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Abstract-A refined tail-estimation procedure for measuring the index of stability of stable 
Paretian or a-stable distributions is proposed. The estimator is more suitable for o-stable laws 
than the widely used estimator proposed in [l]. 
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1. INTRODUCTION 
A number of recent studies have used the Hill estimator (see [l]) to measure the tail thickness 
of financial data and inferred from its estimates the maximum moments of the data (see, for 
example, [2-51). A ssuming the right tail of a distribution is asymptotically Pareto, i.e., for large 
2, 1 - F(z) = CZ-nP (cu,, > 0, c > 0), the Hill estimator attempts to measure tail thickness (Y,. 
Given a sample of n observations, Xi, X2, . . . ,X,, the Hill estimator is given by 

,. 1 

o” = (l//c) C,“,, lnX,+i_j:n - lnXn_kzn’ 
(1) 

where X,:, denotes the mth order statistic of sample Xi,. . . , X, (see [6,7]). The appropriate 
choice of order lc is a nontrivial problem. Index k has to be small enough so that Xn_kzn still 
belongs to the tail of the distribution; but if it is too small, the estimator will lack precision. 

If a sample comes from a distribution in the domain of attraction of a Pareto distribution, 
all moments of order less than (Y,, exist. Hence, if the Hill estimator produces an estimate in 
excess of 2, one would rule out that the data come from a distribution with infinite variance. 
In particular, the stable Paretian or o-stable distribution, which is frequently used in financial 
modeling (see [8] for a survey), would be among those distributions to be excluded. The standard 
symmetric a-stable distribution with stable index: (Y E (0,2] has characteristic function 

&(e) = e+lp, 6 E R. (2) 

If CY = 2, the o-stable distribution corresponds to the normal distribution and, thus, has moments 
of infinite order. For 0 < Q < 2, it is more fat-tailed than the normal distribution and only 
moments below order cr exist. 
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In empirical studies, such as those cited above, the Hill estimator typically produced estimates 
ranging from about 2.5 to 4, causing the authors to reject the o-stable hypothesis. In fact, both 
the infinite variance case 0 < (Y < 2 and, because &,$ < oo, the normal distribution (i.e., cx = 2) 
or, for that matter, any other distribution for which all moments exist would have to be ruled out 
as possible candidates. As was argued in [9], the problem with using Hill’s tail-slope estimates 
for drawing inference about the existence of moments is that the estimator assumes that the 
underlying distribution has Pareto-like tails. If this assumption does not hold, such inference 
cannot be made. 
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Figure 1. Hill estimates for Pareto sample. 

l.GL- ’ I 4 1 i d I 
0 200 400 600 8&l 1ooG 1200 1400 1600 1800 2009 

k 

Figure 2. Hill estimates for alpha-stable sample. 

To illustrate this, we generated two pseudo-random samples of size 10,000 each. The first 
sample was drawn from a Pareto distribution with ‘u, = 1.7 and the second from a symmetric 
a-stable distribution with cr = 1.7. (In each case data were generated only for the positive half- 
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line.) Thus, for both distributions all moments of order less than 1.7 exist. Figures 1 and 2 
show the Hill estimates and approximate 95% confidence bounds for the Pareto and a-stable 
data, respectively, for k = 50,. . . ,200O. Clearly, the Hill estimator works well for the Pareto 
sample with &!H stabilizing around 1.7 when k > 500. For the a-stable sample the estimator 
performs rather poorly. It does not stabilize as k grows, but falls almost linearly with k. The 
underlying true cr = 1.7 cannot be inferred from the estimates. In fact, most estimates exceed 
two, suggesting that the data do not come from an infinite-variance distribution. 

In this paper, we propose a refined tail-estimation procedure designed to measure stability 
index (Y of a-stable distributions. 

2. TAIL ESTIMATION FOR a-STABLE LAWS 
From [lo] (see also [ll]) characteristic function (2) gives rise to the following asymptotic ex- 

pansion of the standard symmetric o-stable distribution function, denoted by S,(z), 

Given sample Xi, . . . ,X, this limiting expansion enables us to derive a tail estimator for stable 
index CY, denoted by hS, by solving equation 

(4 

for kS. To apply (4), the infinite sum has to be truncated. Truncation at m = 1 leads to 
Pickands’ tail estimator (see [12]) 

& 
ln2 

‘,l = lnX,_k+i,, - lnXn-zk+i:n ’ 

which is discussed, for example, in [9,13,14]. In fact, for j = k and j = 2k (4) leads to 

k-l --y x c, x-%,l 
n-k+l:n’ k 

2k-1 x-%l 
k + 00, - --+ co, 

- M c, n 
n n-2k+l:n, 

which clearly implies (5). 
Truncating (4) at m = 2 leads to the following estimation problem. Find &S,a, 6, El, 22 as the 

solution to equation system 
j-1 -= 

n 
cix;:j$:, + e2Xn=P,-+l:nr j = k, 2k, 3k, 5k. 

Equation system (6) consists of four equations with four unknowns. Because cl and cz enter 
linearly, the system can be reduced to a system of two equations with only &S,2 and fi being 
unknown. Defining 

x(l) = 
x-%,2 

0 
n;k+l:n 

X -as,2 
n-2kfl:n 

and 

to solve the first two equations for cl and cz, and substituting into the last two equations of (6) 
estimates of &S,Z and p are obtained by solving 

4 = q3 a$ ( > x(l) -l I E 1  

9 (7) 
for &!s,2 and b. 

The properties of the proposed estimator are currently under investigation. 
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