SOME MIXING PROPERTIES OF TIME SERIES MODELS

Tuan D. PHAM
IMAG, Université de Grenoble, 38041 Grenoble, France

Lanh T. TRAN
Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

Received 9 June 1983
Revised 18 October 1984

Sufficient conditions are given for linear processes and ARMA processes to have the Gaswirth and Rubin mixing condition. The mixing rates are also determined.

AMS 1970 Subject Classifications: Primary 62M10; Secondary 60G10, 62F10.
mixing * linear processes * ARMA processes

1. Introduction

Let $X(t), t = \ldots, -1, 0, 1, \ldots$ be a p-variate random process, M_0^t and M_n denote respectively the σ-fields generated by $X(t), t < 0$ and by $X(t), t \geq n$. Let $X = (\ldots, X(-1), X(0)), Y = (X(n), X(n+1), \ldots)$ and P_{XY}, P_X, P_Y be respectively the joint distribution of X, Y and the marginal distributions of X, Y.

Define a function $\Delta_n(x)$ by the condition that for any measurable subset A of $R^p \times R^p \times \cdots$

$$
\int \Delta_n(x) P_X(dx) = \sup_{|h| \leq 1} \left\{ \int \int_A h(x, y)[P_X(dx)P_Y(dy) - P_{X,Y}(dx, dy)] \right\}. \quad (1.1)
$$

Note that Δ_n always exists since the right hand side of (1.1) defines a measure absolutely continuous with respect to $P_X(dx)$. If the conditional distribution of $P_Y(dy|x)$ of Y given X exists, then $\Delta_n(x)$ is just the total variation of $P_Y(dy|x) - P_Y(dy)$.

Let $\|\Delta_n\|_s$ be the L^s norm of Δ_n. Then $X(t)$ is said to satisfy the Gastwirth and Rubin mixing condition if $\|\Delta_n\|_s \to 0$ as $n \to \infty$ for some $0 < s < \infty$. See Gastwirth and Rubin [5]. The purpose of this paper is to study the convergence of $\|\Delta_n\|_s$ to zero for linear processes and ARMA processes.

When $\|\Delta_n\|_1 \to 0$ as $n \to \infty$, the process $X(t)$ is often referred to as absolutely regular, weak Bernoulli or completely regular. There is vast literature on processes

0304-4149/85/$3.30 \copyright 1985$, Elsevier Science Publishers B.V. (North-Holland)
of this type. See for example, Volkonskii and Rozanov [9], Yoshihara [12] and Berbee [2].

Let \(\alpha(n) = \sup_{A \in M_n^\infty, B \in M_m^\infty} |P(A \cap B) - P(A)P(B)| \). If \(\alpha(n) \to 0 \) as \(n \to \infty \), then \(X(t) \) is said to satisfy the strong mixing condition. Chanda [4], Gorodetskii [6] and Withers [11] have obtained various conditions for linear processes to be strong mixing.

It can be shown that \(\alpha_n \leq 2 \| \Delta_n \|_1 \) and hence the condition that \(\| \Delta_n \|_1 \to 0 \) is stronger than strong mixing. Some results for absolutely regular processes do not hold just under strong mixing. See, for example, Berbee [2, p. 104] or Bradley [3]. Volkonskii and Rozanov [9, p. 187] have pointed out that the condition of absolute regularity is also more suitable for research. It is thus of interest to determine whether a process is absolutely regular.

The processes considered here are multivariate while those in Chanda, Gorodetskii and Withers are univariate.

The results are presented in Sections 2 and 3. Section 2 studies the convergence of \(\| \Delta_n \|_1 \) to zero for linear processes and Section 3 studies the convergence of \(\| \Delta_n \|_s \) for ARMA processes. Section 3 is a revised version of an earlier seminar note by Pham and Tran [8].

Throughout the paper, \(K \) will denote a constant whose values are unimportant and may vary from line to line.

2. Mixing conditions for linear processes

Assume that there exists a sequence of independent random vectors \(e(t) \), and matrices \(A(j) \) such that

\[
X(t) = \sum_{j=0}^{\infty} A(j)e(t-j), \quad A(0) = I,
\]

where \(I \) is the identity matrix. We further assume that the \(e(t) \) admit a density, say \(g_\tau \). The following lemmas will be useful later.

Lemma 2.1. Let \(r(n) = \sum_{j=n}^{\infty} A(j)e(n-j) \) and \(\xi(n) = X(n) - r(n) \). Then \((\xi(n), \ldots, \xi(n+m))' \) admits a density, say, \(f_{n,m} \) and

\[
\Delta_n(X) \leq \sup_{m > 0} \{E[\delta_{n,m}(R_{n,m})|X]| + E[\delta_{n,m}(R_{n,m})] \} \quad \text{a.s.}
\]

where \(R_{n,m} = (r(n), \ldots, r(n+m)) \), \(X = (\ldots, X(-1), X(0)) \) and

\[
\delta_{n,m}(u) = \int |f_{n,m}(z-u) - f_{n,m}(z)| \, dz.
\]

Proof. Since \(\xi(t) = \sum_{j=0}^{t-1} A(j)e(t-j) \) and \(A(0) = I \), the random vector \((\xi(1), \ldots, \xi(n+m)) \) admits a density, and therefore \((\xi(n+1), \ldots, \xi(n+m)) \) also
admits a density. Let \(Y_m = (X(n), \ldots, X(n + m))' \). Then \(Y_m = S_{n,m} + R_{n,m} \) where \(S_{n,m} \) is independent of \(X \). Hence the conditional distribution of \(Y_m \) given \(X \) and the marginal distribution of \(Y_m \) admit respectively the densities \(E[f_{n,m}(y - R_{n,m})|X] \) and \(E[f_{n,m}(y - R_{n,m})] \). Thus

\[
\Delta_n(x) \leq \sup_{m \geq 0} \int |E[f_{n,m}(y - R_{n,m}) - f_{n,m}(y)|X]\,dy
+ \sup_{m \geq 0} \int E[f_{n,m}(y - R_{n,m}) - f_{n,m}(y)]\,dy. \tag{2.1}
\]

The first term in the right hand side of (2.1) is bounded by

\[
\sup_{m \geq 0} \int E[|f_{n,m}(y - R_{n,m}) - f_{n,m}(y)||X]\,dy = \sup_{m \geq 0} E[\delta_{n,m}(R_{n,m})|X];
\]

and the last term is bounded by

\[
\sup_{m \geq 0} E[\delta_{n,m}(R_{n,m})].
\]

Lemma 2.2. Suppose that

(i) \(\int |g_r(v - u) - g_r(v)|\,dv < K\|u\| \) for all \(t \);

(ii) \(\sum_{j=0}^{\infty} \|A(j)\| < \infty \) and \(\sum_{j=0}^{\infty} A(j)z^j \neq 0 \) for all \(z \) with \(|z| \leq 1 \). Then

\[
\sup_{m \geq 0} \delta_{n,m}(R_{n,m}) \leq K \sum_{j=0}^{\infty} \alpha(j + n)\|e(-j)\| \text{ where } \alpha(j) = \sum_{k=j}^{\infty} \|A_k\|.
\]

Proof. Let \(B(j) \) be the Taylor coefficients of \([\sum A(j)z^j]^{-1}\). Then \(e(t) = \sum_{j=0}^{t-1} B(j)\xi(t) \) where the \(\xi(t) \) are as defined in Lemma 2.1. Therefore

\[
f_{n,m}(y_n, \ldots, y_{n+m}) = \int \cdots \int \prod_{i=1}^{n+m} g_i \left[\sum_{j=1}^{t} B(t-j)y_j \right] dy_1 \cdots dy_{n-1}.
\]

Setting \(u_i = 0 \) for \(t < n \). Then

\[
\delta_{n,m}(u_n, \ldots, u_{n+m}) = \int \cdots \int \prod_{i=1}^{n+m} g_i \left[\sum_{j=1}^{t} B(t-j)(y_j - u_i) \right]
- \prod_{i=1}^{n+m} g_i \left[\sum_{j=1}^{t} B(t-j)y_j \right] dy_1 \cdots dy_{n+m}.
\]

Using the fact that

\[
\prod_{i} (a_i + \alpha_i) - \prod_{i} a_i = \sum_{i<j} \prod_{i} a_i \alpha_i \prod_{j>i} (a_j + \alpha_j),
\]

and that \(g_i \) is a density function, we get

\[
\delta_{n,m}(u_n, \ldots, u_{n+m}) \leq \sum_{i=n}^{n+m} K \left\| \sum_{j=n}^{t} B(t-j)u_i \right\|.
\]
Thus

\[\delta_{n,m}(R_{n,m}) \leq K \sum_{i=0}^{\infty} \|B(i)\| \cdot \sum_{j=0}^{\infty} \|r(j)\| \]

\[\leq K \left[\sum_{i=0}^{\infty} \|B(i)\| \right] \left[\sum_{j=0}^{\infty} \alpha(j+n)\|e(-j)\| \right]. \]

Note that \(\sum_{i=0}^{\infty} \|B(i)\| < \infty \) by Wiener's theorem. See Wiener [10, p. 91].

Theorem 2.1. Assume that the conditions of Lemma 2.2 hold and \(E\|e(t)\|^{\delta} < K \) for some \(\delta > 0 \) and for all \(t \). If \(\sum_{j=1}^{\infty} \alpha(j)^{\delta/1+\delta} < \infty \) where the \(\alpha(j) \) are as in Lemma 2.2. Then \(\|\Delta_n\|_1 \leq K \sum_{j=0}^{\infty} \alpha(j)^{(1+\delta)/(1+\delta)} \) and \(X_t \) is absolutely regular.

Proof. Let \(\{c_j\} \) be a sequence of positive numbers. Since \(\Delta_n \equiv 2 \) a.s., we have by Lemmas 2.1 and 2.2

\[\|\Delta_n\|_1 \leq K \sum_{j=n}^{\infty} \alpha(j)c_j + 2 \sum_{j=n}^{\infty} P\{\|e(j)\| > c_j\}. \]

By Schwartz inequality, \(P\{\|e(j)\| > c_j\} \leq K/c_j^{\delta} \). The theorem then follows by putting \(c_j = \alpha(j)^{-1/(1+\delta)} \).

Remark 2.1. Note that \([\sum_i \|A(i)\|^{\delta} \leq \sum_i \|A(i)\|^{\delta} \). See Loève [7, p. 155] if \(\delta = 1 \). Then

\[\sum_{j=r}^{\infty} \alpha(j)^{\delta/(1+\delta)} \approx \sum_{j=r}^{\infty} \left[\sum_{i=j}^{\infty} \|A(i)\|^{\delta} \right]^{1/(1+\delta)}, \]

which equals the strong mixing rate for linear processes obtained by Gorodetskii [6].

3. Mixing conditions for ARMA processes

Assume now that \(X(t) \) is an autoregressive moving average (ARMA) process with values in \(\mathbb{R}^p \). Then it admits a Markovian representation

\[X(t) = HZ(t), \quad Z(t) = FZ(t-1) + Ge(t) \quad (3.1) \]

where \(Z(t) \) are random vectors, \(H, F, G \) are appropriate matrices and \(e(t) \) are i.i.d. random vectors. (See for example Akaike [1]). Assume that the \(e(t) \) have a density \(g \). Here \(A(j) = HF^jB \) and hence \(r(n) \) and \(\xi(n) \) of Lemma 2.1 equals \(HF^nZ(0); \) and \(\sum_{j=1}^{n} F^{n-j}Be(j) = H\xi(n) \), say. Now for \(u = (u_{n+1}, \ldots, u_{n+m}) \),

\[\delta_{n,m}(u) = \sup_{|h|=1} E[h(\xi_{n,m} - u) - h(\xi_{n,m})] \]

where \(\xi_{n,m} = (\xi(n), \ldots, \xi(n+m)) \). Take \(u_j = HF^jz \), then

\[\xi(j) - u_j = HF^{j-n}[\xi(n) - F^nz] + \sum_{i=n}^{j} HF^{i-n}e(i) \quad \text{for } j \geq n. \]
Thus
\[h(\xi_{n,m} - u) = \tilde{h}[(\xi(n) - F^n z, e(n+1), \ldots, e(n+m))]. \]
\[h(\xi_{n,m}) = \tilde{h}[(\xi(n) - F^n z, e(n+1), \ldots, e(n+m))] \quad \text{for some function } \tilde{h}. \]
Hence
\[\delta_{n,m}(u) \leq \sup_{|\tilde{h}| \leq 1} E\{ \tilde{h}[(\xi(n) - F^n z, e(n+1), \ldots, e(n+m))] \}
- \tilde{h}[(\xi(n), e(n+1), \ldots, e(n+m))]. \]
Since the \(e(t), \ t > n \) are independent of \(\xi(n) \), if \(\xi(n) \) admits a density \(\phi_n \), then
\[\delta_{n,m}(u) \leq \int |\phi_n(z - F^n u) - \phi_n(z)| \, dz. \]
Thus Lemma 2.1 becomes

Lemma 3.1. Let \(X(t) \) be the ARMA process as in (3.1). Suppose that \(\xi(n) = \sum_{j=1}^{n-1} F^{n-j} B_j \) admits a density \(\phi_n \). Then
\[\Delta_n \leq E\{ \delta_n[F^n Z(0)]X \} + E\delta_n[F^n Z(0)], \]
where \(\delta_n(z) = \int |\phi_n(v - z) - \phi_n(v)| \, dv \) and \(X \) is as in (2.1).

Lemma 3.2. Let \(g \) be an integrable and \(f \) be a bounded function on \(\mathbb{R}^d \). Assume that
\[\int \|x\|^\gamma |g(x)| \, dx < \infty \quad \text{and} \quad f(x) = O(\|x\|^{\gamma}), \ x \to 0. \]
Then, as the \(d \times d \) matrix \(u \) tends to the zero matrix,
\[\int f(ux)g(x) \, dx = O(\|u\|^{\gamma}) \]
where \(\|u\| = \sup_{\|x\| = 1} \|ux\| \).

The proof of Lemma 3.2 is simple and is omitted.

Theorem 3.1. Suppose that the eigenvalues of \(F \) are of modulus strictly less than 1, then \(\|\Delta_n\|_s \to 0 \) as \(n \to \infty \) for all \(s \). If moreover \(\int \|x\|^\delta |g(x)| \, dx < \infty \) and \(\int |g(x) - g(x - \theta)| \, dx = O(|\theta|^{\gamma}) \) for some \(\delta > 0 \) and \(\gamma > 0 \), then \(\|\Delta_n\|_s \to 0 \) at an exponential rate for all \(0 < s < \infty \).

Proof. Without loss of generality, assume that the matrix \([G, FG, \ldots, F^{n-1} G] \) is of full rank for \(n \) large enough, otherwise one can always find an equivalent (minimal) representation
\[X(t) = \tilde{H} \tilde{Z}(t), \quad \tilde{Z}(t) = F \tilde{Z}(t-1) + \tilde{G} e(t) \]
for which the above rank condition is fulfilled. Thus we can add some rows to the matrix \([G, FG, \ldots, F^{n-1} G] \) to get an invertible matrix, say \(U \). Hence the random
vector $\tilde{\xi}(n) = U[e(n), \ldots, e(1)]$ admits a density and so does $\xi(n)$. By Lemma 2.1 and the Lebesgue Dominated Convergence Theorem, $\|\Delta_n\|_s \to 0$.

Let $\hat{\phi}_n, \phi_n$ be the densities of $\tilde{\xi}(n)$ and $\xi(n)$. Let h denote the point in $(\mathbb{R}^d)^n$ obtained from $h \in \mathbb{R}^d$ ($d = \text{dimension of } \xi(n)$) by adding zeroes. Then

$$\int |\phi_n(v - h) - \phi_n(v)| \, dv = \int |\hat{\phi}_n(u - \hat{h}) - \hat{\phi}_n(u)| \, du$$

$$= |\det U| \int \left| \prod_{j=1}^n g(x_j - \theta_j) - \prod_{j=1}^n g(x_j) \right| \, dx_1 \cdots dx_m,$$

where $\theta = U^{-1}h$. Using the assumption of the theorem and following the same line of argument as in the proof of Lemma 2.2, we get $\delta_n(h) = O(\|h\|^\gamma)$. The above relation holds for a fixed n. However it is easy to show that $\delta_n(h)$ decreases with n and hence this relation holds uniformly in n.

Let ρ be the maximum modulus of the eigenvalues of F, then $\|F^n\| < K\rho^n$. By Lemma 3.2,

$$\left\{E[\delta_n(F^nZ(0))]^s\right\}^{1/s} = O(\rho^{\eta n})$$

where $\eta = \min(\gamma, s\gamma)/s$. For $s \geq 1$, using Jensen inequality and Lemma 3.1,

$$\Delta_n^s \approx 2^{s-1} E\{\delta_n(F^nZ(0))^s \mid X\} + 2^{s-1}\{E[\delta_n(F^nZ(0))]^s\}.$$

Hence $\|\Delta_n\|_s \to 0$ at an exponential rate. Since $\|\Delta_n\|_r \leq \|\Delta_n\|_s$ for $r \leq s$, the result holds for all s.

Acknowledgement

We would like to thank the referees and Richard Bradley for pointing out some relevant references.

References