Using Symbolic Computation to Exactly Solve for the Bogoyavlenskii's Generalized Breaking Soliton Equation

Yi-Tian Gao and Bo Tian
Department of Applied Mathematics and Physics
Beijing University of Aeronautics and Astronautics Beijing 100083, P.R. China

(Received October 1995; revised and accepted October 1996)

Abstract

In this paper, the symbolic computation systems help us find some exact solutions for the Bogoyavlenskii's generalized breaking soliton equation, which are the sums of the arbitrary functions of time and parameterized solitary waves.

Keywords-Breaking soliton equations, Symbolic computation, Computational technique, Mathematical methods in physics, Exact solutions.

The symbolic-computation systems could be useful tools in the investigation of nonlinear evolution equations. A class of those, called the breaking soliton equations, have become an interesting subject within half a decade, as seen, e.g., in [1-6].

In this paper, we consider a symbolic-computation-based method [7,8] in the solution study of the Bogoyavlenskii's generalized breaking soliton equation $[1,2]$, i.e.,

$$
\begin{equation*}
\left(u_{x t}-4 u_{x} u_{x y}-2 u_{y} u_{x x}+u_{x x x y}\right)_{x}=-\alpha^{2} u_{y y y} \tag{1}
\end{equation*}
$$

where the Bogoyavlenskii parameter α^{2} is real. What is in the parentheses is in fact a typical $(2+1)$-dimensional breaking soliton equation $[2,3,5,6,9,10]$.

Let us begin with a transformation

$$
\begin{equation*}
u(x, y, t)=\partial_{x}^{m} \partial_{y}^{n} \partial_{t}^{k} w[z(x, y, t)]+F(t), \tag{2}
\end{equation*}
$$

where $F(t)$ and $z(x, y, t)$ are a couple of functions. The integers, k, m, and n, are determined via the leading-order analysis as $m=1$ and $k=n=0$. In the following analysis, when substituting Ansatz (2) into equation (1), we will choose an ordinary differential equation for the third function, $w(z)$, so as to impose conditions upon $z(x, y, t)$. The substitution yields

[^0]\[

$$
\begin{align*}
& \alpha^{2} w^{(4)} z_{y}^{3} z_{x}+3 \alpha^{2} w^{\prime \prime \prime} z_{y} z_{y y} z_{x}+\alpha^{2} w^{\prime \prime} z_{y y y} z_{x}+w^{(4)} z_{t} z_{x}^{3}-6\left(w^{\prime \prime \prime}\right)^{2} z_{y} z_{x}^{5}-6 w^{\prime \prime} w^{(4)} z_{y} z_{x}^{5} \\
& +w^{(6)} z_{x}^{5} z_{y}+3 w^{\prime \prime \prime} z_{x}^{2} z_{x t}+3 \alpha^{2} w^{\prime \prime \prime} z_{y}^{2} z_{x y}+3 \alpha^{2} w^{\prime \prime} z_{y y} z_{x y}-24 w^{\prime \prime} w^{\prime \prime \prime} z_{x}^{4} z_{x y}-2 w^{\prime} w^{(4)} z_{x}^{4} z_{x y} \\
& +5 w^{(5)} z_{x}^{4} z_{x y}+3 \alpha^{2} w^{\prime \prime} z_{y} z_{x y y}+\alpha^{2} w^{\prime} z_{x y y y}+3 w^{\prime \prime \prime} z_{t} z_{x} z_{x x}-48 w^{\prime \prime} w^{\prime \prime \prime} z_{x}^{3} z_{y} z_{x x}-4 w^{\prime} w^{(4)} z_{x}^{3} z_{y} z_{x x} \\
& +10 w^{(5)} z_{y} z_{x}^{3} z_{x x}+3 w^{\prime \prime} z_{x t} z_{x x}-48\left(w^{\prime \prime}\right)^{2} z_{x}^{2} z_{x y} z_{x x}-24 w^{\prime} w^{\prime \prime \prime} z_{x}^{2} z_{x y} z_{x x}+30 w^{(4)} z_{x}^{2} z_{x y} z_{x x} \\
& -24\left(w^{\prime \prime}\right)^{2} z_{y} z_{x} z_{x x}^{2}-12 w^{\prime} w^{\prime \prime \prime} z_{y} z_{x} z_{x x}^{2}+15 w^{(4)} z_{y} z_{x} z_{x x}^{2}-18 w^{\prime} w^{\prime \prime} z_{x y} z_{x x}^{2}+15 w^{\prime \prime \prime} z_{x y} z_{x x}^{2} \\
& +3 w^{\prime \prime} z_{x} z_{x x t}-12\left(w^{\prime \prime}\right)^{2} z_{x}^{3} z_{x x y}-6 w^{\prime} w^{\prime \prime \prime} z_{x}^{3} z_{x x y}+10 w^{(4)} z_{x}^{3} z_{x x y}-30 w^{\prime} w^{\prime \prime} z_{x} z_{x x} z_{x x y} \tag{3}\\
& +30 w^{\prime \prime \prime} z_{x} z_{x x} z_{x x y}+w^{\prime \prime} z_{t} z_{x x x}-12\left(w^{\prime \prime}\right)^{2} z_{y} z_{x}^{2} z_{x x x}-6 w^{\prime} w^{\prime \prime \prime} z_{y} z_{x}^{2} z_{x x x}+10 w^{(4)} z_{x}^{2} z_{y} z_{x x x x} \\
& -20 w^{\prime} w^{\prime \prime} z_{x} z_{x y} z_{x x x}+20 w^{\prime \prime \prime} z_{x} z_{x y} z_{x x x}-10 w^{\prime} w^{\prime \prime} z_{y} z_{x x} z_{x x x}+10 w^{\prime \prime \prime} z_{y} z_{x x} z_{x x x}-6\left(w^{\prime}\right)^{2} z_{x x y} z_{x x x} \\
& +10 w^{\prime \prime} z_{x x y} z_{x x x}+w^{\prime} z_{x x x t}-4 w^{\prime} w^{\prime \prime} z_{x}^{2} z_{x x x y}+10 w^{\prime \prime \prime} z_{x}^{2} z_{x x x y}-4\left(w^{\prime}\right)^{2} z_{x x} z_{x x x y}+10 w^{\prime \prime} z_{x x} z_{x x x y} \\
& -2 w^{\prime} w^{\prime \prime} z_{x} z_{y} z_{x x x x}+5 w^{\prime \prime \prime} z_{x} z_{y} z_{x x x x x}-2\left(w^{\prime}\right)^{2} z_{x y} z_{x x x x}+5 w^{\prime \prime} z_{x y} z_{x x x x}+5 w^{\prime \prime} z_{x} z_{x x x x y} \\
& +w^{\prime \prime} z_{y} z_{x x x x x}+w^{\prime} z_{x x x x x y}=0,
\end{align*}
$$
\]

where $w^{\prime}=\frac{d w}{d z}$. The leading-order analysis requires that the terms with the highest power of the differential coefficients of $z(x, y, t)$, or $z_{x}^{5} z_{y}$, vanish, i.e.,

$$
\begin{equation*}
-6\left(w^{\prime \prime \prime}\right)^{2}-6 w^{\prime \prime} w^{(4)}+w^{(6)}=0 \tag{4}
\end{equation*}
$$

which in turn has a special form of solution

$$
\begin{equation*}
w[(z(x, y, t)]=-2 \cdot \ln [z(x, y, t)] \tag{5}
\end{equation*}
$$

as the expression for $w(z)$, since every term in equation (4) has the same sum of the degrees of the derivatives, i.e., 6.

For $z(x, y, t)$, we assume that the w^{\prime} terms in the remainder of equation (3) vanish, i.e.,

$$
\begin{equation*}
w^{\prime}\left(\alpha^{2} z_{x y y y}+z_{x x x t}+z_{x x x x x y}\right)=0 \tag{6}
\end{equation*}
$$

a particular solution of which is found as

$$
\begin{equation*}
z\left(x, y, t ; \alpha^{2}\right)=1+\exp \left(A \cdot x+B \cdot y-\frac{B^{3} \alpha^{2}+A^{4} B}{A^{2}} \cdot t+C\right) \tag{7}
\end{equation*}
$$

where $A \neq 0, B$, and C are arbitrary constants. Therefore, we construct a trial solution

$$
\begin{align*}
u\left(x, y, t ; \alpha^{2}\right) & =w^{\prime} z_{x} \\
& =F(t)-A\left\{\tanh \left[\frac{1}{2}\left(A \cdot x+B \cdot y-\frac{B^{3} \alpha^{2}+A^{4} B}{A^{2}} \cdot t+C\right)\right]+1\right\} \tag{8}\\
& =D(t)-A \cdot \tanh \left[\frac{1}{2}\left(A \cdot x+B \cdot y-\frac{B^{3} \alpha^{2}+A^{4} B}{A^{2}} \cdot t+C\right)\right]
\end{align*}
$$

Using Mathematica, we are able to verify that expression (8) is indeed a class of solutions for equation (1). The class turns out to be the sums of the arbitrary functions of time, $D(t)=F(t)-A$ and the Bogoyavlenskii-parameterized (α^{2}) solitary waves.

REFERENCES

1. O. Bogoyavlenskii, Overturning solitons II, Izv. Akad. Nauk SSSR Ser. Mat. 53 (4), 907 (1989).
2. O. Bogoyavlenskii, Overturning solitons in two-dimensional integrable equations, Usp. Mat. Nauk 45, 17 (1990).
3. S. Lou, A (2+1)-dimensional extension for the sine-Gordon equation, J. Phys. A 26, L789 (1993).
4. Y. Li and Y. Zhang, Symmetries of a (2+1)-dimensional breaking soliton equation, J. Phys. A 26, 7487 (1993).
5. Y. Li, Remarks on the breaking soliton equations, Int. J. Mod. Phys. A (Proc. Suppl.) 3, 523 (1993).
6. Y. Li, Two topics of the integrable soliton equation, T. M. $\Phi 99$ (3), 441 (1994).
7. Y.T. Gao and B. Tian, New family of overturning soliton solutions for a typical breaking soliton equation, Computers Math. Applic. 30 (12), 97 (1995).
8. B. Tian and Y.T. Gao, New families of exact solutions to the integrable dispersive long wave equation, J. Phys. A 29 (11), 2895 (1996).
9. F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform I, Nuovo Cimento B 32, 201 (1976).
10. F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform II, Nuovo Cimento B 39, 1 (1977).

[^0]: It is a pleasure to thank Y. S. Li, M. J. Longo, and S. Y. Lou for their kind help with the literatures. This work has been supported by the Outstanding Young Faculty Fellowship and the Research Grants for the Scholars Returning from Abroad, State Education Commission of China. Correspondence should be addressed to B. Tian, author of the text.

