we may chooseu ∈ X ∩ T

andv ∈ X∗ ∩ T , contradicting the fact that�(u, v)�k − 1. �

Lemma 7.4. Letsz, sw ∈ E(G′
1+ s) and suppose that the pairsz, sw is not k-admissible.

If �(z, w,G′
1)�k−2 then thereareatmost f pairs of edgessz, sxwhicharenot k-admissible

in G′
1 + s.

Proof. LetR = {sx : sz, sxis not k − admissible inG′
1 + s}. Suppose thatr = |R| > f .

Then by Lemma5.3, there is a(k − 1)-shredderK in G′
1 with r + 1 leaf components in

G′
1 + s such thatz as well as each vertexx, sx ∈ R, is in one of these components. By

Lemma2.14, �(z, x)�k − 1 for every suchx. Takingx = w gives a contradiction. �

Lemma 7.5. Suppose thatdG′
1+s(s)�(f + 1)(2(k− 2)(f + 2)+ �)+ (k− 2)(k− l− 2).

Chooseu, v ∈ T and suppose that�(u, v,G′
1) = m�k − 2.Then there exists a sequence

of at most two k-admissible splits such that, for the resulting graphG′′
1 + s, we have

�(u, v,G′′
1) = m+ 1.

Proof. LetXu andXv be the smallest setswhich containuandv, respectively, separateuand
v, and have preciselymneighbours. It is well-known that these unique smallest separators
exist. SincenG′

1
(Xu) = nG′

1
(Xv) = m�k − 2, there exist verticesx ∈ Xu ∩ NG′

1+s(s)

andy ∈ Xv ∩ NG′
1+s(s). It is also known that there existm pathsP1, . . . , Pm from u to

v, and two pathsP0 andPm+1, one fromu to x and the other fromv to y such that all
thesem + 2 paths are vertex-disjoint apart from atu andv. (Note thatu = x or v = y is
possible.) We may assume, without loss of generality, thatNG′

1+s(s) ∩ (V (P0) − x) = ∅
andNG′

1+s(s) ∩ (V (Pm+1) − y) = ∅. LetQ = ∪m
i=1V (Pi) − {u, v}. If the pairsx, sy is

k-admissible, we have�(u, v,G′
1 + xy)�m + 1, as required. If not, we need to choose

k-admissible pairs in a more complicated way, as in the proof of Lemma4.13.
Suppose there exists a pathPi (1� i�m) with dG′

1+s(s, V (Pi))�2f + (k − l)+ 1. By
Lemma7.4we may choose an admissible pairsx, sa in G′

1 + s such thata is a neighbour
of sonPi as close tov as possible. Lemma7.4implies that there are at mostf edges froms
toPi(a, v]. If �(u, v,G′

1+xa)�m+1 then we are done. Otherwise wemay splitsy, sb in
G′
1 + s + xa, whereb a neighbour ofsonPi as close tou as possible. Lemma7.4implies

that there are at mostf edges froms toPi[u, b). Sinced(s, w)�k − l for eachw ∈ V (Pi),
the verticesx, b, a, y appear onPi in this order. Hence, there exist two vertex-disjointuv-
paths on vertex setV (Pi) ∪ V (P0) ∪ V (Pm+1), showing�(u, v,G′

1 + xa + yb)�m + 1,
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as required. Thus we may assume that no such path exists and hencedG′
1+s(s, V − Q) >

dG′
1+s(s)−m(2f + k − l)�(f + 1)(2(k − 2)(f + 1)+ �).
Let H be the graph obtained fromG′

1 − Q by deleting any edges joiningu andv. Let
C0, C1, . . . , Cp+1 be the components ofH which each contain at least one neighbour ofs,
whereu, x ∈ V (C0) andv, y ∈ V (Cp+1). Supposed(s, Cj )�f + 2 for some 1�j�p.
We may perform ak-admissible splitsx, sa for somea ∈ Cj , and then ak-admissible split
sy, sb in G′

1 + s + sa for someb ∈ Cj . These admissible pairs exist by Lemma7.4. It is
easy to see that�(u, v,G′

1 + xa + yb)�m+ 1, as required. Thus we may assume that no
such component exists. Similarly, ifd(s, C0)�f + 1, then we may splitsy, sc for some
c ∈ C0 which is admissible withsyinG′

1+ s, and we again have�(u, v,G′
1+yc)�m+1,

as required. A similar construction holds ifd(s, Cp+1)�f + 1. Hence we have at least
d(s, V −Q)/(f + 1)�2(k− 2)(f + 1)+ � components inH, each containing at least one
neighbour ofs.
Sinceeach componentCi withnG′

1
(C)�k−2must contain a vertex fromT, andu, v ∈ T ,

there are at least 2(k− 2)(f + 1) componentsCi , 1� i�p, with at leastk− 1 attachments
onQ. Sincem�k − 2, we have at least 2f + 2 componentsD1, . . . , Dr which have two
attachments on the same path,P1 say. We now proceed as in the final part of the proof of
Lemma4.13. Let aj be the attachment ofDj onP1 closest tou for 1�j�r. We first pick
aDi whereai is among thef + 1 attachment verticesaj closest tou onP1 and we choose
ak-admissible pairsy, sb with b ∈ Di . This pair exists by Lemma7.4. Then we pick aDh

whereah is among thef + 1 attachment verticesaj closest tov on P1 and we choose a
k-admissible pairsx, sa with a ∈ Dh. This pair exists by Lemma7.4. Note thatai either
occurs beforeah on P1 or ai = ah. Hence, using the fact that the componentsDj have
at least two attachments onP1 and by the choice ofai, ah, there exist two openly disjoint
uv-paths inG′

1+ xa+ yb, using vertices fromV (P1)∪V (P0)∪V (Pm+1)∪Di ∪Dh only.
Therefore�(u, v,G′

1 + xa + yb)�m+ 1, as required. �

Applying this lemma iteratively to all pairs of vertices inT, starting withG′
1+s = G1+s

and using the fact thatf is a decreasing function ofl, we obtain

Corollary 7.6. Suppose that

dG1+s(s)�(f + 1)(2(k − 2)(f + 2)+ �)+ (k − 2)(k − l − 2)+ 2�2(k − l − 1).

Then there exists a sequence of at most�2(k − l − 1) k-admissible splits such that, for the
resulting graphG′

1 + s, we have�(G′
1)�k − 1.

Theorem 7.7. If G is l-connected andak(G)�10(k − l + 2)3(k + 1)3 then ak(G) =
max{b̂(G)− 1, �t (G)/2�}.

Proof. We havedG+s(s) = t (G)�ak(G) + 1�10(k − l + 2)3(k + 1)3 by Lemmas2.10
and5.2. If b̂(G)− 1��t (G)/2� thenak(G) = b̂(G)− 1 by Theorem6.6and we are done.
Thus we may assume that�t (G)/2�� b̂(G) holds. We shall show thatak(G) = �t (G)/2�.
We constructG⊕ s,G1⊕ s, andG1+ s as above. By Lemma7.2,G1 is obtained fromGby
adding a saturating setF of edges. Note that adding a saturating edge to a graphG0 reduces
�t (G0)/2� by exactly one and̂b(G0) by atmost one. Thus, if�t (G+F)/2�� b̂(G+F)−1,
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then there existsF ′ ⊆ F such that�t (G+F ′)/2� = b̂(G+F ′)−1 and the theorem follows
by applying Lemma6.7. Hence, we may assume that�t (G1)/2�� b̂(G1)− 1. We have

t (G1) = dG1+s(s)�dG+s(s)− dG⊕s(s)�10(k − l + 2)2(k + 1)3 (26)

by Lemma7.1. Using Lemma5.3, we either havedG1⊕s(s)�2f or elsedG1⊕s(s)�2f +1
and there exists a(k − 2)-shredderK in G1 such thatbG1(K) = dG1⊕s(s).

Case1: dG1⊕s(s)�2f .

Let T = NG1⊕s(s). Then|T | = ��2f . Corollary7.6 and the fact thatf �(k − l +
1)(k+1)−2 imply that there exists a sequence of at most 4(k− l+1)3(k+1)2 k-admissible
splits inG1+ s such that, for the resulting graphG′

1+ s, we have�(G′
1)�k− 1. Note that

dG′
1+s(s)�2(k− l+2)2(k+1)3, by (26). Thus there exists a saturating set of edgesF forG

such thatG′
1 = G+F is (k−1)-connected andt (G+F)�2(k− l+2)2(k+1)3.As above,

wemay assume that�t (G+F)/2�� b̂(G+F)−1�b(G+F)−1 (otherwise we are done
by Lemma6.7). SinceG+ F is (k − 1)-connected, we can apply Theorem4.17to deduce
thatak(G+ F) = �t (G+ F)/2�. Using (1) and the fact thatt (G) = t (G+ F)+ 2|F | we
haveak(G) = �t (G)/2�, as required.
Case2: dG1⊕s(s)�2f + 1 and there is no(k − 1)-admissible split ats in G1 ⊕ s.

By Lemma5.3, there exists a(k − 2)-shredderK in G1 such thatbG1(K) = dG1⊕s(s)

and hence each component ofG1 − K is a leaf component. Using Lemma2.14, and the
fact thatNG1⊕s(s) covers all(k − 1)-deficient fragmentsX in G1, we deduce:

Claim 7.8. G1 is (k − 2)-connected.

SinceG1 + s is k-critical, Claim7.8and Lemma2.4 imply:

Claim 7.9. For all v ∈ V we havedG1+s(s, v)�2. Furthermore, dG1+s(s, v) = 2 if and
only if dG1(v) = k − 2.

LetG2+ s be the graph obtained fromG1+ s by splitting off as manyk-admissible pairs
of edgessx, sy as possible inG1 + s such thatx andy belong to the same component of
G1−K. ThenG2+ s is ak-critical extension ofG2. LetC1, C2, . . . , Cr be the components
of G2 − K. Note that these components have the same vertex sets as the components of
G1 −K and hence

r = dG1⊕s(s)�2f + 1. (27)

Let dG2+s(s, Ci) = di . Relabelling if necessary, we haved1�d2� . . . �dr .

Claim 7.10. dG2+s(s,K) = 0.

Proof. SupposeG2 + s has an edgesxwith x ∈ K. By criticality there exists a fragment
X of G2 such thatx ∈ X and d̄G2+s(X) = k. Since, by Claim7.8, x ∈ NG1(Ci) for
all 1� i�r, we havex ∈ NG2(Ci). Hence eitherNG2(X) ∩ Ci 
= ∅, or Ci ⊆ X and
dG2+s(s, X ∩ Ci)�1, for all 1� i�r. Thusd̄G2+s(X)�r > k, a contradiction. �
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Using Lemma6.7we may suppose that

b̂(G2)��t (G2)/2� = �dG2+s(s)/2�. (28)

Claim 7.11. d1�(
∑r

i=2 di)− 1.

Proof. Supposed1�(
∑r

i=2 di). Sinced1+ (
∑r

i=2 di) = dG2+s(s)�r�2f + 1 by Claim
7.10and (27), we haved1�f + 1. Since there is nok-admissible pair of edges joinings to
C1 inG2+ s, it follows from Lemma5.3that there is a(k−1)-shredderK̂ inG2 with each
of thed1 neighbours ofs in C1 in distinct components ofG2 − K̂ and at least one other
component containing the remaining neighbours ofs in G2 + s. Thusb(G2)�d1 + 1, and
b̂(G2)�b(G2)�d1 + 1�(dG2+s(s)/2)+ 1. This contradicts (28). �

Claim 7.12. Suppose X is a fragment inG2 with |X ∩K|� |X∗ ∩K|.
(a) If nG2(X) = k − 2, then eitherX = Ci1 ∪ Ci2 ∪ . . . ∪ Cip for some{i1, i2, . . . , ip} ⊂

{1,2, . . . , r}; or X = Zi ⊂ Ci for some1� i�r.
(b) If nG2(X) = k − 1, then eitherX = Zi1 ∪ Ci2 ∪ . . . ∪ Cip for some{i1, i2, . . . , ip} ⊆

{1,2, . . . , r} andZi1 ⊆ Ci1; or X = Zi1 ∪ Zi2 for some1� i1 < i2�r, Zi1 ⊆ Ci1,
Zi2 ⊆ Ci2, andnG2(Zi1) = k − 2 = nG2(Zi2).

Proof. SupposeX∩K 
= ∅.ThenX∗∩K 
= ∅. SinceNG2(Ci) = K byClaim7.8, it follows
thatCi 
⊆ X andCi 
⊆ X∗ for all 1� i�r, andhence thatnG2(X) = |V−(X∪X∗)|�r > k.
Thus we may suppose thatX ∩K = ∅. Let

S = {i : X ∩ Ci is a proper subset ofCi,1� i�r}.
Since the claim holds whenS = ∅wemay suppose that|S|�1. LetZi = X∩Ci for i ∈ S.
By Claim7.8, nG2(Zi)�k−2. Hence,|NG2(X)∩ (K∪Ci)|�k−2 and|NG2(X)∩Ci |�1
for all i ∈ S. The claim now follows using the hypothesis of (a) and (b) thatnG2(X) = k−2
andnG2(X) = k − 1, respectively. �

Claim 7.13. For each i, 1� i�r, there exists a unique minimal subsetYi ⊆ V (Ci) such
thatnG2(Yi) = k − 2.

Proof. The existence of such a set follows from the fact thatnG2(Ci) = k − 2. To prove
uniqueness we suppose to the contrary thatX1 andX2 are two minimal subsets ofCi

satisfyingnG2(X1) = k − 2 = nG2(X2). ThennG1(X1) = k − 2 = nG1(X2), sinceG1 is
(k − 2)-connected by Claim7.8, and the operation used in going fromG1 toG2 (splitting
off pairs of edges froms) cannot decreasen(Xi). Let sw be the unique edge ofG1 ⊕ s

from s to Ci . SinceG1 ⊕ s is (k − 1, s)-connected, we must havew ∈ X1 ∩ X2. Since
X1∪X2 ⊆ Ci ,X1∪X2 is a fragment ofG2, and hence we havenG2(X1∪X2)�k− 2, by
Claim 7.8. Submodularity ofnG2, now implies thatnG2(X1 ∩ X2)�k − 2, contradicting
the minimality ofX1 andX2. �

For eachi, 1� i�r, choose two distinct edgessyi, sy′
i in G2 + s with yi, y′

i ∈ Yi . Note
that these edges exist by the(k, s)-connectivity ofG2. Furthermore, by Claim7.9, yi = y′

i ,
if and only if Yi = {yi} anddG2(yi) = k − 2.
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We are now ready to construct the required augmentation ofG. LetG2 ⊕ s be the graph
obtained fromG2 + s by adding an extra edge froms to C2 if dG2+s(s) is odd. Thus
dG2⊕s(s) = 2�t (G2)/2� is even. First, we try to define a good augmenting set by a method
similar to forest augmentation. Since we need to increase the connectivity ofG2 by two,
we now look for a loopless 2-connected multigraphH on r vertices whose degree sequence
is d1, d ′

2, . . . , dr , whered
′
2 = dG2⊕s(s, C2) (so d ′

2 is eitherd2 or d2 + 1, depending on
whetherdG2+s(s) is even or odd). If such a multigraph exists, it leads to a good augmenting
set in a natural way, as we shall see in Subcase 2.1. However, such a graph may not exist,
as the following example shows. LetG be obtained fromKr,k−2 by replacing some vertex
v in the r-set by a copy ofKk−1,4 and then connecting each vertex of the(k − 2)-set
to each vertex of the(k − 1)-set. It can be seen that the degree sequence defined by the
corresponding extensionG2 ⊕ s of G is 4,2,2, . . . ,2. There is no loopless 2-connected
multigraph with this degree sequence. When such a multigraph does not exist, we need a
somewhat more involved method to define the augmenting set. This will be described in
Subcase 2.2.

Subcase2.1: There exists a loopless 2-connected multigraphH on r vertices with degree
sequenced1, d ′

2, . . . , dr .

LetF be a set of edges joining the components ofG2−K such thatdF (v) = dG2⊕s(s, v)

for all v ∈ V and such that the graph obtained from(V − K,F) by contracting each
componentCi to a single vertexci , isH. SinceH is 2-connected, each vertexci ∈ V (H)

has at least two distinct neighbours inH, and thus each componentCi is joined to at least
two other components by edges ofF. Furthermore, sinceH is loopless, each edge ofF is
incident with two distinct components ofG2 − K. Let yi, y′

i be the neighbours ofs in Ci

as defined after Claim7.13. Since we are free to interchange the end vertices of the edges
of F within each component, we may chooseF to have the additional property that, for
each 1� i�r, the two edges ofF incident toyi andy′

i join Ci to different components of
G2 − K. We can now use Claim7.12to deduce thatG2 + F is k-connected. Suppose to
the contrary thatG2 + F has a fragmentXwith nG2+F (X)�k − 1. ReplacingX byX∗ if
necessary we may assume that|X ∩K|� |X∗ ∩K|. By Claim7.8, nG2(X)�k − 2 and by
Claim7.12, we have one of the following four alternatives.

(a1) nG2(X) = k−2 andX = Ci1 ∪Ci2 ∪ . . .∪Cip for somep�r−1. Supposep�r−2.
Then, the 2-connectivity ofH implies that there are two edges ofF fromX to distinct
componentsCj1, Cj2 disjoint fromX. HencenG2+F (X)�k. Supposep = r − 1.
There are at least two edges fromX to Cir , whereCir is the unique component of
G2 − K disjoint fromX. If Cir has only one vertex thenNG2+F (X) = V − X andX
is not a fragment. If all edges ofF join X to the same vertexv ∈ Cir , then we have
nG2(Cir −v)�k−1 anddG2+s(s, Cir −v) = 0, contradicting the(k, s)-connectivity
ofG2 + s. Thus at least two edges ofF join X to distinct vertices ofCir and we again
havenG2+F (X)�k.

(a2) nG2(X) = k − 2 andX = Zi ⊂ Ci for some 1� i�r. By Claim7.13, yi, y′
i ∈ X.

Sinceyi, y′
i are joined byF to distinct componentsCj1, Cj2 disjoint fromCi , we again

havenG2+F (X)�k.
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(b1) nG2(X) = k − 1, andX = Zi1 ∪ Ci2 ∪ . . . ∪ Cip for somep�r andZi1 ⊆ Ci1.
Suppose 2�p�r − 1. Then the 2-connectivity ofH implies that there is at least one
edge ofF from X − Ci1 to a componentCj1 disjoint fromX. HencenG2+F (X)�k.
Supposep = r. SinceG2 + s is (k, s)-connected, it has an edge froms to a vertex
v ∈ X∗ ⊆ Ci1 − Zi1. Since all edges ofF are incident to distinct componentsv is
joined by an edge ofF to some vertex ofX − Ci1, and again we havenG2+F (X)�k.
Supposep = 1. SinceG2 + s is (k, s)-connected, it has an edge froms to at least
one vertexv ∈ Zi1. Since all edges ofF are incident to distinct components,v is
joined by an edge ofF to some component distinct fromCi1, and again we have
nG2+F (X)�k.

(b2) nG2(X) = k − 1 andX = Zi1 ∪ Zi2 for someZi1 ⊆ Ci1, Zi2 ⊆ Ci2, andnG2(Zi1) =
k− 2 = nG2(Zi2). By Claim7.13, yi1, y

′
i1

∈ Zi1. Sinceyi1, y
′
i1
are joined byF to two

distinct componentsCj1, Cj2 disjoint fromCi1, at least one of these components is
also disjoint fromCi2 and we again havenG2+F (X)�k.

ThusG2 + F is k-connected. PuttingF0 = E(G2) − E(G), we deduce thatF0 ∪ F is
the required augmenting set of edges forG of size�dG+s(s)/2� = �t (G)/2�.
Subcase2.2:There is no loopless 2-connectedmultigraphonr verticeswith degree sequence
d1, d

′
2, . . . , dr .

Hakimi [10] characterized the degree sequences of loopless 2-connected multigraphs,
see also[14, Corollary 3.2].

Theorem 7.14.There exists a 2-connected loopless multigraph with degree sequenced1�
d2� . . . �dr �2 if and only if d1 + d2 + . . . + dr is even andd1�d2 + d3 + . . . + dr
− 2r + 4.

This characterization implies that in Subcase 2.2 we have either:d1�d ′
2 andd1�d ′

2 +
d3 + ... + dr − 2r + 5; or d1 = d ′

2 − 1 andd ′
2�d1 + d3 + ... + dr − 2r + 5. Since

dG2⊕s(s) = d1 + d ′
2 + d3 + ...+ dr anddG2⊕s(s) is even, both alternatives imply that

dG2⊕s(s)�2d1 + 2r − 4. (29)

We shall use the following concept to find a good augmenting set in this subcase. Let
H0 = (V ,E) be a multigraph,s ∈ V , andm1,m2, . . . , mq be a partition ofdH0(s).
Then an(m1,m2, . . . , mq)-detachment ofH0 at s is a multigraphH1 obtained fromH0
by ‘splitting’ s intoq verticess1, s2, . . . , sq with degreesm1,m2, . . . , mq , respectively.We
refer tos1, s2, . . . , sq as thepiecesof s inH1. Note that the graphH used in Subcase 2.1 can
be viewed as a loopless 2-connected(d1, d

′
2, d3 . . . , dr )-detachment ats of the graphH0

consisting of exactly one vertexs incident withdG2⊕s(s)/2 loops. Inequality (29) tells us
that if this detachmentH does not exist, thend1 is ‘large’compared todG2⊕s(s).Wemodify
our approach in this case by finding a loopless 2-connected(d ′

2, d3, . . . , dr )-detachment of
the multigraph obtained from(G2⊕ s)−K−∪r

i=2Ci by adding a suitable number of loops
to s. The pieces ofs in the detachment will represent the componentsC2, C3, . . . , Cr . We
use the following lemma from[14] to construct the required detachment.
Given a multigraphH andv1, v2, . . . , vm ∈ V (H), let b(v1, v2, . . . , vm) be the number

of components ofH − {v1, v2, . . . , vm}.
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Lemma 7.15([14, Corollary 3.3]). Let H0 = (V ,E) be a multigraph, s ∈ V andm1,

m2, . . . , mq be a partition ofd(s) into at least two positive integers,such thatm1�m2� · · ·
�mq �2. Let e(u) denote the number of loops incident to each vertex u inH0. ThenH0
has a loopless2-connected(m1,m2, . . . , mq)-detachment at s if and only if

(a) H0 is 2-edge-connected,
(b) b(v)+ e(v) = 1 for all v ∈ V − s,
(c) m2 +m3 + · · · +mq �b(s)+ e(s)+ q − 2,and
(d) d(s, V − v)+ e(s)�q + b(s, v)− 1 for all v ∈ V − s.

Let G3 + s be the multigraph obtained from(G2 ⊕ s) − K − ∪r
i=2Ci by addingp =

(dG2⊕s(s)− 2d1)/2− 1 loops ats. Note thatp is a non-negative integer by Claim7.11and
the fact thatdG2⊕s(s) is even. Applying Lemma7.15toG3 + s we deduce:

Claim 7.16. G3 + s has a loopless2-connected(d∗
2, d3, . . . , dr−1)-detachmentH1 at s,

whered∗
2 = d ′

2 + dr − 2.

Proof. We haved∗
2 + d3 + . . . + dr−1 = dG2⊕s(s) − d1 − 2 = 2p + d1 = dG3+s(s)

so (d∗
2, d3, . . . , dr−1) partitionsdG3+s(s). SinceG2 ⊕ s is (k, s)-connected andG3 is

connected and loopless, it follows thatG3+ s satisfies Lemma7.15(a) and Lemma7.15(b).
Using di �2 for all 3� i�r − 1 and (29), we haved ′

2 + dr �dG2⊕s(s) − d1 − 2(r −
3)�dG2⊕s(s)−dG2⊕s(s)/2+r−2−2(r−3) = dG2⊕s(s)/2−r+4.Thusd3+. . .+dr−1 =
dG2⊕s(s) − d1 − d ′

2 − dr �dG2⊕s(s) − d1 − dG2⊕s(s)/2 + r − 4 = 1 + e(s) + r − 4,
proving that Lemma7.15(c) holds forG3 + s. To show that Lemma7.15(d) holds focus
on a vertexv of C1. Considering the graphG2 − (K + v) and using Claim7.9, we have
b̂(G2)�bG3(v)+ r − 1+ �, where� = 2 if dG2⊕s(s, v) = 2 and� = 0, otherwise, since
if dG2⊕s(v) = 2 thendG2(v) = k − 2. By (28), b̂(G2)��t (G2)/2� = dG2⊕s(s)/2. Hence
dG2⊕s(s)/2�bG3(v)+ r − 1+ �. Thus

dG3+s(s, V (C1)− v)+ e(s) = d1 − dG2⊕s(s, v)+ e(s)

= dG2⊕s(s)/2− 1− dG2⊕s(s, v)

� bG3(v)+ r − 1+ � − 1− dG2⊕s(s, v)

� (r − 2)+ bG3+s(s, v)− 1,

as required. �

Label thedetachedverticesofH1 asc2, c3, c4 . . . , cr−1wheredH1(ci) = di for 3� i�r−
1 anddH1(c2) = d∗

2. The edgee = cj y1 is in E(H1) for some 2�j�r − 1. We next
subdivide the edgeewith a new vertexcr to form the multigraphH2, and then ‘flip’ some
edges fromc2 to cr in H2 preserving 2-connectivity and increasing the degree ofcr up to
dr while maintaining the property thaty1 andy′

1 are joined to different pieces ofs. We use
the following result to accomplish this.

Lemma 7.17([14, Corollary 2.17]). Lett�3bean integer. LetHbea loopless2-connected
multigraph, x, y ∈ V (H) andxzi ∈ E(H − y) for 1� i� t . If t�d(y)− d(y, x)+ 1, then
H − xzi + yzi is loopless and2-connected for some i, 1� i� t .



70 B. Jackson, T. Jordán / Journal of Combinatorial Theory, Series B 94 (2005) 31–77

Weconstruct the newmultigraphH3 fromH2 as follows. Ifdr = 2 thenwe putH3 = H2.
If dr �3 thenweuseLemma7.17to finda set of edgesS = {c2zi ∈ E(H2) : 1� i�dr−2}
such thatc2y′

1 /∈ S andH3 = H2−S+{crzi : 1� i�dr −2} is 2-connected and loopless.
This is possible sincedH2(cr ) = 2,dH2(cr , c2)�1, anddH2(c2) = d ′

2+dr −2�dr +dr −2.
InH3 we havey1cr ∈ E(H3), y′

1cr /∈ E(H3), dH3(ci) = di for 3� i�r, anddH3(c2) = d ′
2.

(Note that we could have used Lemma7.15directly to construct a 2-connected loopless
detachment with the same degree sequence asH3 fromG3+ s plus one extra loop ats. The
reason we go viaH1 andH2 is to ensure thaty1 andy′

1 are adjacent to distinct pieces ofs
in H3.)
LetF be a set of edges joining the components ofG2−K such thatdF (v) = dG2⊕s(s, v)

for all v ∈ V − K and such that the graph obtained from(V − K,F) by contracting
C2, . . . , Cr to c2, c3, . . . , cr , respectively, isH3. SinceH3 is 2-connected, each vertexci
in H3 has at least two distinct neighbours. SinceH3 is loopless, every edge ofF which
is incident to a componentCi , 2� i�r, is incident to distinct components ofG2 − K.
Let yi, y′

i be the neighbours ofs in Ci as defined after Claim7.13. Since we are free to
interchange the end vertices of the edges ofF within each component,Ci , for 2� i�r we
may chooseF to have the additional property that, for 2� i�r, the two edges ofF incident
to yi andy′

i join Ci to different vertices ofG − K − Ci , which either belong to different
components ofG−K −Ci , or both belong toC1. Furthermore, sincey1 andy′

1 are joined
to different detached vertices inH3, the two edges ofF incident toy1 andy′

1 join C1 to
different components ofG2 −K − C1.
We can now use Claim7.12 to deduce thatG2 + F is k-connected as in Subcase 2.1.

PuttingF0 = E(G2) − E(G) we deduce thatF0 ∪ F is the required augmenting set of
edges forG of size�dG+s(s)/2� = �t (G)/2�. �

8. Algorithmic aspects and corollaries

In this section, we discuss the algorithmic aspects of our results and also show that our
main theorems imply (partial) solutions to a number of conjectures in this area.

8.1. Algorithms

The proofs of our min–max theorems (Theorems4.17and7.7) are algorithmic and lead
to a polynomial algorithm which finds an optimal augmenting set with respect tok for any
l-connected input graphGand targetk� l+1, providedak(G)�10(k− l+2)3(k+1)3 (or
ak(G)�20k3, if k = l + 1). As we shall see, the running time in this case can be bounded
by O(n6), even ifk is part of the input. Our algorithm for the general case first decides
whetherak(G) is large, compared tok, or not. Since, by Lemma2.10, ak(G) is large if
and only ifd(s) is large in ak-critical extensionG + s of G, the first step is to create such
an extension. Ifak(G) is small then our algorithm performs an exhaustive search on all
possible augmenting setsF with V (F) ⊆ N(s) and outputs the smallest augmenting set
which makesG k-connected. The number of possibilities depends only onk, since|N(s)| is
also small.We shall present the algorithmas a sequence of sub-algorithms.Most of the steps
of these algorithms are easy to implement in polynomial time by network flow techniques.
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8.1.1. CRITICAL EXTENSION
Input: A graphG and an integerk�1.
Output: A k-critical extensionG+ s of G.
Step1: Add a new vertexs toG and max{1, k − d(v)} edges froms to each vertexv of
G. (This gives a(k, s)-connected extensionG⊕ s of G by Lemma2.4.)
Step2: Delete edges incident tosgreedily until the remaining graphG+ s is ak-critical
extension. (We check whether each edge deletion preserves(k, s)-connectivity using a
max-flow computation.)

8.1.2. EXHAUSTIVE SEARCH
Input: A k-critical extensionG+ s of a graphG.
Output: An optimalk-augmenting set forG.
For each set of edgesFwith V (F) ⊆ N(s), check whetherG+F isk-connected. Choose

the smallest suchk-augmenting set.

The following lemma implies that the output of EXHAUSTIVE SEARCH is indeed an
optimalk-augmentation forG.

Lemma 8.1. LetG+ s be a(k, s)-connected extension of a graph G. Then there exists an
optimal k-augmenting set F for G withV (F) ⊆ N(s).

Proof. Let S = N(s) and letF be an optimal augmenting set with respect tok for which
c(F ) = ∑

uv∈F |{u, v}−S| is as small as possible. Supposec(F ) is positive and letuv ∈ F

be an edge with{u, v} − S 
= ∅. SinceF is optimal, we have�(G + F − uv) = k − 1
and, by Lemma4.4(c), it follows thatG + F − uv has precisely twok-cores (i.e. minimal
k-deficient fragments)X, Y . Clearly,X andY arek-deficient fragments inG. Thus, since
G + s is (k, s)-connected, we must haveS ∩ X 
= ∅ 
= S ∩ Y . Lemma4.4(c) also implies
that by takingF ′ = F − uv + xy for a pairx, y of vertices withx ∈ S ∩X andy ∈ S ∩ Y

we have thatG+ F ′ is k-connected. Now|F ′| = |F | andc(F ′) < c(F ), contradicting the
choice ofF. This proves thatc(F ) = 0 must hold, and hence the required augmenting set
exists. �

It follows that, if ak(G) is small, then we only need to performck k-connectivity tests,

whereck = O(2(
ak(G)

2 )) depends only onk, to find an optimalk-augmentation forG us-
ing CRITICAL EXTENSION and EXHAUSTIVE SEARCH. Ifak(G) is large then our
augmentation algorithm has several sub-algorithms, according to the different subcases
in our proofs. In what follows we give a sketch of these algorithms to verify that they
can be run in polynomial time. We do not attempt to work out the details of an efficient
implementation.

8.1.3. CORES
Input: A (k − 1)-connected graphG = (V ,E).
Output: The setC of all k-cores and the setA of all activek-cores inG.
For each non-adjacent pairu, v ∈ V such that�(u, v) = k − 1, find the minimal (with

respect to inclusion) setsXu,Xv such thatu ∈ Xu, v ∈ Xv andn(Xu) = k − 1 = n(Xv).
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Let C′ be the union of the sets{Xu,Xv} over all pairsu, v, and letC consist of the minimal
members ofC′. LetA = {X ∈ C : �(G−X) = k − 1− |X|}.
Note that CORES can be used to test if a(k − 1)-connected graphG is k-independence

free by checking whetherGhas any activek-cores.We do not know if there is a polynomial
algorithm to determine whether an arbitrary graph isk-independence free.
Cheriyan and Thurimella[4] give a polynomial algorithm for determiningbk(G) for a

(k − 1)-connected graphG and finding all(k − 1)-shreddersK in Gwith bG(K) = b(G).
We can use this to give a polynomial algorithm for finding an optimalk-augmentation of a
(k − 1)-connectedk-independence free graph. Note, however, that it is unlikely that there
exists an efficient algorithm to determinebk(G) for an arbitrary graphG. This follows since
the problem of determining whetherbk(G)�k for some 1�k� |V | is NP-complete by
Bauer et al.[1].

8.1.4. INDEPENDENCE FREE AUGMENTATION
Input: A (k − 1)-connectedk-independence free graphG.
Output: An optimalk-augmenting setF for Gwith |F | = max{b(G)− 1, �t (G)/2�}.
We first construct ak-critical extensionG + s of G using CRITICAL EXTENSION.

We haved(s) = t (G) by Corollary 3.2. We construct the required setF by finding a
sequence of admissible splits ats (as in the proofs of Lemmas3.7, 3.10 and3.11 and
Theorem3.12) to giveG1+ s with dG1+s(s) ∈ {3, b(G1)}.We then putF = F1∪F2 where
F1 = E(G1)− E(G) andF2 is the edge set of a tree withV (F2) = NG1+s(s).

We next give algorithms for finding optimalk-augmentations for a graphGwhenak(G)
is large. The first two algorithms determine whetherGhas adominating shredder, that is to
say a(k − 1)-shredderK with b̂G(K) = b̂(G) and 2̂b(K) − 2� t (G), and find an optimal
k-augmenting set whenG does have such a shredder.

8.1.5. DOMINATING SHREDDER
Input: A k-critical extensionG+ s of anl-connected graphG for whichdG+s(s)�k(k−
l + 1)+ 2.
Output: We find a dominating shredderK in G or deduce that no such shredder exists.
We construct a familyK of (k−1)-shredders in such a way that|K| is polynomial in|V |

and, if there is a dominating shredderK in G, thenK ∈ K. Once we haveK, we complete
the algorithm by computinĝb(K ′) for all K ′ ∈ K.
For each triplex, u, v, wherex ∈ V andu, v ∈ NG+s(s) − x, first we try to split off

all copies of the edgessx (if there are any). Suppose that all copies can be split off, and
let the resulting graph beGx + s. Then, we try to find a set{P1, P2, . . . , Pk−1} of openly
disjointuv-paths inGx . If we succeed, then we letQ(x, u, v) = ∪k−1

i=1Pi , C(x, u, v) = {C :
C is a component ofG−Q(x, u, v)},

K1(x, u, v) = {NG(C) : C ∈ C(x, u, v) andnG(C) = k − 1},
K2(x, u, v) = {NG(C) ∪ {q} : C ∈ C(x, u, v), nG(C) = k − 2, q ∈ Q− {u, v}}.

LetK be the union of the setsK1(x, u, v)∪ K2(x, u, v) over all choices ofx, u, v. Clearly,
|K|�(

n
3

)
n2.
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Lemma 8.2. If G has a dominating shredder K thenK ∈ K.

Proof. Suppose there is a(k − 1)-shredderK with d(s)�2b̂(G) − 2 = 2b̂(K) − 2. Then
Lemma6.1 implies that|N(s) ∩ K|�1, and ifx ∈ N(s) ∩ K thendG(x) = k − d(s, x),
b̂(K) = b(K) + d(s, x), and we can split off all copies ofsx(in any order) by admissible
splittings. By splitting off these copiesd(s) is reduced by 2d(s, x) and b̂(K) is reduced
by d(s, x). Hence,d(s)�2b(K) − 2 holds in the resulting graphGx . This implies thatK
has at least two leaf componentsC,C′ in Gx . By Lemma2.14 there existk − 1 openly
disjoint paths fromu ∈ N(s)∩C to v ∈ N(s)∩C′. Clearly,Q ⊆ K ∪C ∪C′ andK ⊂ Q

hold, whereQ is the union of the vertex sets of these paths. Moreover, sincex ∈ K, the
components ofG−K andGx −K are the same. Lemma6.1also implies thatG−K has
at least 2k + 1�3 componentsD with dG+s(s,D)�2, and hencenG(D)�k − 2. Thus,
there is a componentD′ ofG−K, which is a component ofG−Q, and satisfies that either
K = NG(D

′) orK = NG(D
′)+ q for someq ∈ Q− {u, v}.

It follows that for some triplex, u, v we haveK ∈ K1(x, u, v) ∪ K2(x, u, v),
as required. �

Note that if DOMINATINGSHREDDER finds a dominating shredderKwhenl = k−1,
then we haved(s,K) = 0 andbG(K) = b̂(K) by Theorem4.1.

8.1.6. DOMINATING SHREDDER AUGMENTATION
Input: A k-critical extensionG+ s of anl-connected graphG for whichdG+s(s)�k(k−
l + 1)+ 2, and a dominating shredderK for G.
Output: An optimal augmenting setF for Gwith |F | = b̂(G)− 1.
WeconstructFby splitting off all edges fromstoKand thenaddinga forest augmentation,

as described in Lemma6.5and after Lemma6.1.

8.1.7. LARGE AUGMENT BY ONE
Input: A k-critical extensionG+ s of a (k − 1)-connected graphG = (V ,E) for which
dG+s(s)�20k3 + 1.
Output: An optimal augmenting setF for Gwith |F | = max{b(G)− 1, �t (G)/2�}.
WeuseDOMINATINGSHREDDER,DOMINATINGSHREDDERAUGMENTATION,

CORE, and the proof techniques of Lemmas4.2, 4.15 and4.16 to find a saturating set
of edgesF1 such that eitherF1 is an optimalk-augmenting set forG with |F | = max
{b(G) − 1, �t (G)/2�}, orG + F1 is k-independence free and has no dominating shredder.
In the former case we putF = F1. In the latter case we use INDEPENDENCE FREE
AUGMENTATION to find ak-augmenting setF2 for G+ F1 and putF = F1 ∪ F2.

Note that when we increase the number of passivek-cores by making an activek-core
passive in LARGEAUGMENT BY ONE, we do not need to computeT (G). We choose an
arbitrary activek-coreB and, if we fail to makeB passive (which meansB ∩ T (G) 
= ∅),
then we choose a different activek-core.

8.1.8. LARGE AUGMENT
Input: A k-critical extensionG+ s of a graphG = (V ,E) for whichdG+s(s)�10(k −
l + 2)3(k + 1)3 + 1.
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Output: An optimal augmenting setF for Gwith |F | = max{b̂(G)− 1, �t (G)/2�}.
WeuseDOMINATINGSHREDDER,DOMINATINGSHREDDERAUGMENTATION,

and the proof techniques of Lemmas6.7and7.5to find a saturating set of edgesF1 such that
eitherF1 is an optimalk-augmenting set forGwith |F1| = max{b̂(G)− 1, �t (G)/2�}, or
G+F1 is (k−1)-connected, has no dominating shredder, anddG+s(s)−2|F1|�20k3+1,
or G + F1 has ak-augmenting setF2 of size�t (G + F1)/2� (which can be constructed
using detachments as in the proof of Case 2 of Theorem7.7). In the first case we put
F = F1. In the second case we use LARGEAUGMENT BY ONE to find ak-augmenting
setF3 for G + F1 of size�t (G + F1)/2� and putF = F1 ∪ F3. In the third case we put
F = F1 ∪ F2.

8.1.9. AUGMENT
Input: An l-connected graphG and an integerk > l.
Output: An optimalk-augmenting setF for G.
Construct ak-critical extensionG + s for G using CRITICAL EXTENSION. Ifk =

l + 1 anddG+s(s)�20k3 + 1 then apply LARGE AUGMENT BY ONE. Ifl�k − 2 and
dG+s(s)�10(k − l + 2)3(k + 1)3 + 1 then apply LARGE AUGMENT. Otherwise apply
EXHAUSTIVE SEARCH.

As noted above, most of the steps of the above algorithms are easy to implement in
polynomial time by network flow techniques. The only exception is finding the required
loopless 2-connected detachments as in the proof of Case 2 of Theorem7.7. We shall not
discuss this in this paper but remark that there is a simple algorithm which findsH, if it
exists, and we also have a similarly simple and efficient algorithm which findsH3, whenH
does not exist.
Before stating our bound on the running time of our algorithm AUGMENT, we note

that by inserting a preprocessing step, which works in linear time, we can make the in-
put graph sparse, and hence reduce the running time, as follows. LetG = (V ,E) and
k be the input of our problem. Letn = |V | andm = |E|. It was shown in[3,19] that
G = (V ,E) has a spanning subgraphG′ = (V ,E′) with |E′|�k(n − 1) satisfying
�(u, v,G′)� min{k,�(u, v,G)} for each pairu, v ∈ V . It can be seen that by replac-
ingG byG′ we do not change thek-deficient fragments (or their deficiencies) and that for
any augmenting setF the graphG+F is k-connected if and only ifG′ +F is k-connected.
Thuswe canworkwithG′ and assume thatm = O(kn). Note also thatd(s) = O(kn) in any
k-critical extensionG+ s of G. By using these facts and efficient network flow algorithms
for the basic operations (such as finding admissible splittings, checking whether an edge is
k-critical, etc) we can conclude with the following theorem.

Theorem 8.3.Given an l-connected graph G and a positive integer k, our algorithmAUG-
MENT finds an optimal k-augmenting set. Ifak(G)�10(k−l+2)3(k+1)3 then the running
time isO(kn5).Otherwise the running time isO(ckn

3).

We close this subsection by noting that we can also use the theory developed in this paper
to derive a near-optimal algorithm for the vertex connectivity augmentation problem which
is similar to the one given in[13].
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8.1.10. NEAR-OPTIMAL AUGMENT
Input: An l-connected graphG and an integerk > l.
Output: A k-augmenting setF for Gwith |F |�ak(G)+ 1

2k(k − l + 1)+ 1.
Construct ak-critical extensionG + s for G using CRITICAL EXTENSION. We first

suppose thatdG+s(s)�k(k− l+1)+2.We use DOMINATINGSHREDDER to determine
if G has a dominating shredder. If it does then we use DOMINATING SHREDDERAUG-
MENTATION, to find an optimalk-augmenting set forG. If G does not have a dominating
shredder then, by Lemma5.3, we can split off edges fromssuch that, in the resulting graph
G1 + s, we have eitherdG1+s(s) > k(k − l + 1) + 2 andG1 has a dominating shredder,
or k(k − l + 1) + 1�dG1+s(s)�k(k − l + 1) + 2. In the former case we can use DOM-
INATING SHREDDER and DOMINATING SHREDDER AUGMENTATION, to find an
optimalk-augmenting set forG. In the latter case, Lemma2.7implies that wemay construct
a minimal augmenting setF1 for G1 with V (F1) ⊆ NG1+s(s). Let F = F1 ∪ F2, where
F2 = E(G1)−E(G). Lemma2.9implies that|F2|�dG1+s(s)−1. Sincet (G) = dG+s(s)

andt (G1) = dG1+s(s) we have|F |� 1
2t (G) + 1

2dG1+s(s)�ak(G) + 1
2k(k − l + 1) + 1.

Finally, if dG+s(s) < k(k − l + 1) + 2, then we construct a minimal augmenting setF
for Gwith V (F) ⊆ NG+s(s). Lemma2.10implies that|F |�ak(G) + 1

2dG+s(s)�ak(G)

+ 1
2k(k − l + 1)+ 1.
The running time of NEAR-OPTIMAL AUGMENT isO(n6).

8.2. Corollaries

Our main results (Theorems4.17and7.7) imply (partial) solutions to several related
conjectures. The extremal version of the connectivity augmentation problem is to find, for
given parametersn, k, t , the smallest integerm for which everyk-connected graph onn
vertices can be made(k + t)-connected by addingm new edges. Several special cases of
this problem were solved in[17] and it was conjectured that (at least ifn is large enough
compared tok) the extremal value ofm for t�2, k�2 is �nt/2� (or �nt/2�, depending on
the parities ofn, k, t). Sinceb̂(G) − 1�n, the min–max equality of Theorem7.7 shows
that if n is large enough andt�2 thenak(G) is maximized if and only ifG is (almost)
k-regular. This proves the conjecture (whenn is large compared tok), by noting that such
(almost) regular graphs exist fork�2.
A different version of this problem, when the graphs to be augmented arek-regular, was

studied in[9]. It was conjectured there that ifG is a k-regulark-connected graph onn
vertices, andn is even and large compared tok, thenG can be made(k + 1)-connected by
addingn/2 edges. IfG is k-regular,b(K)�k for any cut of sizek. Thus ifn is large enough,
we havemax{b(G)−1, �t (G)/2�} = n/2. Now the conjecture follows fromTheorem4.17.
A similar question is whetherak(T ) = �(∑v∈V (T )(k − d(v))+)/2� holds when graphT

is a tree, wherex+ = max{0, x} for all integersx. It is known that the minimum number
of edges needed to make a treek-edge-connected (or an arborescencek-edge- ork-vertex-
connected) is determinedby the sumof the (out)degree-deficiencies of its vertices.Asabove,
using the fact that̂b(G) − 1�n, Theorem7.7 implies (whenn, and hence alsoak(T ), is
large compared tok) that if k�3 thenak(T ) = �t (T )/2�. That is,ak(T ) is determined by
the total deficiency of a family of pairwise disjoint subsets ofV (T ). SinceT is a tree, each
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memberXof this family induces a forest. This implies that there exists a vertexv ∈ X with
k−d(v)�k−n(X). Therefore, we can find a family consisting of singletons with the same
total deficiency. This yields an affirmative answer to our question providedk�3 andn is
large compared tok. Note that the answer is negative fork = 2.
Frank and Jordán[8, Corollary 4.8]prove that every(k−1)-connected graphG = (V ,E)

can bemadek-connected by adding a setF of new edges such that(V , F ) consists of vertex-
disjoint paths. They conjectured that such anF can be found among the optimal augmenting
sets as well.We can verify this, providedak(G) is large enough. In this case, wemay use the
min–max formula of Theorem4.17. If ak(G) = �t (G)/2� then an optimal augmenting set is
a collection of vertex-disjoint paths of length one or two. Ifak(G) = b(G)−1, then a careful
analysis of the forest augmentation method shows that we can find an optimal augmenting
setF satisfyingdF (v)�2 for all v ∈ V . SinceF is a forest, it induces vertex-disjoint paths,
as claimed.
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