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A~t rae t - -A two-variable, stochastic model of the mammalian cell cycle is proposed for the interpretation 
of correlations between the intermitotic times of related cells, for the analysis of heterogeneous silver 
staining patterns that are seen at the nucleolar organizer regions (NORs) of chromosome spreads, for the 
analysis of fraction-labeled-mitoses curves and for simulating the outcome of chemotherapeutic protocols 
having different doses and fractionation schedules. 

One of the model's variables represents the chromatin condensation/replication cycle. The second 
variable is related to the cell's ability to grow: the number of fibrillar centers in the cell's nucleoli, in excess 
of the minimum number found in quiescent cells. The number of these centers is assumed to increase and 
decrease at random, with transition rates that are functions of the growth conditions. The chromatin 
variable is postulated to increase at a rate proportional to the nucleolar variable (through a mechanism 
involving ubiquitin), so that the cell's generation time will also be random. The number of fibrillar centers 
in a mitotic mother cell persists in newly-formed daughter cells, providing a mechanism for positive 
correlation between sibling and mother-<laughter cell generation times. 

Expressions for the following quantities are provided as a function of the model's parameters: the 
average, variance and higher moments of the intermitotic time, the distribution of the number of fibrillar 
centers, the joint distribution of sibling, mother and daughter cell intermitotic times, the Malthusian 
parameter of exponential population growth, numbers that describe the damped oscillation of a perturbed 
population and the entropy of a cell population. 

1. I N T R O D U C T I O N  

"The most formidable obstacle to the successful treatment of disseminated cancer 
may well be the fact that the cells of a tumor are biologically heterogeneous . . . .  Cells 
isolated from one tumor have been shown to differ with respect to their growth rate, 
karyotypes, cell surface receptors for lectins, hormone receptors, immunogenicity, 
response to cytotoxic agents, and capacity for invasion and metastasis . . . .  A tumor 
may contain as many a s  10 9 cells; eradication of 99.9% of these cells still leaves 106 
cells to proliferate, thus providing a large base for the further generation of biological 
heterogeneity" [1]. 

One of the primary goals of current cancer research is to understand the mechanisms responsible 
for the generation of phenotypic diversity in cell populations [1-6]. The aim of this paper is to 
present a quantitative model for two interrelated types of such cellular heterogeneity: (i) cell-to-cell 
variation in intermitotic times; and (ii) variation in the levels of synthesis of particular gene 
products. The model that is presented is called the inherited rate model [7]. It addresses four specific 
problems and several general issues. 

The first problem is to understand in mechanistic terms why cells throughout even a genetically 
homogeneous population have heterogeneous intermitotic times, but that sibling cells and mother 
and daughter cells have intermitotic times that are more similar than randomly selected pairs of 
cells. The explanation proposed here is that cells are heterogeneous with regard to the activity of 
their nucleoli, that this heterogeneity of nucleolar activity provides a mechanism for the 
heterogeneity of intermitotic times and that the level of nucleolar activity is passed from one 
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generation to the next in an epi-genetic fashion, providing a mechanism for the correlation between 
the intermitotic times of related cells. 

The second problem is the reverse of the first, to interpret cell-to-cell heterogeneity of nucleolar 
activity when information concerning the heterogeneity of intermitotic times is also available. The 
nucleolar activity may be shown to be heterogeneous by examining the amount of silver staining 
of the nucleolar organizer regions (NORs) among chromosome spreads. 

The third problem is to estimate cell kinetic parameters from fraction-labeled-mitoses and related 
experimental procedures. There are circumstances in which data obtained by these methods are 
difficult to fit using currently available models, and the model described here may be useful in some 
such circumstances. 

The fourth problem is that of designing radiation and chemotherapeutic protocols. The model 
may be used to simulate potential protocols, with the objective of evaluating alternate strategies. 
Applicability of the model is dependent on the cell-to-cell heterogeneity of response to cytotoxic 
agents being correlated with other types of cellular variability. 

Before formulating a model for the analysis of these specific quantitative problems, it was 
necessary to consider the following general issues. What variables should be included in the model? 
What happens to the variables when a cell divides? What properties must the model exhibit in order 
that it be qualitatively correct? 

Selection of variables to represent cell growth and division 

The growth and division of cells are, in the final analysis, a set of chemical reactions involving 
the macromolecules that constitute the cell. A comprehensive model of a cell population would 
be one in which these reactions are represented explicitly [8-12], but it is not yet possible to 
implement such a model realistically: (i) a mammalian cell may contain some 10,000 messenger 
RNA species, most of which are present at less than 20 molecules/cell [13]; (ii) few of the proteins 
coded by these messengers have been characterized, and they are segregated into different 
organelles by an elaborate, dynamic membrane system [14-17]; and (iii) the large-scale 
configuration of the cell, organized by the cytoskeleton and nuclear matrix, is poorly understood 
[18-22]. This is not to say that a tractable model of the cell cycle cannot be correct, but rather 
that at the current state of the art, models should be designed with the following objective in 
mind--that they can be adapted or expanded to interpret the influence of a variety of particular 
variables on the kinetics of cell growth and division, without making explicit reference to the 
thousands of other variables that might have been investigated. The situation that arises in practice 
is that the cell-to-cell distribution of only one or a few variables will have been measured, and it 
is desired to use these data to predict the distribution that would be measured under other growth 
conditions. The distribution of DNA content, measured by flow cytometry, is the property that 
is most frequently analyzed [23, 24]. Another property that is commonly measured is cell size, and 
models are used to examine the question of whether growth beyond a certain size is required for 
cell cycle progress [25-28]. Total cell protein or RNA content have also been analyzed by similar 
methods [29]. It is likely that many related problems will arise in the future since an increasing 
number of hybridization, antibody and fluorescent probes are being used for the single-cell 
measurement of nucleic acids, proteins and other cell properties [30, 31]. There is already a 
literature on the possibility that cell-to-cell variability in the number of growth-factor receptors is 
responsible for the variability of intermitotic times [32, 33]. How do we model the kinetics of their 
participation in the growth and division cycle? 

Heritability of cell properties 
In contrast to the DNA content of diploid cells, the cell's content of other components is 

variable, because other components do not have mechanisms for exact duplication and equi- 
partition between daughter cells. Therefore, any model for the level of these other components must 
account for the variability that is due to inheritance, as well as the variability that would arise if 
all newly-formed cells were identical. The transmission of substances to daughter cells may be 
equal, random or asymmetric [34-36], and a model that describes the propagation of a substance 
over several generations must be specific about the way that the partitioning occurs. 
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Models for correlations between the intermitotic times of related cells 

Cells in the same population have a dispersion of generation times, but the generation times of 
sibling and mother-daughter cell pairs are correlated [37]. Models that predict these correlations 
have been proposed as representations of mechanisms for the control of cell cycle events [28, 38, 39]. 
They attempt to explain the correlations either through the inheritance of some property or through 
the existence of a process that overlaps more than one generation. These models are consistent with 
the observation of a positive correlation between the generation times of sibling cells but are 
distinguishable on the basis of their predictions concerning the correlation between mother and 
daughter cells. Representative examples are the model proposed by Koch and Schaechter [40] and 
the "transition probability" model [41, 42]. For the reasons explained below, they are unsuitable 
for situations in which mother and daughter cell generation times are observed to be positively 
correlated. 

The model of Koch and Schaechter [40] is based on the proposition that DNA replication begins 
when a cell reaches a "critical size" and that there are similarities between the initial sizes of sibling 
cells. Its prediction of a negative mother-daughter correlation may be understood from the 
following reasoning. If by chance a mother cell divides earlier than average, it will most likely be 
smaller than average. The daughter cells will therefore be smaller than average and have a 
generation time that is longer than average, by the amount that is required for growth to the 
average size of a newly-formed cell. The reverse is true when a mother cell divides with a size that 
is larger than average, so the mother-daughter correlation is negative. A model of this sort may 
be appropriate for bacteria and lower eukaryotes, in which negative mother-daughter correlations 
are observed [28]. 

The "transition probability" cell cycle model, on the other hand, allows no correlation between 
the generation times of mother and daughter cells. It postulates the existence of a process that 
begins at random during or after the S phase in a mother cell, that progresses in parallel with the 
chromosome replication/condensation cycle, and that continues to completion in the G1 phase of 
newly-formed daughter cells. Since the time that a cell spends in the S, G2 and M phases is treated 
as independent of the (random) fraction of the parallel process that is to be completed in its 
daughter cells, the model provides no mechanism through which mother and daughter intermitotic 
times can be correlated. 

Mother and daughter cell generation times are observed to be positively correlated in eukaryotic 
cell populations [28, 43-48] so neither a "critical size" model nor an "overlapping parallel process" 
model can be a complete representation of the cell cycle, at least in their simplest forms. Reports 
that the mother-daughter correlation is nearly zero are rare [49], and even then the authors mention 
additional experiments in which the correlation was observed to be significantly greater than zero 
[42, p. 503]. The model that is developed here accounts for the positive correlation by assuming 
that cells inherit factors that influence the rate of cell cycle progression. It is therefore conceptually 
similar to rate models that do not predict the mother-daughter correlation [50, 51]. It is also similar 
to maturit); models of the cell cycle [52-55], which emphasize the velocity of cell cycle maturation. 
However, it is different from other models in that it focuses on a single, heritable property that 
can be shown to be heterogeneous in individual, mitotic cells, namely, the activity of nucleoli. 

2. BACKGROUND INFORMATION CONCERNING NUCLEOLI AND 
THE CELL CYCLE 

The model to be described in the next section represents the state of a cell by two variables. The 
first variable denotes cell cycle maturity, and the second variable describes the state of a cell's 
nucleoli. The purpose of this section is to explain in experimental terms what these variables 
represent--they are not hypothetical concepts. Such concreteness is essential if the form of the 
model is to be believed and if it is to be expanded realistically to include additional variables, such 
as the cell's content of growth-factor receptors. 

A. Meaning of the Term "Cell Cycle" 

Many cell cycle models include a variable to represent the physiological maturity of a cell, but 
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their authors rarely commit themselves to a physical meaning for the variable. Rotenberg [54] posed 
the problem as follows: 

"There is the practical problem of determining [a cell's] physiological age; it is simple 
enough in S phase using DNA content, but so far adequate markers in GI and G2M 
are not available. There is the further question of the dimensionality of [a cell's 
physiological maturity]. Simultaneous markers (DNA content, cell volume, [postu- 
lated] substances such as initiator protein, tubulin etc.) may follow one another, but 
others will proceed in parallel and will require that [the maturity variable] be a 
vector." 

The difficulty in defining the cell cycle as a strictly biochemical series of events is that the activity 
of relatively few macromolecules change more than a modest amount as a function of cell age in 
actively proliferating populations [56-58]. Exceptions are those proteins that are clearly associated 
with the S phase itself (histones, thymidine kinase etc.). If we expand the definition of the cell cycle 
to include the events following the stimulation of hormonally, nutritionally or density inhibited 
cells (GO--. S) then the use of macromolecular markers to define cell cycle events is much more 
attractive. In that case, the induction of a series of growth-factor-related macromolecules may be 
demonstrated [59, 60]. Even so, the definition of cell cycle progress in terms of a particular series 
of mRNA or protein levels is problematic. The mitogenic role of these growth-factor-related events 
may be to bring about global changes in calcium levels, pH, general states of protein phos- 
phorylation etc. that are the proximal cause of the GO ~ S phase transition and might be bypassed 
or absent under some circumstances [61, 62]. 

An alternative to a strictly biochemical definition of cell cycle maturity has been available for 
several decades. Mafia [63] proposed that the events of mitosis, in which chromosomes achieve a 
highly condensed configuration, are part of a continuum of relaxation and condensation that 
occurs throughout the life of a cell: the chromosomes progressively relax during G1, achieve an 
extended configuration in the S phase, and--when the synthesis of chromatid pairs is complete-- 
progressively recondense during G2 until the tight mitotic configuration is re-achieved. From this 
perspective, the cell cycle maturity of a cell may be determined by forcing its chromosomes to 
condense prematurely in order to see how tight they become, relative to the chromosomes in a 
mitotic cell [64--66]. Different degrees of condensability, corresponding to different levels of cell 
cycle maturity, are shown in Fig. 1. This definition of maturity may be used for G1, G2 and mitotic 
cells, but it is inadequate for S phase cells since they appear to be totally decondensed throughout 
that phase. The level of DNA content might be used to define the maturity of an S phase cell, but 
this is not ideal since chromosome duplication occurs in phases in diploid cells. Rather, the 
sequence of chromosome band replication is a more appropriate definition of S phase maturity 
[67-69] and may be demonstrated by bromodeoxyuridine pulse labeling methods, as shown in 
Fig. 2. 

To summarize our definition of the cell cycle maturity for cells in an actively proliferating 
population: successive stages of G1 correspond to progressively relaxed single-chromatid chromo- 
somes, the stages of the S phase correspond to a sequence of chromosome band replication, and 
successive stages of G2 and M correspond to progressively condensed double-chromatid chromo- 
somes. It should be noted that the degree of chromosome condensation may be defined by 
procedures other than premature condensation and may lead to somewhat different operational 
definitions of cell cycle maturity [70-74]. 

B. Biology of Nucleoli 
The second variable of the model describes objects found in a cell's nucleoli. The following 

paragraphs summarize the biology of nucleoli, with the aim of indicating what properties may be 
measured in individual cells, how they are passed from one generation to the next and how they 
are related to the rate at which a cell progresses through the cell cycle (the first variable, which 
is defined in the previous paragraph). 
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Fig. 1. Chromosome condensability and silver stainability throughout the cell cycle. A. Conventional 
mitotic spread, stained with silver. This panel is a conventional spread of the chromosomes from a mitotic, 
IMR-90 human diploid fibroblast. It has been stained with silver nitrate to reveal the nucleolar organizer 
regions (NORS = locations of ribosomal RNA geries) on the short arms of the 10 acrocentric chromo- 
somes, which are shown by the arrows. The size of each silver deposit is a measure of the extent to which 
ribosomal genes in the respective NOR were transcribed during the previous interphase. The nucleoli in 
interphase nuclei (upper right-hand corner) are also stained with silver. Silver stainability of the NORs 
is a measure of one of the variables of the inherited rate model (Y). The bar represents approx. 6pm. 
B-D. Prematurely condensed chromosomes (PCCs). The chromosomes in interphase nuclei may be forced 
to condense prematurely by fusing interphase cells with mitotic cells. The degree of condensation is a 
measure of the cell cycle state of the interphase cell prior to the fusion, and is one of the variables of the 
inherited rate model (X). Panels B--D show prematurely condensed chromosomes from early G1, late GI 
and S phase cells, respectively (long arrows). Each panel also contains the highly condensed chromosomes 
from the mitotic cell that was used in the fusion. The mitotic chromosomes are more condensed than in 
panel A due to the use of colcemid as a blocking agent. Each of the spreads is stained with silver nitrate 
to reveal the location of the NORs. B. Prematurely condensed chromosomes from early G1 cells resemble 
the chromosomes in mitosis, except that they contain a single chromatid. C. As G1 progresses, fibers in 
the PCCs become increasingly dispersed. D. PCCs from S phase cells are fragmented, so it is not possible 
to use their degree of condensation as a measure of cell cycle maturity. Large silver deposits are present 
in S phase PCCs (as well as in uncondensed, interphase nuclei). This is because the chromosomes are too 
fragmented for the NORs in nucleoli to separate. The deposit forms rapidly around the cluster of NORs 
and then grows in proportion to its surface area. For comparison with the large deposit in this panel, 
silver deposits on the NORs of the mitotic chromosomes are indicated by short arrows. The bar in panels 

B-D represents approx. 4/~m. 

Anatomy of nucleoli 
Ribosomal RNA constitutes some 80% of  a cell's R N A  but is coded by much less than 1% of 

the cell's D N A ,  viz. rDNA genes. They are by far the most actively transcribed genes in the nucleus. 
In human cells, the rDNA is clustered on the short arms of five pairs of chromosomes (Nos 13, 
14, 15, 21 and 22) in the nucleolar organizer regions (NORs). As shown in Fig. 1 and as discussed 
below, these genes may be localized by staining with heavy metals (silver or bismuth). In interphase 
nuclei, the rDNA genes are located within nucleoli (see Fig. 3), where they are transcribed for the 
production of  ribosomal RNA. Since there are 10 nucleolar organizer regions, a human cell may 
contain up to 10 nucleoli [75]. Cells ordinarily contain fewer than this maximum number: miniature 
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Fig. 2. Use of bromodeoxyuridine as a DNA label. A. Late-replicating chromosome regions in IMR-90 
human diploid fibroblasts. Cultured fibroblasts were grown in a medium containing thymidine, except for 
the last 5 h of their lives, when the medium was shifted to one containing bromodeoxyuridine, which is 
incorporated into DNA in place of thymidine. The cells were harvested in mitosis, and chromosome 
spreads were prepared. They were then stained with the dye Hoechst 33258, irradiated with u.v. light and 
stained with Giemsa. The effect is to destroy regions of the chromosomes that had incorporated the 
bromodeoxyuridine. Two such regions are shown by arrows. One is a centromeric region and the other 
is a whole chromosome, the inactive X chromosome of this female cell line. Pulse labeling with 
bromodeoxyuridine at different periods of the S-phase may be used to map the sequence of band 
replication, which is the model's definition of cell cycle maturity for S phase cells. The bar represents 
approx. 3/zm. B. Asymmetry of silver staining and its relation to new vs old DNA strands. The sister 
chromatids of the acrocentric chromosomes may exhibit silver deposits of different sizes, indicating that 
daughter cells will receive NORs that differ in the transcribability of their rDNA genes. Most asymmetric 
staining is slight, as found by comparing the sister chromatids of the chromosome labeled "a". Highly 
asymmetric staining exhibited by chromosome "b" is rare. Such staining asymmetry would be important 
if the silver deposit were systematically larger or smaller on the sister chromatid that contained newer or 
older DNA strands, respectively, and if all of the newer or older chromatids segregated into one of the 
daughter cells. To see whether this is the case, these cells were grown in media containing bro- 
modeoxyuridine for one generation and then grown for a second generation in media containing 
thymidine. Chromosome spreads were then prepared as in panel A. We found no preferential staining 
of the older (lighter) or newer (darker) chromatids. Highly asymmetric staining may actually be an artifact, 
for the following reason. Chromosomes may show a single deposit if the sister chromatids lie close to one 
another, as in chromosome "c". This may happen by chance if the chromosomes are twisted, as in 
chromosome "d". Sister chromatid exchanges are shown by arrows. The bar represents approx. 2 #m. 

Fig. 3. Nucleolar cables connect cisternae of the endoplasmic retieulum with the nucleolus, through the 
nuclear envelope. This scanning electron micrograph was prepared by growing IMR-90 fibroblasts on a 
coverslip, fixing the cells with glutaraldehyde/osmium and then critical-point drying. The upper half of 
the cell was removed by the lifting of applied adhesive tape, revealing the internal structure of the 
cytoplasm and nucleus. The two large spherical objects in the nucleus are nucleoli. They are connected 
directly to the endoplasmic reticulum by cables (arrows), which lie near the lower surface of the nucleus 
and were exposed by the removal of chromosomes. Proteins used for synthesis in the nucleolus are 
presumed to enter from the cytoplasm along the cable. The mitoehondria that appear as a flock to the 
fight of the nucleus are larger than usual. They often appear as snakes embedded in the endoplasmic 
reticulum that surrounds the nucleus. The bar represents 8 #m. The tilt angle of the stereo pair is 10 °. 
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Fig. 4. Fibrillar center of a nucleolus. This scanning electron micrograph was prepared as in Fig. 3. Four 
nucleoli are in the process of fusing, the central one of which was lifted out of the nucleus along with 
the upper nuclear envelope. Another fused nucleolus is present in the same nucleus (not shown). The lower 
portion of the central nucleolus remained attached to its neighbors, allowing some inner components to 
be visualized. The cup (A) is thought to have contained a cluster of fibrillar centers, collectively termed 
a fibrillar complex [89]. The shell surrounding the fibrillar complex (B) is thought to be dense fibrillar 
material, consisting largely of primary rRNA transcripts. The more peripheral material (C) may be the 
fibrillar component, i.e. rRNA at intermediate stages of processing, which eventually becomes proto- 
ribosomal subunits in the adjacent granular component (D). The bar represents 1.4 #m. The tilt angle of 

the stereo pair is 12 ° . 

nucleoli form around the NORs  immediately after mitosis, but as time progresses, the nucleoli grow 
in size and fuse [76, 77]; see Fig. 4. The process reverses as the NORs  condense along with all 
chromosomes during mitosis. 

The ana tomy of  the interphase nucleoli is now understood with reference to the molecular 
biology of  r ibosome synthesis, and has been the subject of  a number of  reviews (molecular aspects, 
Refs [78-83]; ultrastructural aspects, Refs [84-88]). There are roughly 20 rRNA genes in each of 
the human NORs,  separated from one another by spacer DNA.  RNA polymerase I molecules 
transcribe the genes, producing a 45S ribosomal precursor molecule that is visualized as a branch 
of  the "christmas tree" seen in Miller spreads [84]. The 45S rRNA is subsequently methylated and 
covered by nucleolar proteins, and is then cleaved and transformed by other nucleolar proteins to 
produce 28S and 18S ribosomal precursors. The ribosomal subunits are then exported to the 
endoplasmic reticulum for use in protein synthesis. 

The ana tomy of  nucleoli reflects this series of  biochemical events. The exterior of  the nucleoli 
consists largely of  r ibosomal precursors that are being transported out of  the nucleus and are part  
of  the granular component  of  the nucleolus (Figs 3 and 4). The granular component  surrounds 
(or adjoins) the fibrillar component ,  which corresponds to rRNA transcripts at intermediate stages 
of  processing. Fibrillar centers (Fig. 4) are situated within the fibrillar component  and may be 
joined in clusters to form a reticulum. The maximum number  of  fibrillar centers in a diploid cell 
is roughly equal to the number  of  rDNA genes, suggesting that the fibrillar centers may be in 
one-to-one correspondence with the r D N A  genes [89]. The view that the shells of  the fibrillar 
centers (dense fibrillar components)  are the sites of  rRNA transcription is supported by the 
observation that R N A  polymerase I is preferentially located there [90]. Materials that feed the flow 
of  material from the fibrillar centers to the granular component  enter the nucleolus through 
interstices. The interstices may be supplied along cables that connect directly to the endoplasmic 
reticulum via the nuclear membrane (Fig. 3). Nucleolar feedstocks that must be provided in greatest 
amount  are the proteins that are assembled into the exported ribosomal subunits [91-93]. They are 
needed at all growth rates since ribosomes in diploid cells have a short half-life [94-96]. Enzymatic 
components  such as R N A  polymerase I must also flow into the nucleoli, since the half-life of  RNA 
polymerase I may be as short as 1 [97]. 
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Morphological dynamics of fibrillar centers 

Since the fibrillar centers are the structures around which the initial events of ribosome synthesis 
l~ake place (i.e. rDNA transcription), control over their number and composition is necessarily the 
first step in regulating the rate of ribosome synthesis. The fibrillar centers and their associated 
rDNA are in fact the only permanent components of nucleoli. They may also be part of the nuclear 
matrix, which is preferentially attached to ribosomal DNA [98]. When a cell enters mitosis rRNA 
synthesis ceases, and the fibrillar and granular components of the nucleoli disappear. The fibrillar 
centers, however, remain attached to the rDNA even in mitosis and serve as nucleation centers for 
the subsequent reactivation of nucleoli in the daughter nuclei. Demonstration of the persistence 
of fibrillar centers is made possible by the fortuitous stainability of one or more of its components 
with silver [99, 100], i.e. the silver-stained objects in Fig. 1 are actually coalesced fibrillar centers 
that would also have been stained in interphase. The subject of NOR silver staining has a large 
literature, a guide to which is provided in the ISI Atlas of Science [101]. Unfortunately, the 
histochemical procedures that make the centers visible cannot be applied to living cells, so that the 
dynamics of fibrillar center formation and disappearance has not been studied directly. Inferences 
concerning their dynamics must be made from populations of fixed cells, through light and electron 
microscopy. Fibrillar centers that are stained with Toluidene Blue were known by the classical 
cytologists as nucleolini. They are too numerous to count and too small to resolve clearly by light 
microscopy, but it is possible to determine that within individual nucleoli of diploid cells, they have 
roughly the same size under conditions that favor cell proliferation [102-104]. The number and 
morphology of fibrillar centers have also been studied by examining electron micrographs of serial 
and random sections of nucleoli [89, 105-107]. The studies demonstrate that the morphology of 
fibrillar centers depends on the type of cell under investigation and the conditions of their growth. 
However, for diploid cells, generalizations from the studies are that the number of fibrillar centers 
is greatly in excess of the number of NORs, varies considerably among cells in the same population 
and increases with increasing levels of rRNA synthesis. This variability in the number of fibrillar 
centers is accompanied by cell-to-cell variability in the degree of silver staining of NORs and by 
increased staining as the rate of rRNA syntheis increases [108-111]. 

Biochemical dynamics of fibrillar centers 

Biochemical studies concerning the control of nucleolar activity have considered both the 
long-term inactivation of rDNA genes and short-term changes in function [112]. Long-term 
inactivation of rRNA genes, especially those that have been amplified in number to excess, may 
be accomplished by methylation [113]. Control of rDNA genes that occurs over a time span 
comparable to a single cell generation has been studied by Busch and his colleagues [114-116]. 
When nucleolar proteins were examined under conditions in which rRNA synthesis was stimulated 
to high levels, it was observed that one nucleolar protein (A24) decreased markedly. The protein 
was subsequently shown to be ubiquitinated histone 2A (Ub-2A). On first inspection, this 
observation is surprising, since transcriptionally active chromatin contains ubiquitinated nucleo- 
somes, and transcriptionally inactive chromatin does not contain significant levels of Ub-2A 
[117-119]. The explanation for the absence of Ub-2A from highly active rDNA appears to be that 
in progressing from moderate, reversible levels of transcription [120] to high levels of transcription, 
(ubiquitinated) nucleosomes are displaced from the rDNA [121]. Evidently, they are replaced by 
transcriptional complexes analogous to those associated with the activation of 5s RNA [122, 123] 
components of which constitute the fibrillar center and which preferentially stain with silver (Fig. 
1). Conversely, the suppression of rDNA transcription results in a reduction or suppression of silver 
staining (number of fibrillar centers), as has been documented in somatic cell hybrid systems 
[124-126] and in slowly growing fibroblasts [109]. Thus, it appears that the (variable) degree of 
fibrillar center silver staining is a measure of the extent to which a cell's rDNA has made the 
transition from inactivation (methylation) to modest transcription (ubiquitinated nucleosomes) to 
a high level of transcriptional activity (nucleosomal displacement; fibrillar center formation). 

C. The Relation Between Cell Cycle and Nucleolar Activity 

The involvement of Ub-2A in the control of rRNA synthesis is relevant to the definition of the 
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cell cycle in terms of chromatin condensation. This semihistone is essentially the only structural 
polypeptide that is present throughout interphase chromatin, but that is absent from condensed, 
mitotic chromatin [119]. It is thought that the presence of Ub-2A affects the flexibility of adjacent 
nucleosomes, thereby inhibiting chromatin condensation [127, 128]. Although large-scale structures 
involving the nuclear envelope [129] as well as dehydration by inorganic cations and polyamines, 
H1 phosphorylation, methylation and poly(ADP)ribosylation may also influence the degree of 
chromatin condensation [130], the participation of ubiquitin is most important in the present 
context: chromatin decondensation increases in G1 when the chromosomes become ubiquitinated, 
and condensation increases in G2 as the ubiquitin is removed, leading to the condensed mitotic 
chromosome that is free of ubiquitin. 

Ubiquitin provides a mechanism relating chromatin condensation (cell cycle progress) to the 
control of protein turnover [97, 131-134] and to the expresion not only of ribosomal genes, but 
of genes throughout the nucleus [116-118, 133, 135, 136]. Ubiquitin is a small protein that is 
conjugated to other proteins, serving as a signal for attack by ATP-dependent proteases that are 
specific for ubiquitin-protein conjugates. Varshavsky, Levinger and colleagues have developed the 
proposition that ubiquitin-dependent proteolysis of histones is a general mechanism for exposing 
chromatin that is to be made accessible for transcription, brought about by the removal of histones. 
In particular, the Ub-2A in the nucleosomes attached to rDNA may be attacked, making the rDNA 
available for the transcriptional machinery of fibrillar centers. 

The proposed mechanism relating the rate of cell cycle progress to the level of nucleolar activity 
is as follows. A large percentage of the material that enters the nucleus is thought to pass through 
the nucleoli along routes that connect the cytoplasm to nucleoli, as shown in Fig. 3. The fibrillar 
centers are a bottleneck in this flow of material and serve to control it. Enzymatic components of 
the ubiquitin system are present in the flow, and fluctuations in their concentration cause the 
number of fibrillar centers to increase and decrease episodically, modulating the rate of ribosome 
synthesis both through the number of transcribable rDNA genes and through the rate at which 
nucleolar precursors are made available from the cytoplasm. The rate of flow of components of 
the ubiquitin protein turnover system also influences the rate of chromosome decondensation and 
recondensation, through the mechanisms mentioned above. 

This model relates the capacity to make ribosomes (number of fibrillar centers) to the rate at 
which a cell progresses through the cell cycle. If the number of fibrillar centers is rate-limiting, the 
capacity to make ribosomes will also be proportional to the rate at which ribosomes are actually 
synthesized, so mitotic activity will increase as the rate of ribosome synthesis increases [137, 138]. 
However, ribosome synthesis per se is not considered to be the cause of cell cycle progression--the 
cause is the flow of material from the cytoplasm to the nucleus (that is directed towards the fibrillar 
centers), some of which causes cell cycle maturation. Evidently, ribosome synthesis is not required 
for cell cycle progress since r R N A  synthesis decreases in G2 and comes to a halt in mitosis, while 
the cell cycle continues. Thus, the model is consistent with the dissociability of ribosome synthesis 
and cell cycle progress [139-141], so long as lack of ribosome synthesis is not due to congestion 
in the flow of cell cycle related material into the nucleus. The details of the reactions involved and 
the way in which the cell's protein turnover machinery is controlled by the growth conditions are 
beyond the scope of the model in its present form. It should be noted, though, that the two growth 
factors that have the greatest influence on the rate of fibroblast proliferation, namely, epidermal 
growth factor and insulin-like factors [142-144] have a pronounced and immediate effect on the 
biochemistry of ribosomal subunits [145-148] and could therefore participate in the control of their 
activity and turnover. 

3. FORMULATION OF THE MODEL 

A. Specification of  the Transitions 

Let the state of a human, diploid cell be denoted by a random vector (X, Y~, Y2,. • -, Y~0), where 
X represents the cell cycle state and Yi represent the number of fibrillar centers associated the ith 
NOR in a cell. We assume that there is one fibrillar center per activated rDNA gene. In order to 
formulate the model, we must specify the way in which the state of the cell may change throughout 
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the cell cycle, including consideration of whether the number of fibrillar centers changes when the 
rDNA genes are duplicated. As described in the previous section, the variable X is used to represent 
successive stages of  cell cycle maturation (degree of chromatin condensation for G1 and G2 cells, 
stage of band replication for cells in the S phase). Its value is defined to equal zero for a 
newly-formed cell and Xm~ for a cell that is in the process of dividing. The conventional 
chromosome replication cycle G 1, S, G2 and M may be defined by dividing the range of maturation 
states (0 to Xmax) into successive blocks. Cell cycle progression is assumed to be irreversible, so that 
X can only increase (or remain constant) with increasing cell age. Furthermore, X is defined to be 
an integer. A continuous progression along the cell cycle [52-55] is treated as a limiting case in 
which Xma x ~ ~ .  As discussed in the previous section, the rate of cell cycle progression is thought 
to be correlated with the number of fibrillar centers in a cell. We will assume that the probability 
per unit time of cell cycle progress is linearly proportional to the number of fibrillar centers (silver 
stainability), which is in turn proportional to the number of activated ribosomal genes. Thus, the 
average rate of cell cycle progress is proportional to the number of fibrillar centers. 

The simplest view of rDNA transcription is that each of the rDNA genes in a cell at any instant 
is either on (displaced nucleosomes) or off, with no intermediate level of  activity. The state of each 
nucleolar organizer is defined as the sum of the number of its active rDNA genes and will therefore 
have some value between zero and the total number of rDNA genes in that NOR. It must then 
be decided whether to assume that all rDNA genes in an NOR become activated and inactivated 
in unison or whether the rDNA genes in a NOR undergo transitions independently of one another. 
If the former possibility is correct, then the Y~ are binary variables, and if the latter is correct, we 
consider the possibility that there are up to 200 independent rDNA transcriptional centers in the 
nucleus. Both cases are covered if we simply assume that there is a fni te number of independent 
transcriptional centers in the nucleus (Ymax), and allow this number to vary between 10 and 200 
in any simulations that are performed. 

A final consideration is whether to allow the number of possible transcriptional centers to double 
when the rDNA genes are duplicated. After duplication, the potential rate of rRNA synthesis 
doubles [149, p. 180], but the question is whether the sister genes separate during the remainder 
of the cell cycle to become independent centers or whether they remain adjacent to one another 
until mitotic condensation forces the sister chromatids to separate. The significance of the 
autonomy depends on whether the replication of the rDNA genes occurs early or late in the cell 
cycle: if the genes are replicated late, they will have little time to separate, even if it is possible for 
them to do so. The timing of rDNA replication may be independent of that of other genes [150], 
which may explain the observation of early, late and variable rDNA replication in different cell 
types [151-161]. In the absence of information about the movements of sister rDNA genes as they 
course though the nucleoli, we will adopt the simplest model, namely, that the sister rDNA genes 
remain associated with one another and become transcribed or inactive in unison, eventually 
separating in G2 as they condense for mitosis. 

As described in the previous section, the transcriptional potential of the ribosomal genes is 
maintained throughout mitosis by the persistence of the fibrillar centers, so the transcriptional state 
of the mother cell is passed to its daughter cells. Sister chromatids are usually symmetric with 
regard to their silver staining (Figs 1 and 2), so the daughter nuclei are assumed to receive 
equivalent fibrillar centers from a given chromosome. Varying degrees of asymmetric staining ot 
sister chromatids are occasionaly observed (Fig. 2) and may contribute to differences between the 
cell cycle kinetics of sibling cells. For the present purposes, however, any asymmetry will be 
ignored as a secondary phenomenon. In order to treat it properly, we would be obliged to make 
a large number of assumptions concerning the origin of this asymmetry and concerning the 
mechanics of chromosome segregation [162-166]. Instead, we will assume that the number ot 
fibrillar centers in each newly-formed daughter cell is the same as the number present in the mitotic 
mother cell. 

To summarize the model, our assumptions concerning the existence of independent transcrip- 
tional centers and their persistence during rDNA duplication and mitosis allow us to simplify the 
definition of the state of a cell to a random vector (X, Y), where X is the cell cycle state and Y 
is the total number of independent transcriptional centers. For the purpose of analysis, Y will be 
considered equal to the number of fibrillar centers, in excess of the number found in a quiescent 
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cell. Then, the transitions that are allowed by the model are as follows: 

Probability 
Transition per unit time Event 

(X, Y)~  (X + 1, Y) fl Y 
( X ~ ,  r )  ~ (0, Y) + (0, Y) # Y 

(X, Y ) ~  (X, Y + 1) 2(Ym~- Y) 
(X, Y ) ~  (X, Y -  1) # Y 

Cell cycle progression 
Cell division 
rDNA gene activation 
rDNA gene inactivation 

(la) 
(lb) 
0c) 
(ld) 

Note that the model contains three primary parameters: fl (probability per unit time of cell cycle 
progression per active gene); 2 (probability per unit time of gene activation per inactive gene); and 
/t (probability per unit time of gene inactivation per active gene). Over any small time interval AT, 
the probabilities of each of the above transitions are flYAT, 2(Ymax-Y)AT, and #YAT, 
respectively. The probability of two transitions over the same interval AT is the product of the 
probabilities of the individual transitions, so in the limit that AT --, 0, we may ignore the possibility 
of two or more transitions. 

B. Calculations that Follow 

The model may be used to simulate three types of experiments. The first is one in which the 
cell-to-cell distribution of cell properties is measured. The property might be DNA content, whose 
distribution among the cells of a population can be measured by flow cytometry. Another property 
is the number of fibrillar centers in a cell, measured as the size of silver deposits on each of the 
10 NORs of a chromosome spread. If only a single distribution is measured, it is ordinarily assumed 
that this distribution corresponds to an exponentially growing ("steady state") population. The 
second type of experiment is the time-lapse microcinematography of proliferating cells, which 
provides information concerning the distribution of cell generation times, including the relation 
between the generation times of sibling and mother-daughter pairs. The third type of experiment 
is the response of a cell population to some change in growth conditions. The most common 
procedure is to label S phase cells of an exponentially growing population and to then measure 
the fraction of labeled mitotic cells at a series of subsequent time points. 

The analysis of the inherited rate model will be presented in an order corresponding to these 
three types of experiments. In the next section, the distribution of cell properties (X and Y) will 
be calculated as a function of the model's parameters. Knowledge of this distribution is a 
prerequisite for interpreting the dispersion of generation times measured by time-lapse micro- 
cinematography, for the following reason. Since the rate of cell cycle progress depends on the 
number of fibrillar centers, a cell will progress through the cell cycle at a rate that is conditioned 
by the (variable) number of fibrillar centers that it inherited. This conditional generation time will 
be examined in Section 5. Compounding the cells' distribution in the initial number of fibrillar 
centers with the distribution of generation times (among cells that start their lives with a particular 
number of fibrillar centers), gives the cumulative distribution of cell generation times that may be 
compared with time-lapse microcinematography data. This compound distribution is examined in 
Section 6. The problem of correlations between the generation times of related cells is also examined 
there. These distributions refer to cells of a population that is growing exponentially. The growth 
of populations that are not initially in the "steady state" is investigated in Section 7. Such 
populations more or less rapidly re-achieve "steady state" growth, exhibiting damped oscillations 
as they evolve. Finally, the growth of a cell population that is subjected to periodic perturbation 
is considered in Section 8. This situation corresponds to cells that are exposed periodically to 
cytotoxic agents. 

4. DISTRIBUTION OF CELL PROPERTIES IN A 
"STEADY STATE" POPULATION 

A. Rate Equations 

Equations (la-d) define a stochastic model of cell proliferation. However, if the size of the 
population is large, stochastic aspects of population growth may be ignored, and the population 

C,A.M,W.A. 14/~12--E 
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may be described by deterministic equations. "(he fundamental equation of  population growth is 
a stochastic master equation, and the deterministic equations are obtained by averaging the master 
equation. The procedure for doing so is discussed in Appendix A. Note that although the 
deterministic equations may also be constructed by inspection of  the allowed transitions (la--d), 
this is not always a legitimate procedure [167, 168], and Appendix A provides the justification for 
this particular model. 

Let N(x, y; t) denote the expected number of  cells in each state at time t. Then according to 
the transitions allowed by equations (la--d), the N(x, y; t) satisfy the differential equations 

d 
~ N(0 ,y ;  t) = 2fyN(Xmax,Y) + 2[Ymax - (y - 1)]N(0, y - 1) 

+/*(y  + 1)N(0, y + 1 ) -  [Ely + 2 ( r m x -  y ) +  #y]N(O,y) (2a) 

and 

d 
-dt N(x, y; t) = f yN(x  - 1, y)  + 2 [ Ym~ -- (Y -- 1)]N(x, y -- 1) 

+ #(y + l )N(x,y  + 1 ) -  [fly + 2(Ym~x-Y) + l*y]N(x,y), (2b) 

where equation (2b) holds for x = 1, 2 . . . . .  X,,~x. Note that these equations cover all combinations 
of  x and y, provided that we define N(x, y; t = 0) = 0 for y > Ymax and for y < 0. 

The expected total number of  cells is 

Ntot(t) = ~ N(x,y;  t) (3) 

which increases in time as 

d 
~ Ntot(/) = 

x=0y=0  

r~  fyN(Xm~x, y; t). (4) 
y=0 

Let f ( x , y ; t )  denote the expected fraction of  cells in each of  the (X, Y) states: 

Then, 

and 

where 

N ( x , y ;  t) 
f ( x ,  y;  t) - (5) 

N, ot(t) 

d d 
d f ( x , y ; t )  -dtN(x'Y) N(x ,y)  dt Nt°t 

: ~ to t  Ntot Ntot , (6a) 

d 0 ~ f (  ,y; t) = 2flyf(Xmax,Y ) + 2[Yma,, - (y - 1)]f(0, y - 1) 

+ # ( y  + 1)f(0, y + l) - [fly + 2(Ym~,, - y ) + # y  +k(t)]f(O,y),  (6b) 

d f (x ,  = y; t )  f y f ( x - l , y ) + 2 [ Y m a x  ( y - - 1 ) l f ( x , y - 1 )  

+ #(y + 1)f(x, y + 1) -- [Ely +)]'(]"max -- y) + l~y + k(t)]f(x,  y) (6c) 

Ntot(t) = Ntot(O)explfodt'k(t ') 1, 

d 

k(t) = ~tNt°t (t) = r~  flyf (X~x, y; t ). 
Nto,(t) y=0 

(7a) 

(7b) 
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B. Malthusian Parameter and the Distribution of Cell Properties 
As discussed in Appendix D, equations (6a-c) exhibit an equilibrium point that is obtained for 

large time, irrespective of  the initial state of  the population. To find the asymptotic fractions, we 
may either solve equations (6a-c) with the time derivatives set equal to zero or may make use of  
equations (2a, b): for large time, each of  the N(x,y; t) grows as N(x ,y ;  t) , . . f(x,y; oo)exp(kt), 
where f (x ,y ;  oo) is the asymptotic fraction and k is the Malthusian parameter of  exponential 
growth. Substituting this expression into equations (2a, b), we obtain the following eigenvalue 
equations for the Malthusian parameter: 

kf(O, y; oo) = 2fyf(Xm~x, y; o0) + 2[Ymx -- (Y -- 1)]f(O, y -- 1; oo) 

+l~(y+l) f (O,y+l;oo)- -[ fy+2(Ym,x--y)+#y]f (O,y;oo)  (8a) 

and 

kf(x,  y; ~ ) =  f y f ( x  -- l, y;  oo )+  2[Yma x - ( y  - 1)]f(x, y - 1; oo) 

+ #(y + 1)f(x,y + 1; m)- - [ f ly  + 2(Ym~x- y)+ #y]f(x,y; o0). (8b) 

Since the expected distribution of  active rDNA genes is the same for mother and daughter cells 
and since the gene transitions are not explicit functions of  the value of  X, f (x ,  y; oo) will factorize 
as 

f ( x ,y ;  oo) =f(x ,  "; oo)f( • ,y ;  m). (9) 

Summation of  equations (8a, b) over y provides the following expressions for f(x,. ; or): 

2f ( Y)>f(X=,x,"y 
f(O,'; oo) = k + f< 00) 

and 

where 

(lOa) 

fl<Y> 1, oo), (10b) f ( x , ' ;oO)=k  + f ( y > f ( x -  "; 

Ymax 
( Y )  = ~ y f ( . , y ;  oo). (lOc) 

y=O 

Then the f (x ,  .; oo) are found to equal 

f (x ,  "; oo) -- 2(1 -- n ) n  x, 

where 

( l l a )  

( 1 )  l/(Xmax + |) f<Y> ( l lb)  
f l= k + f ( Y ) "  

Substituting equations (9) and (1 la, b) into equations (8a, b), we find that for the exponentially 
growing population, the f ( . ,  y;  oo) satisfy the eigenvalue equation 

By k f ( ' , y ;  o o ) = ~ f ( . , y ;  O0)+2[Ym, x - ( y  -- 1 ) ] f ( ' , y  -- 1; O0) 

+ # ( y  + 1 ) f ( ' , y  + 1; O0)--[13y +2(Y,~=--y)+#y] f ( ' , y ;  m). 02 )  

The solution to this equation provides both the Malthusian parameter (k) and the distribution in 
the number of  fibrillar centers, f ( . , y ;  oo), as a function of  the model's parameters. The method 
for solving it is presented in Appendix B. 

Once the "steady state" distribution of  X and Y is known, it is useful to express equations (6b, c) 
in terms of  the deviation from these asymptotic values. The following equations will be used later 
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to calculate fraction-labeled-mitoses curves and to analyze the stability properties of  the model: 

Af(x ,y;  t) = f (x , y ;  t) - f ( x , y ;  oo), (13) 

d 
Tt a f (o ,  y; t) = 2tiyaf(Xm~x, y)  + ,~[rm~x -- ( y  --  1 ) ] a f ( 0 ,  y - l )  

+ # ( y  + 1)Af(0,y + 1 ) -  [fly +2(Ym~x--Y)+gy +k]Af(O,y) 

- f ( 0 ,  y ;  ~ ) A k ( t )  - [Af (0 ,  y)][Ak(t)], (14a) 

d 
d--t A f (x ,  y; t) = t i yA f (x  - 1, y)  + 2[Ym~x --  ( y  --  1) lAy(x ,  y -- 1) 

+ lz(y + 1)Af(x, y + 1 ) -  [fly + 2(Ym~x -- Y) + lZy + k]A f (x ,  y) 

--f(x,  y; oo)Ak(t) - [Af(x, y)] [Ak(t)] (14b) 
and 

where 

Ntot(t)= Ntot(O)explkt + f[  dt'Ak(t') 1, (15a) 

Ymax 
Ak( t )=  ~2 tiyAf(Xmx,y; t). (15b) 

y=0 

5. DISTRIBUTION OF G E N E R A T I O N  TIMES 
FOR GIVEN INITIAL CONDITIONS 

A. Master Equation for a Single Cell 
The model given in equations ( l a d )  implies the following master equation for the probability 

that a cell be in the state (X, Y) = (x, y) at age a, given that its initial state was (X, Y) = (0, Y0). 
Let P(x, y; a, Yo) denote this probability, conditional on the indicated initial value of Y: 

d 
-~aaP(x,y;a, yo)=tiyP(x - 1,y) + #(y  + 1)e(x,y + 1) 

+'~[Ymax--  (Y --  1)]e(x,y --  1 ) - L a y  + 2 ( Y ~ a x - y ) + # y ] P ( x , y ) .  (16) 

If  x > Xm~x, it is understood that the cell has divided, i.e. the (random) time required for the cell 
to divide is the time required for it to reach the "state" Xmax + 1. To solve these coupled differential 
equations, we will make use of the generating function for P(x,y; a, yo), which is defined as 

xm~ Ym~x 
G(u,v;a, yo)= ~. ~ P(x,y;a,  yo)uXv y. (17) 

x=O y=O 

If  the generating function is known, the distribution may be recovered by expanding G in powers 
of u and v and by picking out the coefficients, or by using the expression 

1 t~  t~Y I 

I P(x, y; a, Yo) = xlY . ~u x ~vy G(u, v; a, Yo) ~=o.~=o (18) 

B. Generating Function for the Solution of the Master Equation 
Since the transition rates given in equations ( la-d)  are linear in Y, the random vector (X, Y) 

may be decomposed into the sum of Y~ax independent random vectors, each of which corresponds 
to a solution of  the master equation, For the case Yma~ = 1, equation (16) becomes 

d 
-~aa P(X, 0; a, yo, Ym~ = 1) = - 2P(x, O) + ltP(x, 1), (19a) 

d e ( x ,  #P(x, 1) + tiP(x - 1, 1) - tiP(x, 1). (19b) 1; a ,  Y0, Ym~x 1) 2P(x, O) 
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If we multiply equations (19a, b) by u x and then sum over x, we obtain an equivalent expression 
in terms of the generating function. Let 

G(u,v;a,  yo, Ymax= 1)=c(u;a,  yo )+vd(u;a ,  yo), 

c(u; a, Yo) = ~ P(x, 0; a, yo)u x, 
x=O 

d(u;a, yo)= ~ P(x, l;a, yo)u x, (20a) 
x=O 

then equations (19a, b) imply that 

d 
da c(u ) = - 2 c ( u )  + lad(u), 

d 
da d(u) = 2c(u) - [~ - fl(u - 1)]d(u). (20b) 

Equations (20a, b) may be solved using Laplace transforms and have the following solutions for 
the two initial conditions Y0 = 0 and Y0 = 1: 

G(r±(u),v;a,O, ]:max---- 1)---- 1 + (r+ + 2 ) ( r  + 2 )  exp(--2a) 

( 2la )exp(ar+) ( 2# )exp(ar  ) 
+ ~ + 2 v  - - +  +2v  - - - - - -  (21a) 

r+ - - r  ~ r_ --r+ 

and 

G(r±(u),v;a,  1, Ymax= 1) = [la +(J. + r+)v] 
exp (ar + ) )v ] exp (ar_) ~-[~ +()~ + r  
r+ - - r_  r_ --r+ 

where u enters only through r±, which are the solutions to the quadratic equation 

(21b) 

s" + [2 + la -- fl(u - 1)]s - 2fl(u -- 1) = (s -- r + )(s -- r_ ) = O, (22a) 

namely, 

r+ (u) = ½1[ -- [2 + # - fl(u - 1)] _+ {[2 + la -- fl(u -- 1)] 2 + 4flA(u -- 1)}'/2~. (22b) 

Now consider the problem when Ym~x is some arbitrary integer > 1. If the cell initially contains 
Y0 active rDNA genes, the generating function as a function of age is simply the product of the 
generating functions associated with the individual genes [e.g. 169]: 

G(u,v;a,  yo, Ymax~ = 1) = [G(r + (u), v; a, O, Ymax = 1)]rm,-yo[G(r+(u),v;a, 1, ]"max= 1] y°. (23) 

The problem of determining the distribution of generation times for a given initial condition is 
essentially solved, since we know the generating function given by equation (23), which may be 
inverted using equation (18). This first passage time problem may be carried through analytically 
and is presented in Appendix C. Without going into details, it is possible to gain a feeling for the 
way in which the distribution changes as a function of the model's parameters. Note that if we 
let u = 1, then r+ = 0 and r = - ( 2  + #), and equation (23) provides the generating function for 
the value of Y at age a, irrespective of the value of X: 

G(1, v;a, yo)= 1 +~-~--~ (v - 1){1 - e x p [ - ( 2  +la)a]} 

[ 1,0 
x 1 + ( v -  1)exp[-(2  + # ) a ] + ~ - - ~  ( v -  l ) { 1 - e x p [ - ( 2  + . ) a ] }  . (24a) 

The asymptotic value of this equation is 

G(1, v ; ~ , y o ) =  1 +  ( v - l ) |  , (24b) 
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which is the generating function for a binomial distribution with mean value 2Ym~/(2 +/~). 
Consequently, in the limit that the parameters 2 and # are much larger than/~, Y relaxes rapidly 
to this binomial distribution. If that is the case, then summing equation (16) over y implies a simple 
birth process for X, in which the transition rates involving Y are replaced by the expected value 
of the binomial. That is to say, the expected value of Ywould be the same VX, Xwould be a Poisson 
random variable with mean value [32aYmax/(2 + #), and the distribution of cell generation times 
would be a gamma distribution with mean value ()(max+ 1)(2 +#)/(fl2Y~x) and variance 
(X~x + 1)(2 +/~)2/(p2Ymax) 2, Refs [170--172]. However, this would also mean that the correlation 
between the generation times of sibling cells and between mother and daughter cells would be zero. 
Therefore, the existence of positive correlations between the intermitotic times of related cells 
constrains the value of ~/Xm~x to an order of magnitude that is comparable to that of 2 and/~. 

6. COMPOUNDED DISTRIBUT.ION OF GENERATION TIMES 
IN THE "STEADY STATE" 

A. Ambiguity of the Term "Distribution of Generation Times" 

Let A (Y0) be the (random) age at which a cell divides, given that it contained Y0 fibriilar centers 
when it was formed. Then 

Xmax Ymax 
Prob[A(y0) < a] = 1 - ~ ~ e(x,y;  a, yo), (25) 

x =O y = O  

where P(x,y;a, yo) satisfies equation (16). We define the compounded distribution of cell 
generation times in a "steady state" population to be 

Ymax 
Prob [A < a] = ~ f ("  ,Y0; oo) Prob[A(y0) < a], (26) 

y0=0 

where A is the (random) generation time, irrespective of the initial value of Y. This definition of 
the distribution of generation times deserves some comment. It corresponds to the following type 
of experiment. Mitotic cells are selected from an exponentially growing population and are seeded 
for observation by time-lapse microcinematography or related procedures [26]. Then, equation 
(26) describes the distribution of generation times among the mitotic cells' daughters (provided that 
the mitotic cells divide immediately). It has been called the forward distribution of generation times 
because it looks forward to the ages when newly-formed cells will divide. It is different from the 
distribution of generation times corresponding to other subpopulations of cells [173]. As examples, 
distributions of generation times have been defined for the following subpopulations. The 
distribution corresponding to the subpopulation of cells in the process of division is found by 
running the clock backward to the times of their formation and therefore is called the backward 
distribution. Similarly, if we select cells at random from an exponentially growing population 
(irrespective of whether the cells are newly-formed, dividing or anywhere in between), these cells' 
generation times are found by running the clock back to the times of their formation and forward 
to the times of their division. Macdonald [174, 175] called this the "sideways" distribution and 
analyzed the problem of predicting one of the above distributions from another. "Artificial" vs 
"real" distributions have also been defined [176, 177] and will be discussed below. The distinction 
between the various distributions is of interest not only because of the ambiguities that they raise, 
but more importantly because time-lapse microcinematography data are ordinarily constructed by 
pooling the generation times corresponding to different subpopulations of cells, i.e. cells of different 
generations. This point is considered below in connection with the difference between "real" and 
"artificial" distributions. 

B. Comparison of Related Cells 

The inherited rate model explains the positive correlations between the intermitotic times of 
sibling ceUs as the result of the fact that both siblings inherit the same number of fibrillar centers 
and that the inheritance varies from sibling pair to sibling pair. Let A1 and A2 denote the (random) 
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generation times of a sibling pair. The joint distribution for AI and As is an extension of equation 
(26): 

Ymax 
Prob[At < at, As < as] = ~ f ( ' ,  Y0; oo) Prob[A (Y0) < at] Prob[A (Y0) < a2]. (27) 

y0=0 

The joint distribution of mother and daughter intermitotic times is a more complicated expression. 
Let Am(Y0 ~Yx~+t)  denote the (random) age of division among mother cells that begin their lives 
with Y0 fibrillar centers and divide with Yx~+L fibrillar centers. Let l-I(yo~Yx~+l) be the 
probability that a cell divides with Yx~+l fibrillar centers, given that it started with Y0 fibrillar 
centers [see equation (C.8)]. Let As1 (y) and As2(y ) be the (random) generation times of daughter 
cells that initially contain y centers. Then, we define the joint distribution of mother and daughter 
generation times as follows: 

Prob[Am < am, As1 < ast, Ass < ass] 
Ymax Ymax 

= ~ f ( "  ,Yo; oo) ~ 11(yo~Yx.~x+l)Prob[Am(Yo--*yx~+,)<a~] 
Y0=0 YXmax + 1 = 0 

× Prob[Ast (Yx.~+ 1) < as1] Prob[As2(Yxm.x+ 1) < as2]- (28) 

Correlations between sibling and mother-daughter generation times are found after averaging 
equations (25)-(28) over the ages. Expressions needed for the construction of these averages are 
provided in Appendix C. 

Note the following points concerning the distributions that are defined by equations (27) and 
(28): 

(i) By analogy with the discussion surrounding the definition of cell generation 
times, these distributions should be called the forward joint distributions of 
sibling and mother-daughter pairs. 

(ii) The population doubling time is not equal to either the average mother or the 
average daughter generation time (found by integrating 1 - Prob(A < a) over 
a, 0 < a < o0, for either of the random age variables). For example, in the 
gamma function limit [see equation (24b)], the population doubling time is 
ln2/k, where the Malthusian parameter k is f l (Y)(2 t/(x~+l)- 1), but the 
average cell generation time is ()(max + 1)/(8(Y)). 

(iii) The average, variance and higher moments of the daughter cell distribution of 
generation times [from equation (28)] are not the same as the average, variance 
and higher moments of the mother cell distribution of generation times [from 
equation (26)]. This is because the distribution in the daughter cells' initial 
number of fibrillar centers is different from the distribution of fibrillar centers 
among the mother cells at the time of their formation. In other words, 

Yrn~ 

f ( ' ,  Yo; °o)11(Yo ~ Y) ~= f("  , Y; co). (29) 
y0=0 

Using the nomenclature introduced by Powell [176], we will call f ( . ,  y; oo) the 
"real" distribution of Y and define F(y) as the "artificial" distribution that 
satisfies the equation 

Ymax 
F(yo)11(yo--, y) = F(y). (30) 

yo=O 

F(y) may be found by making an initial guess, say f ( .  ,y;  ~) ,  and then 
iteratively multiplying the result by 11(yo -* Y) until convergence is obtained. To 
the extent that F(y) and f ( ' , y ;  ~)  are nearly identical, the distribution of 
mother and daughter generation times will be nearly the same. If that is the 
case, we may then use pooled time-lapse microcinematography data to estimate 
the parameters of the forward distribution that is defined in equation (26). An 
example is the data considered in Figs 5-7. The average generation times for 
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Fig. 5. Distribution of intermitotic times. The open circles represent the fraction of rat hepatoma cells 
that have divided by the indicated abe, measured by time-lapse microcinematography [47, Fig. 2]. The 
observed distribution was fitted by the inherited rate model [equation (26)] with parameters X,~ = 150, 
Y,~ = I0, fl = 1.3 x 10 -2, 2 = 1.3 x 10 -4 and # = 2.6 x 10 -5. For these values, the model correctly 
predicts the observed correlations between the intermitotic times of mother-daughter and sibling cell pairs 
(0.55 and 0.7, respectively; see Fig. 7) as well as the data shown in Fig. 6. The average number of fibriilar 

centers is predicted to be 0.86 Y~,., with a coefficient of variation of 0.11. 
Fig. 6. Distribution of the differences between sibling cell generation times (fl curve), observed in the 
experiment illustrate by Fig. 5. The calculation was made using equation (27). The parameters used to 

simulate the fl curve are the same as those indicated in the legend to Fig. 5. 

I 
12.5 

(h i  

mother  and daughter  cells were estimated to be 1.0422 and 1.0497 population 
doubling times, respectively, and the coefficients of  variation for the two 
distributions were 0.158 and 0.161, respectively. This small difference is 
comparable  to what we may expect to arise due to technical factors in 
time-lapse microcinematography experiments (depletion of  nutrients during 
long-term filming, cell crowding, selection of  film interval etc.), so the "real"  
and "artificial" distributions are practically the same. A similar conclusion was 
reached by Staudte and Cowan [178] through analysis of  a different model. 

Figures 5 and 8 illustrate the model 's  ability to fit observed distributions of  cell generation times. 
Corresponding curves for the distribution of  the absolute difference between sibling cell generation 
times (/3 curves) are provided in Figs 6 and 9, respectively. In both examples, the sibling cell 
generation times were observed to show strong, positive correlations, 0.70 and 0.63, respectively. 
However,  the mother -daughte r  correlations were quite different in the two experiments. For  the 
experiment whose data are shown in Figs 5 and 6, the mother -daughter  correlation was observed 
to be 0.55. In the experiment shown in Figs 8 and 9, a numerical value for the mother -daughte r  
correlation was not reported, but the authors said that they checked to see that "there was no 
significant correlation between parent and progeny generation times" [42]. Figures 7 and 10 
demonstrate how it is possible for the mother -daughte r  correlations to be so different, even though 
the sibling correlations have comparable  values. Both the sibling and mother -daughte r  correlations 
rise and fall as the model 's  parameters  are varied, but the latter is always less than the former, 
peaks earlier than the former and goes to zero faster than the former. Therefore, a relatively small 
chan$e in the model 's  parameters  may  cause an abrupt  drop in the mother -daughter  correlation, 
with only a modest  change in the sibling correlation. Finally, note from Fig. 9 that the absolute 
difference between sibling generation times may  have an apparently exponential distribution, even 
though the number  of  random cell cycle transitions is much greater than unity [35, 51]. Refer to 
Brooks et al. [42, Fig. 4A] to compare  the fit in Fig. 9 with the one obtained using a true 
exponential. 
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Fig. 7. Correlations between the intermitotic times ofmother -daughter  and sibling cell pairs, as a function 
of  the model's parameters. This figure illustrates predictions of  the inherited rate model: that the 
mother-daughter  correlations will be less than the sibling correlations, and the latter may in fact be nearly 
zero while the former are still large. The parameters are the same as in Fig. 5, except that X~x is varied 
over a wide range. The shapes of  the curves would be the same if other combinations of  parameter values 
were used, but the location and heights o f  the peaks would change (see Fig. 10). Behavior of  the coefficient 
of  variation of  the cells' intermitotic times is also representative: it decreases as X ~  is increased, with 
an inflection whose location and width is a function of  the parameter values. These moments were 

calculated by averaging the joint distribution given by equation (28). 

Fig. 8. Distribution of  intermitotic times. The open circles represent the fraction of  3T3 cells that have 
divided by the indicated age, measured by time-lapse microcinematography [42, Fig. 4A]. The observed 
distribution was fitted by the inherited rate model [equation (26)] with parameters X,=, = 155, Y ~  = 10, 

= 2.5 x 10 -3, A = 1.0 x 10 -4 and p = 1.4 x 10 -4. For these values, the model predicts the observed 
correlations between the intermitotic times of  mother-daughter  and sibling cell pairs to be 0.03 and 0.61, 
respectively (see Fig. 10). The average number of  fibrillar centers is predicted to be 0.43 Ym,, with a 

coefficient o f  variation of  0.36. 
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Fig. 9. Distribution of  the difference between sibling cell generation times, observed in the experiment 
illustrated by Fig. 8. The parameters used to simulate this fl curve are the same as those indicated in the 
legend to Fig. 8. This curve is nearly exponential. For comparison with a fit using an exactly exponential 
distribution see Ref. [42, Fig. 4A], and note that the last few data points are not fitted by an exponential 

c u r v e .  

Fig. I0. Correlations between the intermitotic times of  mother-daughter  and sibling cell pairs, as a 
function of  the model's parameters. The parameters used to generate these curves were the same as those 
in Fig. 8, except that X,,~ was varied over a wide range. Refer to the legend of  Fig. 7 for more information. 

I 
15.0 



718 D . R .  RIGNEY 

0.200 

0.175 

O. 150 

0 . 1 2 5  

~ O. '100 o" 
h 

0.075 

0.050 

0 . 0 2 5  

I I I , i o I I 
0 5 10 15 20 25 30 

T ime  ( h ]  

Fig. 11. Quantization of  intermitotie times. In some time-lapse microcinematography experiments, the 
distribution of  cell generation times is observed not to be uni-modal. The data here are from Klevecz and 
Shymko [180]. The inherited rate model explains these data as the result of two factors: (i) the potential 
number of independent transcriptional centers (Y~,) is small, so the mixture of cell types will be 
noticeable; and (ii) the distribution of cell types at the start of the experiment is somewhat different than 
what would be observed in the "steady state", i.e. f( . ,y; oo). Parameters used to fit the data were 
X ~  = 163, Ym, = 3, fl = 7.0, 2 = 0.07 and # = 0.004, with initial conditions f (  •, 1) = 0. l , f ( . ,  2) = 0.4 

and f ( . ,  3) = 0.5. 

The inherited rate model predicts that for an exponentially growing population, the shape of  the 
distribution of  generation times will resemble a gamma distribution: unimodal with a tail to the 
right. This may seem surprising since the distribution defined by equation (26) is a mixture of 
distributions. However, the mixing is not apparent since the weighting vector, f ( . ,  y;  oo), is 
precisely what is required to generate unimodality. If  the cells are not in the "steady state" of 
exponential growth (as discussed in the next two sections), the weighting vector is dependent on 
the detailed prior history of  the cell population and may be such that the mixing of  cell types 
generates a multimodal compounded distribution. Figure 11 gives an example of  a distribution that 
is not unimodal, previously attributed to the periodicity of  a chemical clock [179, 180]. The 
suggestion here is that the series of  preferred generation times is a reflection of  the discrete number 
of  potential independent transcriptional centers in the cell. 

7. T I M E - D E P E N D E N T  B E H A V I O R  OF THE P O P U L A T I O N  

A. Near "Steady State" Populations; Population Entropy 

Populations that are not growing exponentially often arise through the selection of  sub- 
populations within the "steady state" population. An example that is treated below is the 
fraction-labeled-mitoses experiment, in which S phase cells are selected by labeling at an initial time 
point. This subpopulation grows quasi-synchronously until its members redistribute themselves 
among all of  the cell cycle phases, eventually satisfying equation (9). In principle, the evolution 
of  the population from an arbitrary initial condition may be calculated analytically by using linear 
transform methods to solve equations (2a, b). As a practical matter, it is easiest to numerically 
integrate the differential equations (6a--c) or (14a, b), unless the perturbation from exponential 
growth is slight. In that case, the non-linear terms in equations (14a, b) are negligible, and they 
become a set of  linear differential equations that may be solved by linear transform methods. The 
procedure is discussed in Appendix D. The analysis there provides characteristic damping and 
frequency constants as functions of  the model's parameters. The analysis also explains why the 
perturbed population will return asymptotically to the "steady state" of  exponential growth: the 
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"steady state" given by equation (9) is asymptotically stable as defined in the qualitative theory 
of differential equations [181, p. 155]. That being the case, it is possible to construct a function 
of the state of the perturbed population having the following property. This (Lyapunov) function 
always increases as time progresses, reaching a constant value when the population eventually 
grows exponentially. The increase in value will be observed whether perturbation of the population 
is small or large. In thermodynamic nomenclature, this function is an entropy. It may be used as 
a measure of the disorder of the population and as a measure of the extent to which a population 
deviates from its "steady state" properties (Fig. 13). 

B. Fraction-labeled-mitoses (FLM) Curves 
Assume that a cell is in the G1 phase if its X value is between 0 and XG~S, that an S phase cell 

has a value of Xbetween X~s + 1 and XsG2, that a cell in the G2 phase has a value between Xs~2 + 1 
and Xc2 u, and that a mitotic cell has an X value between XG2M + 1 and Xm,x. When the S phase 
cells of an exponentially growing population are labeled with radioactive thymidine [182, 183], we 
are then dealing with two populations: the labeled population, which initially is not in the "steady 
state", and the original population (labeled + unlabeled), which is assumed to continue its 
exponential growth. 

Let Af(x, y; t) denote the deviation of the labeled cells from the "steady state" fractions. Define 
the time of (instantaneous) labeling to be t = 0, and let 

Af(x, y; 0) = 0 if XGis + 1 ~< x ~< XsG2 

Af(x, y; O) = --f(x, y; oo) otherwise. (31) 

The fraction of cells that are labeled, among unlabeled + labeled cells in the indicated (x, y) state, 
is given by 

FL(x'y;t)=E'~af(x'Y-'OlexpF'E'&fodCAf(Xm'x'y;C)]f(x,y; oo)1 L,=0 , (32, 

where Af(x, y; t) satisfies equations (14a, b), given the initial conditions specified in equations (31). 
Then, the fraction of labeled mitotic (FLM) cells is 

)(max Ymax 
~ f(x,y; ~ ) F L ( x , y ;  t) 

FLM(t) = x=x~2M+ ~ y=0 (33) 
Xmax Ymax 

E E f(x, y; oo) 
x=XG2M+ I y ~ 0  

By varying the parameters of the inherited rate model (including the location of the cell cycle 
phases in the range 0-Xm,x), it is possible to fit observed FLM data. In so doing, one obtains 
estimates for the distribution in the duration of the cell cycle phases. Figure 12 illustrates fitting 
of "textbook" FLM data, in which the oscillations persist for a few generations, with a gradual 
damping. Many models may be used to fit data that are so regular [184]. In fact, the gamma 
function model [see equations (24a, b)] works well for these data, so they may be used to illustrate 
the increase in entropy that is predicted by equation (D.9), shown in Fig. 13. 

The usefulness of the inherited rate model is more apparent when the data do not conform to 
the ideal. This is because the three parameters/~, 2 and # allow greater control over simulation 
of the damping characteristics of the population than is possible with simpler models. Steel [182, 
Chap. 4] discusses circumstances in which conventional models are unable to fit the observed FLM 
data. The inherited rate model is able to explain some of these data, as shown in Fig. 14. A further 
illustration of the model's flexibility is shown in Fig. 15. It shows two simulated FLM curves having 
virtually identical initial portions, but having quite dissimilar terminal segments. 

An additional example is provided in Fig. 16. It is not an FLM curve but illustrates the same 
phenomenon, the decay of synchrony of a cell population. Fit of the data by the inherited rate 
model is better than that obtained if correlations are not allowed and is comparable with the fit 
obtained by Rubinow's [52] model. The fit is not as good as with the model of Voit and Dick [185], 
but the latter model required 30 parameters and 5 initial conditions, as compared with 5 parameters 
and calculated initial conditions for the inherited rate model. 
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Fig. 12. Ideal fraction-labeled-mitoses curve. When the fraction of  labeled mitoses [equation (33)] show 
smooth, damped oscillations, as in these data from Hartman et al. [184, Fig. IC], the gamma function 
model may be used as a limiting case of  the inherited rate model. The parameters used to fit the data 

were Xols = 11, XsG2=23, Xo2 M =26,  Xm~ =27  and ~ (Y> =0.69. 

Fig. 13. Entropy of  a cell population. If a cell population is initially out of  the "steady state", its entropy 
[equation (D.9)] will increase until the "steady state" is achieved. This figure describes a population of  
cells that were initially all in the S phase (the labeled cells in the experiment presented in Fig. 12). 
Maximum entropy is achieved when the cells redistribute themselves among all the cell cycle phases. 

Parameters values are as indicated in the legend to Fig. 12. 
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Fig. 14. Ability of  the inherited rate model to fit fraction-labeled-mitoses data that are difficult to fit by 
other models. These data were selected by Steel [182, Fig. 4.71=] as an example of  some that are difficult 
to fit by conventional models. The inherited rate model is able to reproduce the sharp rise and fall o f  the 
oscillations, as well as the rise in the successive minima. According to the model, these features are due 
to the heterogeneous rates of  cell proliferation. Mixing of  the different cell types is apparent in the later 
oscillations. Parameters for the simulation were X ~ = 7 5 ,  Y ~ =  10, Ag =0.89, g =4 .4  x 10 -3, 

/J = 4.4 x 10 -4, Xol s ffi 1 and Xso 2 = 55. 

Fig. 15. Flexibility of  the inherited rate model in simulating different damping characteristics o f  
fraction-labeled-mitoses curves. Two curves are shown, both of  which have nearly identical initial 
segments, but which separate abruptly around 30 h. The flexibility that is demonstrated here is due to the 
model's representation of  the population as a mixture of  subpopulations. Parameters for the two curves 
were X ~  = 75, jg = 0.3, g = 1.4 x 10 -2, /~ ---- 1.4 x 10 -2, Xot s = 60, XSG 2 ----- 72; X ~  = 63, 1] = 0.08, 

= 1.7 x 10 -4, # = 2.9 x 10 -4, Xo, s = 55 and Xsm = 62. In both cases, Ymx = 10 and XG2M = X ~ ,  -- 1. 
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Fig. 16. Decay of synchrony of an initially synchronous cell population. These data were used by 
Rubinow [52] and by Voit and Dick [185] to demonstrate the superiority of their models over simple stage 
models that do not allow for correlations between the intermitotic times of mother and daughter cells. 
The inherited rate model [equations (2a, b) and (3)] also permits a somewhat better fit than a simple stage 
(gamma function) model, due to its ability to accommodate different damping characteristics of 

population growth. 

8. POPULATION GROWTH IN THE PRESENCE OF CYTOTOXIC AGENTS 

A. Limiting Tissue, Resistant Cells, Doses and Fractionation Schedules 

The failure of treatment in a large percentage of cancer patients is due to two problems. One 
is the lack of specificity of the cytotoxic agent for the tumor cells: it is not possible to destroy the 
tumor without at the same time inflicting massive---and potentially life-threatening--damage to 
normal tissue. The damaged normal tissue is usually either the hemopoetic system or the gut 
epithelium, and is called the limiting tissue for a given therapeutic protocol. The second problem 
is the existence of resistant cells within the tumor. Increasing the dose of  the cytotoxic agent may 
circumvent the latter problem [186], but this necessarily aggravates the former problem. 

The effectiveness of  chemotherapeutic agents often depends on the dose and schedule of 
administration. This has been demonstrated in numerous toxicity studies involving rodent models 
[187]. There almost certainly exist optimal dose-schedule protocols for humans as well, but it is 
not possible to try all the possibilities in patients, for obvious ethical reasons. If  primate models 
were used, it might be possible to extrapolate toxicity results to the clinic, but this is also prohibitive 
for practical reasons. As a result, protocols that are now in use are found empirically, with no 
guarantee that they are optimal. 

The possibility of  using cell kinetic models to predict the optimal fractionation schedule has been 
discussed by several investigators [188-191]. However, models that have been proposed for this 
purpose are not complete enough to satisfy the needs of the clinician [182, 192]. Deficiencies of 
models of  chemotherapy include their oversimplification of  pharmacokinetic factors, their omission 
of the effect of circadian rhythms [193, 194] and their inability to represent heterogeneity of the 
cells' response to chemotherapeutic agents. Similar models that have been proposed for use in 
therapeutic radiology give only a simplified account of the additional complicating factors that arise 
there, namely, the reoxygenation and repair of irradiated tissue [195, 196]. Nevertheless, these 
models have been used to recommend one or another strategy in the design of protocols, even if 
they have not yet been successful in recommending particular doses and fractionation schedules. 

The purpose of what follows is not to propose a complete model of therapeutic protocols, but 
rather to model one aspect of the problem for which no satisfactory account has been given: the 
heterogeneity of cellular response to cytotoxic agents and the kinetics of  tumor relapse. The 
rationale for the simulations described presently is that rapidly growing cells are thought to be 
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easier to kill than slowly growing cells. In the context of the inherited rate model, the postulate 
is that among the cells of the population, those whose rDNA genes are being actively transcribed 
are at greatest risk of damage by the agents. This is not to say that the actively transcribed rDNA 
genes are necessarily the target of the cytotoxic agent, only that there is a correlation due to any 
of several factors. For cycle specific drugs, the cells at greatest risk could be the ones that are most 
metabolically active and which would transport the cytotoxic drugs at the greatest rate; they could 
proceed through the cell cycle fastest so as to freeze damage faster than it could be repaired; and/or 
they could be producing products in addition to rRNA at an elevated rate, some of which are 
needed for conversions of the agent to its active form. For phase specific drugs, resistance of the 
slowly growing cells would be attributable to the failure of many of these cells to be present in 
the susceptible cell cycle phase during short-term therapy. 

B. Simulation of Population Growth in the Presence of Cytotoxic Agents 

Single-dose-survival curves 

A review of the growth and survival of stem cells in the presence of cytotoxic agents is provided 
by Steel [182, Chap. 7]. The first point to be made is that the survival curves shown by Steel may 
be interpreted with the aid of the inherited rate model: a population is intrinsically heterogeneous 
with respect to its cells' survival in the presence of some chemotherapeutic agents, and the inherited 
rate model may be used to generate a distribution for this heterogeneity. The example that we 
consider is the response to the drug Ara-C [182, Fig. 7.12f; 197]. This is one of the most commonly 
used drugs for leukemia, an anti-metabolite that interferes with DNA polymerase and that is 
incorporated into DNA and RNA, producing defective macromolecules. Although it is often 
considered to be an S phase specific agent (because DNA synthesis is inhibited by virtue of its effect 
on DNA polymerase), the data show that the situation is more complicated. As shown in Fig. 17, 
90% of the (LI210 leukemia) stem cells are rendered non-clonogenic within 15 min of exposure 
to a single low dose of Ara-C. At single high doses, resistance by roughly 1% of the population 
is apparent. Consider the form of the dose-survival curve. If there were two subpopulations, 
sensitive and insensitive, and if the likelihood of non-clonogenicity of a sensitive cell falls as 
exp(-D/D37), where D is the dose, then there will be a steep drop in clonogenicity with increasing 
dose, followed abruptly by a plateau (lower curve, Fig. 17). This is clearly not the case. A better 
fit is obtained if we assume that the dose-survival curve is of the form 

N(D) rmx 
= ~ f ( . , y ;  oo)exp[-D/D37(y)] (34) 

No y=0 

where the rate constant D37(Y) is inversely proportional to y, above some threshold of y. That is 
to say, cells whose number of fibrillar centers is less than some threshold value are producing rRNA 
at a rate so low that the Ara-C incorporated into their RNA is insufficient to render them 
non-clonogenic  (037 = 00). They are therefore considered to be resistant. Above this threshold, 
incorporation of the Ara-C increases in proportion to the number of fibrillar centers present in the 
cell, accounting for the gradual drop in survival at high doses (cells with low value of y) and for 
the steep drop in survival at low doses (cells with high value of y). Thus, the likelihood of cell death 
is taken to be proportional to the amount of Ara-C that is incorporated into RNA, which has been 
observed experimentally [198, 199]. Usefulness of the inherited rate model is in providing an 
f ( . ,  y; oo) with which to represent the heterogeneity of the population's response to Ara-C. 

Multiple-dose-survival curves 

Chemotherapeutic protocols often involve the periodic administration of one or more cytotoxic 
agents. Such protocols may be simulated using equations (7a, b), assuming that a certain fraction 
of the population's stem cells are rendered non-clonogenic at each exposure to the drug. Growth 
of the population will be more complicated than that predicted with simpler models since the 
distribution in fibrillar centers (y) is assumed to change with each episode of drug administration, 
i.e. cells with large values ofy  are preferentially killed, resulting in a non-"steady state" distribution 
(that will eventually reachieve its "steady state" form if the population were subsequently allowed 
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Fig. 17. Heterogeneity of cellular response to a single dose of cytotoxic agent. Here, 1% of L1210 
leukemia cells are shown here to be resistant to the anti-metabolite Ara-C [I 82, Fig. 7.12f]. If there were 
only two subpopulations, resitant and susceptible, survival as a function of dose would be as in the lower 
curve. A better fit is obtained if we assume that there are several subpopulations, each having a different 
response to the drug. The inherited rate model may be used to generate the fraction represented by each 

subpopulation (upper curve). 

Fig. 18. Survival of stem cells after multiple, periodically administered doses of a cytotoxic agent. Growth 
of the population is described by the inherited rate model [equations (7a, b)]. Every 5 h, cells are killed 
by the drug, with preferential loss of those having many fibrillar centers (large Y, rapidly growing cells). 
Resistant cells (those with low Y values) continue to proliferate, causing the population to eventually 
relapse to its original size. Asymptotic exponential growth by the envelope of the number of cells is 

discussed in Appendix D. 

I 
250 

to proliferate without interference). To simulate an actual protocol, both the tumor and normal 
limiting tissue would have to be modelled under a variety of possible dose-schedule choices, but 
this is beyond the scope of the present discussion. Rather, the general kinetic characteristics that 
will be observed for each simulation, shown in Fig. 18, are pointed out. The population growth 
will be observed to show three phases. During the first phase, there is a rapid decrease in the size 
of the stem cell population. During the second phase, the population size stabilizes to a plateau 
level. During the final phase, there is a gradual regrowth (relapse) of the population to its original 
size. This regrowth is due to the resistant cells, whose number of fibrillar centers lies below the 
threshold of sensitivity (Fig. 17). The details of the growth kinetics are clearly a function of many 
factors: the kinetic characteristics of the particular tumor or limiting normal cell type (.e~max, Ymax, 
t ,  2 and/~), the frequency and dose of the administered agent, whether the agent is phase specific 
or not, and the threshold y value, below which cells are considered to be resistant to the drug. In 
the optimal protocol, we wish the plateau phase to be extended and lowered considerably for the 
tumor cells and to be abbreviated and heightened for the normal cells. In fact, in the ideal protocol, 
the size of the tumor stem cell population would be decreased to a size that is so small that the 
deterministic model is no longer appropriate. Survival curves comparable to the simulation shown 
here are given by Steel [182, Fig. 7.13]. In agreement with the simulation shown here, these 
experimental curves are observed to exhibit more than one phase, which may be interpreted to 
reflect an initial loss of sensitive stem cells, followed by kinetics of the insensitive stem cells. Note 
that the envelope of the log-number of stem cells in Fig. 18 grows linearly after the cells enter the 
phase of relapse. This asymptotic behavior of a periodically perturbed population is not 
unexpected. The cyclic variation of the population between episodes of cytotoxicity, plus 
exponential growth (or decline) of the population over the long term, is reminiscent of population 
growth in the presence of circadian rhythms. Theorems that explain this asymptotic growth of a 
periodically perturbed population are discussed in Appendix D. 
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9. DISCUSSION 

A. Summary of the Model's Properties 
The inherited rate model of the cell cycle combines features of several previously described 

models. It makes use of the stage concept, which was introduced by Kendall [170] and has been 
used by many subsequent investigators [171, 172, 190, 200-202]. It emphasizes the rate of cell cycle 
progression, as in the models of Sisken and Morasca [50] and Castor [51]. It is compatible with 
the possibility that the number of cell cycle stages may be large, but that the cell cycle duration 
remains random, which is a distinguishing feature of maturity models [52-55]. It is also a 
"physiological" model in the sense that it assigns a role to a particular cell property (nucleoli), as 
has been done in models that describe centriole events [42], cell size [25-27, 38, 39], RNA and 
protein content [29], initiator and inhibitor protein levels [179, 203] etc. Not surprisingly, then, 
several properties of the inherited rate model are to be found among these previous models. The 
properties that recommend its use for the understanding of cell kinetic phenomena are as follows: 

(i) The model is concrete as to the physical meaning of the variables involved. If a cell's 
state were described by only a single variable representing cell cycle maturity, it 
would not be so important to be specific about the variable's meaning. Hopper and 
Brockwell [204, 205] express the attitude as follows: "It is tempting to ascribe some 
biological significance to the maturity, e.g. to suppose that each increase in maturity 
corresponds to completion of some well-defined biochemical stage in the devel- 
opment of a cell. We do not, however, claim any such significance. For us, the 
introduction of maturity is simply a convenient mathematical device for setting up 
a standard cell kinetic model." But when the cell's state is specified by two or more 
variables in order to explain how a cell's inheritance predisposes it to divide at a 
particular age, it is difficult to propose a credible model for how the inherited variable 
influences the maturity variable without providing experimental evidence that the 
variables are in fact physically meaningful. In the inherited rate model, the nucleolar 
variable may be visualized in mitotic cells so as to justify the way that inheritance 
is treated, and the mechanism relating cell cycle progress to the nucleolar variable 
is that both are controlled by components of the ubiquitin system, which in turn is 
closely related to the mechanism of protein turnover and its control by growth 
factors. 

(ii) The inherited rate model predicts the initial conditions, i.e. f ( ' , y ;  ~),  in an 
exponentially growing population, for given parameter values. Similarly, the form of 
the distribution of generation times is predicted by the model to be a consequence 
of the postulated mechanism, rather than being postulated a priori. The latter 
approach is regarded by detractors as an exercise in curve fitting [49]. 

(iii) The model accounts for the observation of positive correlations between the 
generation times of sibling and mother-daughter pairs, explains why the latter 
correlations will be smaller than the former, and includes the possibility that the 
mother-daughter correlations may be nearly zero as a special case, even if the sibling 
correlation is large. Its explanation for the correlations is as follows: (1) newly- 
formed sibling cells are more like one another than randomly selected pairs of cells; 
(2) the inherited state of a cell predisposes that cell to divide at a particular age; (3) 
the inherited state of a cell tends to persist as the cell ages. When factor (3) is 
relatively insignificant, a cell will have no memory of its initial state by the time that 
it divides, and the mother-daughter correlation will be small. If that is the case, 
factors (1) and (2) may nevertheless be sufficient to cause the sibling correlations to 
be significant. By the same reasoning, the model predicts that there will be a 
correlation between the times that sibling cells spend in a particular phase of the cell 
cycle and that the G1 phase correlation will be greater than that of the later phase 
durations. Further corollaries are that the duration of phases in each cell will be 
correlated, and the correlation between the G1 and S phase transit times will be 
greater than the correlation between the duration of G1 and G2 (or M). The model 
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also provides for an approximately exponentially distributed absolute difference 
between sibling generation times as a special case of parameter values and provides 
justification for the common practice of pooling intermitotic times from different 
generations in time-lapse microcinematography experiments. It explains the obser- 
vation of preferred (quantized) generation times as a consequence of the fact that 
the population is a mixture of cells having different inherited rates of cell cycle 
progress. 

(iv) The model contains few parameters. It is sufficiently simple that many of its 
properties may be calculated analytically. The importance of analytical tractability 
cannot be over-emphasized since this property makes practical the variation of 
parameter values so as to fit observed data. The model is mathematically interesting 
in its own right as an example of the problem of mixing probability distributions in 
such a way as to achieve a particular compounded distribution. 

(v) Development of the model focuses on the fraction of cell in each cell cycle state, 
rather than the number of cells. This is useful for two reasons. First, it introduces 
the stability theory of differential equations into the analysis, explaining why the 
exponential growth of the population is asymptotically stable, allowing the calcu- 
lation of damping and oscillation parameters and allowing us to define an entropy 
for the population. The second advantage is practical. When calculating fraction- 
labeled-mitoses curves (for example), integration of the rate equations for cell 
numbers [equations (2a, b)] leads to large numbers and numerical errors, in contrast 
to integration of the rate equations for the fractions [equations (6a-c) and (14a, b)]. 
The disadvantage of performing the analysis by referring to the fractions is that the 
rate equations become non-linear [equations (6a-c)]. However, the non-linearity is 
benign for the same reason that a Riccati equation is manageable: the non-linear 
equations may be transformed back into linear equations if necessary. A consequence 
of this linearity is that the time derivatives of the first moments are functions only 
of the first moments [equation (3)]. If the transitions in equations ( l a d )  were 
non-linear functions of the random variables, the differential equations in equation 
(3) would contain terms involving the variances and covariances of the N(x, y), and 
a hierarchy of moment equations would have to be considered. See Appendix A. 

(vi) The model may be used to analyze the three types of experiments mentioned in 
Section 3B. This is because the model was formulated in terms of mechanisms and 
transitions [equations (la-d), rather than simply as a postulated distribution with 
unknown parameters. The price to be paid for the model's versatility is that 
distributions had to be calculated (Sections 4-6) before data could be fitted to them. 
Examples of data fitting were given for the distribution of cell generation times, 
fraction-labeled-mitoses curves and decay of synchrony curves. Fitting of data 
describing the distribution of cell cycle states and of the number of fibrillar centers 
was not attempted here for the following reason. To analyze these data, it is necessary 
to present an auxiliary model for the experimental procedure itself. The situation is 
analogous to the analysis of flow cytometric data, in which the problem is not simply 
to understand the relation between the distribution of DNA content and the fraction 
of cells in each cell cycle states, but also to extract the distribution of DNA content 
from the data. This requires considerable discussion and analysis [23, 24]. Similarly, 
analysis of premature chromosome condensation data requires a model for artifacts 
that arise during cell fusion procedures, and the analysis of silver staining requires 
a model for the way that deposits form under a particular staining protocol. Models 
for these data will be provided in a subsequent paper. 

(vii) Many models of cell proliferation assign "proliferating" and "non-proliferating" 
cells to different compartments. This assignment is one of convenience and does not 
allow for the possibility that there is a spectrum of cell types that differ with regard 
to their rates of proliferation. The inherited rate model may be more realistic in that 
it allows for Ymax rather than two cell types. This feature is useful in modelling the 
heterogeneous response of cells to cytotoxic agents, provided that lack of response 
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to these agents is also a distributed property and is correlated with the heterogeneity 
of cell growth rate [206]. 

(viii) The most physically realistic representation of the cell cycle is as a random process. 
Although the inherited rate model describes the cell by such a process, some events 
that underly the randomness could conceivably be deterministic [12] in the same way 
that a pseudo-random number generator is deterministic--differential equations 
describing the cell's chemistry are non-linear by virtue of the feedback inherent in 
the presence of control mechanisms. Under certain circumstances, such differential 
equations exhibit chaotic (pseudo-random) behavior [207]. True stochastic 
fluctuations will exist in addition to any deterministic chaos, since they are present 
in all chemical reactions [167, 168] and in systems involving the diffusion of 
metabolites [208, 209]. The fluctuations will be pronounced in a cell because 
macromolecules with essential functions may be present at a level of a few molecules 
per cell [13, 34, 58]. In fact, fluctuations in the activity of individual macromolecules, 
sometimes of known location within individual living cells, have been measured 
[210-213]. 

Given that a stochastic model is appropriate, comment should be made concerning the form of 
the model that was adopted here: a bivariate Markov process with a finite number of states. A 
more general model might have been constructed by allowing the random waiting time in each state 
to have a distribution other than exponential [e.g. 214]. I would argue, through, that the use of 
a non-Markov distribution of waiting times is simply a device to hide variables that have been 
omitted from the more complete Markov process (e.g. use of a semi-Markov process with a few 
variables to represent a true Markov process with many variables). Additional variables are already 
implicitly hidden in the parameters of the model: just as the expected value of Y is hidden in the 
parameter of a one-variable stage model [see the comments after equations (24a, b)], so too the 
parameters in equations (la-d) hide additional variables related to the transitions that they 
characterize. A subtle concealment of variables is also implicit in the adoption of a model in which 
X is an integer random variable ranging from 0 to Xmax. A criticism of integer stage models has 
been that cell cycle maturation is a continuous process, and the only reason for making X,,~ finite 
is that when Xmax is large enough to approximate continuity, the indeterminacy required of the 
model disappears [170]. The addition of one or more random variables (e.g. Y) to the simple stage 
model relieves X of the burden of carrying all the cell's indeterminacy and, as a consequence, X,,~x 
may assume a larger value in order to achieve a particular coefficient of variation of intermitotic 
times. In fact, if Ym~ did not represent the necessarily finite number of rDNA genes in the cell, 
we could make Ym~x arbitrarily large, so that X may approximate the (continuous, random) integral 
of a white noise process. 

B. Extensions of the Model 

Many extensions of the model are possible, most of which would involve the addition of 
parameters. Several that come to mind allow: the reversibility of cell cycle progress; the rate of cell 
cycle progression per fibrillar center to be different in the various cell cycle phases; the possibility 
of an extra random transition in the G1 phase; differences to exist between one nucleolar organizer 
and another; the number of fibrillar centers to double when the rDNA genes are duplicated; the 
rate of cell cycle progress to be a non-linear function of the number of actively transcribed genes; 
the parameters fl, 2 and # to be functions of additional variables (e.g. growth factor levels); 
density-dependent growth inhibition in which the parameters are functions of the population 
density; spontaneous cell death and terminal differentiation; gradual differentiation in which the 
parameters are functions of the generation number [215]; for circadian rhythms (see Appendix D); 
the parameters to be a function of the cell's location within tissue (e.g. the location in the crypt 
of the gut's epithelium [183]); and random or asymmetric partitioning of the fibrillar centers at the 
time of cell division. The possibility of unequal daughter cells already has a large literature [12, 
29, 34, 35, 38, 39, 216-220]. 

As regards other extensions, it is useful to distinguish between those that are intended to provide 
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a more complete representation of  a cell's physiology and those that provide a better model of  the 
cell's environment. The guide to selecting additional variables to represent a cell's physiology 
should be that all variables are defined in experimental terms and that they may be measured in 
individual cells. The model in its present form describes only ribosomal genes because they are the 
cell's most actively transcribed genes and because their activity may be measured in individual cells 
with silver staining procedures. The rDNA genes are certainly not the only ones whose activity 
influences the rate of  cell cycle progression, so one would like to add variables corresponding to 
these other genes. Cytogenetic methods comparable to silver staining exist for quantifying the 
activity of  arbitrary genes. One method is based on the sensitivity of  actively transcribed 
chromosome regions to nucleases [221,222]. The other method is based on the tendency of  actively 
transcribed genes to be duplicated before inactive genes [69]. That is to say, the timing of DNA 
replication in individual chromosome bands, measured by the procedure illustrated in Fig. 2, is 
a measure of  the transcriptional competence of  the genes that have been mapped to those bands. 
Examples of  genes that might be included in a more complete model of  cellular resistance to 
cytotoxic agents are those that convey resistance through gene amplification. Although the 
situation is not entirely comparable to the case of  ribosomal RNA genes, the number of  resistance 
genes may rise and fall in much the same way that the y variable of  the inherited rate model 
fluctuates along a cell lineage. Addition of such genes to the model would allow greater freedom 
in representing the spectrum of  heterogeneous cell types than is possible with current models that 
describe the appearance of mutant cells [223, 224]. 

A more difficult extension of  the model would be one that attempts to provide a complete 
representation of  the ecological factors that influence in v ivo cell proliferation. It is difficult to see 
how any single model can describe the three-dimensional organization of  tissue as it relates to the 
availability of  nutrients and oxygen, the interactions between cells, cell differentiation and 
pharmacokinetics, in addition to providing a realistic model of  the cell cycle. Such a model would 
contain so many parameters that it would be difficult to test, even if all of  the relevant variables 
were identified. Additional complications arise if the objective of  the model is an accurate 
prediction of  a cancer patient's response to a particular therapeutic protocol since growth of  the 
tumor is not necessarily the proximal cause of  death of  a cancer patient. For  example, a tumor 
of  the pericardium may produce fluid that fills the pericardial space, producing pressure on the 
ventricles, leading to tamponade and heart failure (the proximal cause of  death). To make realistic 
models of  survival, then, it is necessary to simulate not only the kinetics of  tumor growth, but also 
all the mechanisms that can cause a tumor (and its treatment) to kill the patient. Perhaps the 
prudent response to this biological complexity is to adopt a hybrid biomathematical-statistical 
approach. Statisticians attempt to make survival predictions using models that do not pretend to 
represent any of  the actual physiological interactions [225], using variables that have no direct 
bearing on the physiology of  tumor growth (age and sex of  the patient etc.). The suggestion is to 
move the analysis one step closer to reality by using a simple kinetic model, such as the inherited 
rate model, but to estimate its parameters with the aid of  some convenient statistical model that 
relates the parameters to whatever clinical data are available. 
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A P P E N D I X  A 

Master  and Moment  Equations f o r  the Population 

Equations ( la~l)  define a stochastic model of the cell cycle, in which the state of each cell is specified by two numbers: 
X (ranging from 0 to X ,~ )  and Y (ranging from 0 to Ym~,)' The state of the cell population is simply the number of cells 
in each of the (X,~ + I) ( Y ~  + 1) states: 

No, o . . .  Nx, o . . .  Nx~.,,o 

[ No.r . . ,  Nx, r . . .  Nx~,,,,r 

L N o . ' y _ ,  . . .  Nx, rm,, . . .  Nx~.,,r.x 

These random variables may assume any conceivable set of integer values {no,0, no, a . . . . .  nx.~, r~},  which will have a 
probability of occurrence P(No,o ffi no,o, No, l ffi no, l . . . . .  N x ~ ,  r ~  = nx . . ,  r ~ ;  t) at time t. The master equation describes the 
rate at which these probabilities change. It is an enumeration of all the ways in which the population may change, as 
specified by equations ( l a d ) :  

d r,w 
P(no,o, no, i . . . . .  nx . . ,  r . , ;  t) = ~ fly(nx.~,y + l)P(no, o . . . . .  no~ - 2 . . . . .  nx~,,y + l . . . . .  nx..~, r . , )  

y f f i O  

Xm~ - I Y ~  

+ ~, ~. py(n~.y+l)P(no.o . . . . .  n~,y+ l ,nx+z,y- -1  . . . . .  nx.. , r . , , )  
x = 0  yffi0 

X ~  Ymx 

+ ~ ~ 2(Y,r , .~--y)(n~,y+ 1)P(no, o . . . . .  n~,y+ 1,nx, y + l -  1 . . . . .  n x ~ , , . ~ )  
xfOy=O 

X ~ I  ¥ ~ x  

~. py(n~,y + l)P(no, o . . . . .  nx.y_ t - 1 nx y + 1 . . . . .  n x . . , r w  ) 
xfOy~O 

Xmax Ynu~ 

~. ~ [fly + 2 ( Y m x - -  y )  + py]n~ yP(no, o . . . .  nx ,~, ,r . ,  ). (A.I) 
x = O y = O  

equation of this type is to transform it to an equivalent expression in terms of its The standard method for solving an 
generating function, defined as 

a~0,0 = 0 no, i = 0 nx, yffi 0 nXrrJx,¥muff iO 

P(no. o . . . . .  nx, y . . . . .  nx , , ,  r~)z0.~0 ° z ~  . . . .  znXwx,.. ~,."x. (A.2) 

Combining equations (A.1) and (A.2), we obtain the result 

~G r,~, f OG x,~,- l OG 
- -  2 

= - =  E Ct y~o (. , . ,-=o 

+ Y'. [ 2 ( Y ~ . , ~ - y ) ( z ~ , y + ~ - z ~ , y ) + ~ y ( z x ,  y_~-z~ ,y ) l  . (A.3) 
x ~ 0  

This partial differential equation is intractable, except for special cases. See Kendall's [170] discussion of the gamma function 
model, which is a special case in which 2 = p ffi 0. However, the generating function is nevertheless useful because it is more 
convenient to construct moment equations with equation (A.3) than with the untransformed master equation (A. 1). The 
moment equations are found by taking derivatives of equation (A.3) with respect to the z~,y and evaluating the results at 
{Zx.y = 1}. The reader may verify that the first derivatives of equation (A.3) with respect to the z~,y, evaluated at {z,.y = l}, 
yield equations that are identical to the deterministic equations given in equations (2a, b). Similarly, the second derivatives 
of equation (A.3) with respect to the z~ y, evaluated at {z~ / ffi 1 }, provide kinetic equations for the variances and correlations 
between the N~ r Note that if the transition probabili~es of equations ( l a d )  were not linear functions of the random 
variables X and' Y, the first moment equations would contain terms involving the second moments. Furthermore, the second 
moment equations would contain terms involving the third moments etc., so that a hierarchy of moment equations would 
have to be solved to find even the first moments. 

If the population begins with Ntot(0) cells, each of these cells will produce clones whose size is random. Since the clones 
are thought to evolve indzpendently of one another, the coefficient of variation of the total population size, Nt~(t),  will 
be proportional to {N~(O)} -Ifz, and stochastic aspects of population growth will be negligible when Nt~(O) is large. The 
evolution of the population may be deterministic even if its initial size is small. Kendall [170] showed that if Xm~ is large 
(and if the fluctuations in Yare small), then the coefficient of variation in N ~ ( t )  is proportional to (Xm~+ 1)-v2. Figures 
7 and 10 show how the coefficient of variation of intermitotic times behaves as a function of Xm~ for the hivariate model. 

A P P E N D I X  B 

Method  for  Solving fo r  the Dbtribution o f  Fibrillar Centers 

The distribution in number of activated rDNA genes, f ( . ,  y; oo), and the Malthusian parameter of exponential growth 
k, satisfy equation (12). (In what follows, the fractions refer to the "steady state", but we omit the oo to simplify the 
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notation.) The equation may be solved iteratively using the following method. Let the Malthusian parameter k equal 
some initial guess, say 1. Then iteratively perform the following calculation. Let f ( . ,  0) = 1 initially, so that f ( ' ,  1) may 
be evaluated: 

k + 2 r r ~ , , f (  
f(., I ) . ,  0). (B.I) 

g 

Similarly, once f ( . ,  I) is known, the remaining f ( .  ,y )  may be evaluated: 

--2[Ymax--(Y--2)lf(',y--2)+{k+2[Ymax--(y--l)]+tz(Y--1)--fl(l--l)(y--l) t 
f ( .  ,y )  = 5c ( . ,y  - I). (B.2) 

If the calculation with a given estimate of  k gives a negative value for any of  the f ( .  ,y) ,  set that value equal to zero. 
Then, when all of  the f ( . ,  y) have been calculated, normalize them and calculate the mean value of  y. The new guess 
for k is then set equal to f l [ ( l / f l ) -  1] times this average, for the next iteration. 

This procedure is motivated by the following observation. By averaging equation (12) over y we find that the 
Malthusian growth parameter k is proportional to the average value of  y: 

Similarly, by multiplying equation (12) by y and averaging over y, we find the variance in y: 

( Y >  - - ~  ]"max 

var(y) 2+/~fl ( 1 - 1 )  ' (B.4) 

Note that in the limit that fl is much smaller than 2 and/a, the distribution for Y becomes the binomial given by equation 
24(b) with average 2Ym~x/(2 +/~),  SO that equation (B.4) becomes an indeterminate form. 

A P P E N D I X  C 

Moments for  the Distribution o f  Generation Times 

The generating function given by equation (23) determines the distribution of  cell generation times, among all cells that 
begin their lives with a specified number of  activated rDNA genes, Y0. In this appendix we use that equation to derive 
arbitrary moments for the distribution. The first two moments are all that are needed for calculating the correlation between 
sibling, mother and daughter generation times. For  the model under investigation, knowledge of  all o f  the moments is 
sufficient to reconstruct the entire distribution for the first passage time to the state X = X ~  + 1, i.e. cell division, so that 
the distribution of  generation times is effectively determined. Alternatively, knowledge of  the first four moments may be 
sufficient to recover the distribution approximately [226]. 

Transition from X = 0 to X = 1 

Since the master equation (16) describes a Markov process, the time spent at each X value, conditioned by the value 
of  Y that it had when the cell first achieved that value of  X, is independent o f  the past history of  the cell. Then, transitions 
from any X to X + I may be treated the same as that from X = 0 to X = 1, and the entire cell cycle is simply the convolution 
ofXm~ + 1 such transitions. Consider the time required to undergo the transition from X = 0 to X = 1, given that the initial 
value of  Yis Y0. The probability that a cell is in the state (0, y) at age a, given that Ywas initially Y0, is obtained by expanding 
equation (23) in powers of  v and by setting u = 0. To perform the expansion, note from equations (20a) and (21a, b) that 
v enters only as the first power, for ]:max = i. Let 

where 

G(r+(u), v; a, O, Ym~ = l ) = c o + d o v ,  

G(r± (u), v; a, I, Ym~= 1)=cl  +d lv ,  

c o = coaexp(-- 2a ) + co+ exp(ar+) + co_exp(ar_), 

d o = do+exp(ar+) + do_exp(ar_), 

c I = c I +exp(ar+) + c I _exp(ar_), 

d I = d I +exp(ar+) + d I_exp(ar ) 

(C. 1 a)  

(C.[h) 

a n d  

CoA = 1 + Co+ 
( r + + 2 ) ( r _ + 2 ) '  (r+ + 2 ) ( r + - - r  )' 

/~ p 2 + r +  
= , c l _ = - - ,  d l + = - - ,  

Cl+ r+ -- r_ r_ -- r+ r+ -- r_ 

2 + r _  2 2 
dl_= , do+= , do_= • 

r_ -- r+ r+ -- r_ r_ -- r+ 

Co_ = (r_ + 2)(r_ - r + ) '  

(C.lc) 
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Then equation (23) becomes 

r . , - y  ~ ( Y m ~ - Y o ) ! Y o !  
G(r±(u) ,  v; a, Yo, Ym~ ~ 1)= ~ ~ c r " - ' - i c ~ ° - / d ~ ' t J v  ~+/ 

i~o j - o ( Y m . - - y o - - i ) ! i [ ( Y o - - J ) ! J  ! 0 I 0~l 
(c.2) 

By noting the definition of  the generating function (17), the values of  P(0, y; a, Y0) are obtained by picking out the terms 
involving vY and evaluating co(re(u) ,  a),  do(r±(u ), a),  ct(r+(u),  a)  and dt(r±(u) ,  a)  at u = 0: 

( Yma~ - Y o )! Yo! c r.., - yO - k c yO - tv - k) dk Ae - k 
P ( O , y ; a ,  Yo) f k ~ o ( Y m  _ Y o _ ~ - _ _ k ) ] ! ( y _ k ) !  o , o"l • (C.3) 

Having found the probability that the cell be in the (0, y)  state as a function of  age, given that its initial Y value was Y0, 
we are in a position to evaluate the following integral for the j t h  moment of  the age when the cell makes the transition 
from X = 0  to X =  1: 

M t ° ( y  o -* y )  = f ;  P(O, y;  a, yo)aJ([3y da). (C.4) 

F o r j  = 0, the integral gives the probability that a cell is in the state (0, y) at some age a and then makes the transition 
to (1, y)  over the next infinitesimal time interval, integrated over all possible ages when the transition may occur. That is 
to say, it is the probability that the cell make the transition from X = 0 to X = 1 with the indicated value of  y: 

/'/[(0, Y0) --' (l ,  y)] - M(°)(y 0 --, y). (C.5) 

For j > 0, the integral gives the expected powers of  the ages when the cell makes the transition with the indicated value 
of  y: 

MU) (yo ~ y ) 
({A [(0, Y0) --' (1, y)]}J) //[(0, Y0) --" (1, y)]" (C.6) 

Alternatively, we may consider the moment  generating function, which is defined as follows: 

L(y 0 - , y )  - (exp(as))  = f ;  e(0,  y; a, y0)cxp(as)(fly da). (C.7a) 

If the moment generating function is known, the j t h  moment may be recovered with the aid of  the expression 

d/ 
gU)(yo  ---, y) -- ~ L (Y0 "* Y )s ffi 0' (C.7b) 

The integrals in equations (C.4) and (C.7a, b) are performed by substituting equation (C.lc) into equation (C.3), by 
expanding the terms with exponentials, and by integrating the exponentials involving a. Both integrals are of  the form 

. . . .  ~ (Ym~x--Yo)!Yo! 
M(J>(yo~y  ) or z ~ t Y o ~ Y )  = PY 2,  t v  ,, ~ - - f ~ , , -  

~ = o  ~ ,  ~ - ~ ' 0  - , , . - . v o  - Lv  - i ) ] !  ( y  - i ) !  

r~, -yo-i (Ym~x --Yo - i)! ~ k! 

x kffiO~" k ! ( Y , * ~ - y o - i - k ) ! t ~ o ( k S - l ) ! l [  

~ - ~ - o  Lv0_ (y _ i)]! ~. i[ ~ '  (y - i)! 

x ~ o  m ! [ Y ~ - - ~ - - - i - - ~ - m ] ! . ~ o ~ p ~ o P ! ~ - - i ~ P )  ! 

where for the integral in equation (C.4), 

I =  

~ Y n ~ x - y o - i - k ~ k - i ~ l  ~m ~ y o - ( . v - t ) - r n f l n  ~. l i -nAp A y - i - p  .¢ I, 

( _  l)j+ i j!  
(c.4 ')  

{( Ymax -- Y0 - i -- k ) ( - 1 )  + [(k - I) + m + n +p] r+  + [l + [Yo - (3' - i) - m] + i - n + (y - i - p ) ] r _  }j+l 

and for the moment generating function given by equation (C.7a), 

- 1  

I = s + {(Ynm - Y0 - i - k ) ( - 2 )  + [(k - I) + m + n +p] r+  + [I + [Y0 - (Y - i) - m] + i - n + (y - i - p ) ] r _ }  j+ t" (C.7a') 

First passage to X = Xm~ + 1 

Let Yx denote a cell's value of  Y when it first reaches the cell cycle state x. The probabi l i ty / / tha t  a cell has Yx~, + 
activated genes at the time of  cell division is obtained by enumerating all the possible paths: 

F~u F~ gn~x 

II[(O, y o ) ~ ( X - -  + I , y x . ~ + , ) ] =  ~_. ~ • " " ~ II[(O, y o ) " * ( I , Y , ) ] H [ ( I , Y ~ ) ~ ( 2 , Y 2 ) ] "  . .  
yl --Oy2--O YXmu'O 

• . . l l [ (Xm ~ -  l , y x . ~ _ l ) ~ ( X m ~ , y x . ~ ) ] l I [ ( X m x ,  y x . , ) - - ( X m ~ x +  1,yx,. .+l) ]. (C.8) 
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It is especially easy to perform this convolution if Xm~ + 1 is some power of  2, since we may then factorize the matrix 
product: 

ll[(O, Yo)-~(2~+ l, y2.÷,)] = ~ H[(O, Yo)--,(2% y~,)] . ll[(O, y2.)-,(2% y~, +,)]. (C.9) 
y ~ - O  

Thus, equation (C.8) may be calculated recursively using equation (C.9), beginning with the use of  equation (C.5)( j  = 0). 
I f  Xm~ + 1 is to a power of 2, then the above expression is still useful, since Xr ,  x + 1 may be decomposed as the sum of 
powers of 2. 

Now, consider a cell that  undergoes the transition from (X, Y) = (0, Y0) to (X, Y) = (2, .)'2). To calculate the moments  
for the time required to undergo this transition, it is useful to first calculate the cumulant  (semi-invariant) moments  from 
the moments  about  the origin, equation (C.6), since the cumulant  for the sum of  independent random variables equals the 
sum of the cumulants (of the same order) of  the individual random variables that  contribute to the sum [e.g. 169]. Let C o) 
denote a cumulant  of  order j. Then, the first four cumulants are obtained from the moments  given in equation (C.6), 
using the following formulae: 

C°)[(0, Y0) ~ (1, Yl )] = (A [(0, Y0) ~ (1, Yl )]), (C. 10a) 

C(2)[( 0, Y0) ~ (1, y, )] = < {A [(0, Yo) "* (1, y, )]}2> _ {C(,)}2, (C. 10b) 

C°)[( 0, Y0) ~ (1, y, )] = ({A [(0, Yo) ~ (1, y, )1} ' )  - 3 C (') C (2) - {C(')} 3 (C. 10c) 

and 

C(4)[( 0, Yo) -" (1, y, )] = ({A [(0, Y0) ~ (1, y, )]}4) _ 6{CO)}2C(2) _ 4CO)C o) _ { Co)}4. (C. 10d) 

The cumulants for the time required to make the transition from X = 0 to X = 2 are related to those for the transition 
from X = 0 to X = 1 by the expression 

CO)[(O, yo).-,(2,y2)]= ~ l-l[(O, yo)~(l,yt)l.{Cti)[(O, yo)~(1,y,)]+CU)[(O, yl)--,(1,y2)]}. (C.I1) 
y l  = 0  

Similarly, the cumulants for the time required to undergo the transition from X = 0 to X -- 2 m+~ may be calculated from 
those for the transition from X = 0 to X = 2m: 

CU)[( 0, Y0) ~ ( 2r~ + ', Y2- + ')1 = ~ H [(0, Y0) -'* (2", Y2" )] '  {CU)[( 0, Y0) -* (2% .)2" )1 + C0)[( 0, Y2- ) "-' (2% y ~  +, )1}. (C. 12) 
y2 m = o 

A P P E N D I X  D 

Near "Steady State" Populations, Entropy of the Population and the Asymptotic Behavior of Cell Populations 
For  an arbitrary set of  initial conditions, the time-course of  the population described by equations (2a, b) will be a 

complicated sum of  exponentials. As transients die out, the fractions f(x, y; t) that are described by equations (6a-c) will 
be damped oscillations. This appendix explains how to calculate parameters that  characterize the oscillations, using a 
standard procedure from the qualitative theory of  differential equations [181]. The related topics of  asymptotic stability 
and entropy will also be discussed here briefly, including the special cases of  circadian rhythms and the kinetics of cell 
populations that  are exposed periodically to cytotoxic agents. 

Consider the case in which the distribution of  cell cycle states (X) among the cells of  the population is perturbed slightly 
from the "steady state", and in which the distribution of fibrillar centers (Y) is described by the "steady state" given in 
Appendix B. Then, the deviation from the "steady state" satisfies a simplified version of  equations (14a,b): 

dAf(0 ,  .; t) 1 
[~ Af(O,';t)+ 2flAf(Xmx,';t)-Af(O,';t)Af(Xmx,'; t) (D. la)  

d [ f l ( Y ) t ]  

and 

1 dAf(x, .; t)  Af(x__l,.;t)__~Af(x,.;t)__Af(x,..t)Af(Xma~,.;t)__2(l__D)~Af(Xm~,.;t). (D. lb)  
d [ f l ( Y ) t ]  

In the vicinity of  the "steady state", the non-linear terms go as the square of the deviation and may be neglected. Then, 
equations (D.la,  b) become a set of linear differential equations with solutions of  the form 

Af(x,-; t) = Af(x)exp( f l (Y>Kt) .  (D.2) 

Substituting equation (D.2) into the linenrized equations (D.la,  b), we obtain the ¢igenvalue equations: 

2 f l ~ ( X m ~ )  - ( K  + l ) ~ ( O )  = 0 (D.3a) 

and 

1 
~ ( x  - 1 ) - ( K  + ~ ) -  2(l -f~)~A'f(Xm,x)=O. 

Solving for A f (0 )  in terms of  itself, we obtain the characteristic polynomial equation 

(K+~) +2(1-.). 1_[(K+I)~] K+ I. 

(D.3b) 

(D.4a) 
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Let r = KI1 + I. Then, the simplified polynomial equation is 
X~, - I 

r X ~ ' + l + ( 1 - - f ) )  ~ r~+l--[ l=O. (DAb) 
iffi0 

Both the real and imaginary parts of the Xm~ + ! roots of this equation are between - 1 and 1. Therefore, all eigenvalues 
K = (r - l)/fl have negative real parts. The one whose real part is least negative will dominate at large time, and its absolute 
value is a measure of the rate of damping of the Af (x ,  • ; t). Its imaginary part determines the frequency of the damped 
oscillations. 

A "steady state", such as the one examined here, is said to be asymptotically stable if there exists a Lyapunov function 
for the system of equations. A Lyapunov function is a function that is always greater than or equal to zero, that equals 
zero when the system is in the "steady state" and whose time derivative is always less than or equal to zero. Clearly, if 
we multiply such a function by - 1, the resulting function is always less than or equal to zero, and its time d¢rivative is 
greater than or equal to zero. The latter convention is adopted in thermodynamics, in which the function is known as an 
entropy: the "steady state" corresponds to a state of maximum entropy. It is possible to construct an entropy when all 
of the eigenvalues of the lincarized equation have negative real parts. To do so, we first need solutions to the (linearized) 
equation under the Xr~ , + 1 initial conditions: 

A f ( x , . ; O ) = l  if x = i  ( i = 0 , 1 , 2  . . . . .  Xmax), 

Af(x ,"  ;0) = 0 otherwise. (D.5) 

Let A f (x ,  .; t, i) denote the solution under the ith initial condition. If these particular solutions are known, the solution 
under arbitrary initial conditions is simply a superposition of the particular solutions. These particular solutions may be 
found by numerically integrating the linearized equations (D.la, b) under the various initial conditions. They may also be 
found using the following linear transform method. Let ~ f ( x ,  • ; s) denote the Laplace transform of the linearized equation 
(D.I), with initial conditions Af (x ,  .; 0). Then, the transformed equations are 

s + ~[f(O,. ; s) = 2 f ~ f ( X m ,  ~. .; s) + A f(0,  .; 0) (D.6a) 

and 

( s + l ) 7 ( f ( x , . ; s ) = 2 i f ( x - - l , . ; s ) - [ 2 ( 1 - [ l ) D x ] ~ f ( X , , , . ; s ) +  Af(x, .  ; 0). (D.6b) 
N / 

Iterative substitution of one equation into the other leads to the solution 

i Ax I - ~ A  J A  x= '+ l - i  _,] 
~ [ f ( x , . ; s , i ) =  2.0 2f) (1-[1)  1--( f lA)  x=" +l/[a~+~ if ( x + l - - i ) > 0 ,  

1 - - + - -  A x~'+' A x=" 1 -D .A  
where 

.4 = [ s / ( p  < Y>)] + [1/n]. (0.7) 

Inversion of the Laplace transform may then be performed numerically [227] to obtain the desired A f ( x , .  ; t, i). Once these 
fractions are known, we may construct the array 

x=Xmax f0ov a(i , j )  = ~, dtAf(x,  .; t, OAf(x ,  "; t ,j).  (D.8) 
o 

Convergence of the integral is an inunediate consequence of the fact that the eigenvalues have negative real parts. 
Then, by Lyapunov's direct method, the following is an entropy, and the "steady state" is asymptotically stable: 

Xrmx Xm.x 
S(Af(0, • ; t), A f(1,  • ; t) . . . . .  Af(X . . . .  ' ;  t)) = - ~ ~ a( i , j )Af ( i , .  ; OAf(]," ; t). (D.9) 

i=0/=0 
The entropy will increase in time, irrespective of the initial conditions, whether the system is initially close to the "steady 
state" or not. An example is provided in Fig. 13. 

Not all cell cycle models exhibit the property of an asymptotically stable state of exponential growth. For example, models 
in which cell size increasos exponentially cannot predict asymptotically stable growth if the rate of cell growth is an inherited 
property. Several recent articles have examined the conditions under which this type of model can be expected to show 
asymptotic stability [38, 39, 53, 228-232]. 

To complete the discussion of asymptotic stability, two related problems will now be outlined; circadian rhythms and 
the periodic killing of cells. Circadian rhythms are incorporated into cell cycle models by letting a model's parameters be 
periodic functions of time [175, 204, 205, 233-237]. Similarly, cytotoxicity is modelled by eliminating cells at periodic time 
intervals (se¢ Section 8). In either case, asymptotic stability of the type mentioned above cannot exist since the fractions 
of cells in each of the cell cycle states will fluctuate periodically. However, for most linear models of either type, the number 
of cells as a function of time will have an asymptotic envelope that grows (or declines) exponentially. An example is provided 
in Fig. 18. The exponent characterizing the exponential growth (or decline) of the envelope, analogous to the Malthusian 
parameter, may be calculated by solving an eiganvalue equation to find the dominant eigenvalue (the spectral radius) that 
is predicted by the Perron-Frobenius theorem for irreducible non-negative matrices [238]. In the case of a differential 
equation with periodic coefficients (circadian rhythms), the analysis is known as Floquet theory [239]. The case of periodic 
cell killing is a generalization of Fioquet theory [240]. Specifically, let N(x,  y; ~, {N(x, y; t = 0)}) denote the number of 
cells in the (x, y) state at time r, given that the number of cells in the various states at time zero was {N(x, y; t = 0)}. Every 
, minutes, cells are killed or converted to another state by our cytotoxic procedure. Let the number of cells after each episode 
of cytotoxicity be 

N (x, y ) d r =  ]~'-- o f~"  , ( x ,  y ; x ' ,  (x ', y ' )  .fore' (D. 10) 
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where O(x, y; x', y') represents the effect of the cytotoxic procedure. If 
Xnut, Ymaz 

~,, ~,, O(x, y; x', y')N(x',  y'; ~, {N(x, y; 0)}) = N(x, y; O)exp(kz), (D. 11) 
x ' -O y'=O 

then the number of ceils in the population will be seen to increase (or decline) exponentially when examined at successive 
times, separated by the period z. Floquet theory predicts that such a k exists (the spectral radius), that such an 
{N(x, y; t = 0)} exists (the corresponding eigenvector) and that the population will evolve asymptotically towards this state 
of growth, irrespective of its initial condition. In general, calculation of the k and {N(x, y; t = 0)} will be most easily 
performed by numerically integrating the equations describing the population's dynamics. Note that the population will 
oscillate asymptotically at the driving period ~ for much the same reason that a linear, damped, driven electronic oscillator 
follows its driving force. In fact, many conventional engineering concepts may be applicable to the linear cell kinetic model 
(Q of the system, parametric amplification etc) as a consequence of the linearity of the population dynamics. A test for 
the absence of linearity is to drive the population at a pair of frequencies to see whether the asymptotic oscillations occur 
not only at the driving frequencies, but also at harmonic and sideband frequencies. 


