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Abstract

We calculate the electromagnetic form factor of the pion in lattice gauge theory. The non-perturbatively im
Sheikoleslami–Wohlert lattice action is used together with theO(a) improved current. The form factor is compared to res
for other choices for the current and features of the structure of the pion deduced from the ‘Bethe–Salpeter wave fun
discussed.
 2003 Published by Elsevier B.V.
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1. Introduction

The pion as the simplest particle with only tw
valence quarks has been the subject of many s
ies. Global features of the pions—their charge a
spin—are easily incorporated in model calculatio
The form factor, which directly reflects the intern
structure of this elementary particle, is clearly an i
portant challenge. Many earlier calculations are ba
on ad hoc models that model QCD or sum over
lected subsets of Feynman diagrams. However,
most reliable approach, in particular when address
non-perturbative features as the electromagnetic f
factor at intermediate momentum transfers, is the
of lattice QCD. The first lattice results were obtain
by Martinelli and Sachrajda [1], which was followe
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by a more detailed study by Draper et al. [2], w
showed that the form factor obtained through latt
QCD with the Wilson action could be described by
simple monopole form as suggested by vector me
dominance [3]. Below, we extend these early stud
in two ways. We use an improved lattice action a
an O(a) improved electromagnetic current operat
Furthermore, we also extend the calculations to lo
pion masses than achieved before. Several featur
the internal structure of the pion have been obtai
previously [4–8] by calculating the ‘Bethe–Salpe
wave function’, which can be used to estimate the re
tive separation of the quark–antiquark pair in the pi
We also use this approach and compare its predict
to the results of our direct calculation of the pion fo
factor.
nse   .
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2. The method

In comparison to earlier lattice calculations of pi
properties, the major difference of our approach
the systematic reduction of the discretisation erro
the calculation of the matrix elements. We use
non-perturbativelyO(a) improved [9] clover action
[10] and the correspondingO(a) improved current
[11–13].

Using this action, we proceed analogous to
and calculate the two- and three-point correlat
functions for the pion. Projecting onto definite pio
three-momentum, the two-point function is

(1)G2(t,p)=
∑

x

〈
φ(t,x)φ†(0,0)

〉
eip·x,

whereφ is the operator projecting on a state with t
pion quantum numbers. Below, we will consider aπ+
meson, consisting of au and d̄ quark. Neglecting al
spin, colour and flavour indices, this operator is giv
by

(2)φ(x)= ψ̄(x)γ5ψ(x).

In the three point function, which yields the desir
form factor, we project onto specific initial and fin
pion three momenta,pi andpf

(3)

G3(tf , t; pf ,pi )=
∑
xf ,x

〈
φ(xf )j4(x)φ

†(0)
〉

× e−ipf ·(xf−x)−ipi ·x.

This function involves the electromagnetic curre
operatorjµ; since here we use only the compone
µ = 4, we do not include aµ-index in the definition
of the three point function.

It is well known that the local current,

(4)jLµ (x)= ψ̄(x)γµψ(x),

is not conserved on the lattice. The conserved Noe
current that belongs to our action,

(5)

jCµ = κ
(
ψ̄(x)(1− γµ)Uµ(x)ψ

(
x + µ̂

)
− ψ̄

(
x + µ̂

)
(1+ γµ)U

†
µ(x)ψ(x)

)
,

is identical to the conserved current for the Wilson
tion and still contains corrections ofO(a) atQ2 	= 0;
we useQ2 = −q2, whereq is the four momentum
transfer to the pion.
The conserved and improved vector currentj Iµ is of
the form [11–13]

(6)j Iµ =ZV

{
jLµ (x)+ acV ∂νTµν

}
,

with

Tµν = ψ̄(x)iσµνψ(x),

(7)ZV =Z0
V (1+ abVmq).

The bare-quark mass is obtained from:

(8)amq = 1

2

(
1

κ
− 1

κc

)
,

whereκc is the kappa value in the chiral limit anda
the lattice spacing. For our simulation we useκc =
0.13525 [14]. The constants inj Iµ are determined suc
that the matrix element of the current operator rece
no correction toO(a).

3. Details of the calculation

Our calculations were carried out in the quench
approximation on anNσ

3 ×Nτ = 243 × 32 lattice and
based on a set of 100 configurations for the link va
ables atβ = 6 andcSW = 1.769 [9]. After an initial
thermalisation of 2500 sweeps, we obtained confi
rations at intervals of 500 sweeps. Each sweep c
sists of a pseudo-heatbath step with FHKP updatin
theSU(2) subgroups, followed by four over-relaxatio
steps. In contrast to the Dirichlet conditions in [2
we impose anti-periodic boundary conditions on
quarks and periodic boundary conditions on the g
ons. Three values of the hopping parameterκ were
used

(9)
κ1 = 0.1323, κ2 = 0.1338, and κ3 = 0.1343,

corresponding to pion masses1 of 968, 671 and
541 MeV, respectively. For the improved current,
use the parametersZ0

V , bV andcV as determined by
Bhattacharya et al. [16].

Conservation of the total charge generated at
source att = 0 provides a test [2] for our calculatio
relating the µ = 4 component of the three-poin

1 For definiteness, we have taken the lattice spacinga =
0.105 fm from [15].
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function for q = 0 to the two-point function. For ou
periodic boundary conditions, it reads

(10)G3(tf , t; p,p)−G3
(
tf , t

′; p,p
) =G2(tf ,p),

wheretf < t ′ <Nτ . We find that all configurations w
use each satisfy this condition to at least 1 ppm.

For the results discussed below, we chose the p
three-momenta such that|pi |2 = |pf |2 = 2 in units
of the minimal momentum2π

aNσ
for our lattice. This

guarantees for the elastic pion form factor thatEf −
Ei = q0 = 0; it greatly simplifies the kinematic facto
appearing in the three-point function. Different valu
for the three momentum transferq were obtained by
varying the relative orientation of the initial and fin
pion momenta.

In order to improve the projection onto the grou
state, we smeared the pion operator at the sink inG2
andG3 by the method proposed in [7]. We found th
a quark–antiquark distanceR = 3 works best. The
quark–antiquark pair was connected by APE smea
gluon links at smearing level 4 and relative weigh
between straight links and staples.

To extract the desired information from our num
ical results, we assume the two-point function of
pion to have the form

(11)

G2(t,p)=
1∑

n=0

√
Zn
R(p)Z

n
0(p) e

−En
p
Nτ
2

× cosh

{
En

p

(
Nτ

2
− t

)}
,

including the contribution of the ground state(n = 0)
and a first excited one(n = 1). TheZn

R denote the
matrix elements,

(12)Zn
R(p)≡ ∣∣〈Ω |φR|n,p〉∣∣2,

andE0
p, E1

p are the energies of ground and excit
state, respectively; the subscriptR indicates the op
erator smearing.

The three-point function is parametrised as

G3(tf , t; pf ,pi )

(13)

= F
(
Q2)√Z0

R(pf )Z
0
0(pi ) e

−E0
pf

(tf−t )−E0
pi
t

+
{√

Z1
R(pf )Z

0
0(pi ) 〈1,pf |jµ(0)|0,pf 〉

× e
−E1

pf
(tf−t )−E0

pi
t + (1 ↔ 0)

}
.

Effects involving, for example, the production of pio
pairs, as well as ‘wrap around effects’ due to the pr
agation of states beyondtf are exponentially sup
pressed (<O(e−5)); similarly, an elastic contribution
from the excited state was estimated to be of the o
of 1% or less. All these effects are not reflected in
chosen parametrisation.

All parameters in the 2- and 3-point functions
energiesE, Z-factors and the form factorF(Q2)—
were fit simultaneously to the data from all config
rations. For the three-point function, we chosetf =
11 and let the current insertion timet vary from 0
to 10. For maximum spatial symmetry, all values c
responding to the same value|p| in the two-point func-
tion and allpi,f yielding the sameq in the three-point
function were combined for the fit. The value for t
parameters and their error in these simultaneous
was obtained through a single elimination jackkn
procedure. Since we satisfy Eq. (10) to high accura
we showF(0)= 1 in the results below instead of u
ing the result from a fit atQ2 = 0, which would be less
accurate in this case.

4. Results

Our method to extract the pion form factor is no
perturbatively improved in two respects: we use
improved action and an improved current opera
We can get an impression of the importance of
latter effect by comparing the conserved Noet
current corresponding to the improved action w
the improved current (which is also conserved). T
results2 are shown in Fig. 1 for the lightest of our thr
quark masses. The form factor from the improv
current is systematically lower than the one from
conserved current. The difference grows withQ2 and
reaches about 25% at the largest momentum tran
considered here.

The structure of the improved current can be furt
understood by comparing the improved current to
renormalised local current,

(14)jL,Rµ ≡ZV ψ̄γµψ,

2 In all our results we only show the statistical errors.
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Fig. 1. Form factors for the three currents with lowest quark mass. Solid line: monopole form withmρ taken from literature (see text). Data f
the local current shifted horizontally for clarity.
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which is not conserved. For our kinematics w
q0 = 0, we can also extract a form factor fromjL4 . It is
also shown in Fig. 1 and can be seen to lie very cl
to the improved current. This means that the contri
tion of the term proportional tocV in j I4 is very small.
Closer inspection shows that while the matrix elem
of the tensor term can become almost comparabl
that of theγ4 term, the overall tensor contribution is r
duced by the small coefficientcV . Similar statements
also hold for our two additionalκ-values.

It is worth mentioning that with theZV , cV and
bV values taken from [16], and performing a fit
Q2 = 0 we obtainedFI /FC = 1 to better than 1%
with a statistical error of about 5%.

In the previous study [2] of the pion form facto
where the Wilson action was used, the results w
compared to a monopole form factor

(15)F
(
Q2) =

{
1+ Q2

m2
ρ

}−1

,

a form suggested by vector meson dominance. We
show in Fig. 1 a monopole form factor using the va
for the ρ-mass obtained by interpolating the resu
from [14] which uses the same action as we do. T
monopole form factor describes our results for the
proved current at all but the highestQ2 very well. As
in [2], we observe that the conserved current lies c
sistently above the monopole form factor. A simi
behaviour was found also for our other twoκ-values.

In Fig. 2 we show our results for improved for
factors for all three values forκ . The corresponding
quark- and pion-masses are given in Table 1. The f
factors systematically decrease with decreasing p
mass. The form factors for the two lightest pions, w
mπ = 541 and 671 MeV, come very close togeth
As can be seen, the statistical error of the extrac
form factors grows as the quark mass decrea
Nevertheless, we are still able to obtain conclus
results for the smallest quark mass. The correspon
pion mass of 541 MeV is substantially lower than
the previous work, wheremπ ∼ 1 GeV. Given that we
have only three data sets, we have not attempte
extrapolate our improved form factor to the physi
pion mass.

We also fitted our results for the improved for
factors to a monopole form factor. In doing s
we omitted the highest momentum data point a
extracted in each case a vector meson mass,mV ,
shown in Table 1. They are close to the values formρ

taken from interpolations to literature data [14].
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Fig. 2. Form factors as a function ofQ2 for the three pion masses. Curves: monopole fits to the data.
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Table 1
Masses and RMS-values for the different kappa values, in la
units. Theρ-mass has been taken from [14]

κ mq mπ mρ mV 〈r2〉1/2BS 〈r2〉1/2
FF

0.13230 0.082 0.515(2) 0.625(5) 0.597(14) 2.530(2) 4.23(10)
0.13380 0.040 0.357(2) 0.513(5) 0.496(15) 2.615(2) 4.94(15)
0.13430 0.026 0.288(2) 0.476(7) 0.470(19) 2.629(2) 5.21(21)

In examining the two-point Green function fo
various quark–antiquark distances, we also obtain
‘Bethe–Salpeter wavefunction’,

(16)ΦBS(R)=
√
Z0
R(0)

Z0
0(0)

.

Following the procedure in [5,8], we obtain〈r2〉1/2
BS ,

shown in Table 1. These RMS-radii are compared
the values extracted from the low-Q2 behaviour of the
form factor,

(17)
dF(Q2)

dQ2

∣∣∣∣
Q2=0

= −1

6

〈
r2〉

FF
= − 1

m2
V

,

where in the last step we have assumed a mono
form and use the fitted parametermV . In agreemen
with the findings of [4–6], we see that the Beth
Salpeter predictions are very insensitive to the va
of the quark or pion mass. However, it is well know
[6] that the information that can be obtained from t
Bethe–Salpeter approach as described above is on
approximation. It assumes, in the extraction of〈r2〉,
that the center of mass of the pion is always halfw
between the valence quark and antiquark, not allow
for the motion of the gluons. The extraction of〈r2〉
from the calculated pion form factor does not invol
this restriction for the valence (anti)quark motio
As can be seen, the more reliable determina
from F(Q2) leads, as expected, to a larger radi
Moreover, this radius shows a substantial depende
on the mass.

We have presented here the first calculation of
electromagnetic form factor of the pion based on
O(a) improved action and the concomitant improv
vector current. This is seen to lead to significa
changes in the prediction for the internal structure
the pion. We observe a decrease of the form fa
for decreasing pion mass, which in turn leads to
increase of the RMS-radius. This mass-dependenc
the radius is not seen in the Bethe–Salpeter appro
Furthermore, the mass of the pion we reach in
calculations is considerably closer to the physi
value than in previous work.
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The computational effort involved in taking th
improvement into account is small. Since it guarant
elimination ofO(a) discretisation errors to all orde
in the coupling constant, use of this method in futu
work seems logical in pushing the calculations furt
towards the physical limit.
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