Bifurcations of limit cycles from quintic Hamiltonian systems with a double figure eight loop

Zang Honga,*, Zhang Tonghuaa,c, Han Maoanb

a Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China, 200240
b Department of Mathematics, Shanghai Normal University, Shanghai, China, 200234
c Division of Engineering Science and Computing and Department of Chemical Engineering, Curtin University of Technology, Perth, WA, Australia, 6845

Received 5 July 2005; accepted 31 July 2005
Available online 2 November 2005

Abstract

This paper deals with Liénard equations of the form $\dot{x} = y$, $\dot{y} = P(x) + yQ(x, y)$, with P and Q polynomials of degree 5 and 4 respectively. Attention goes to perturbations of the Hamiltonian vector fields with an elliptic Hamiltonian of degree six, exhibiting a double figure eight loop. The number of limit cycles and their distributions are given by using the methods of bifurcation theory and qualitative analysis.

Keywords: Limit cycle; Homoclinic bifurcation; Heteroclinic bifurcation; Double figure eight loop

1. Introduction and main results

A part of the well-know Hilbert’s 16th problem is to consider the existence of maximal number of limit cycles for a general planar polynomial system. In general, this is a very difficult question and it has been studied by many mathematicians (see [1–15], for example). Recently many authors have a great interest for the systems which exhibit a eight figure loop and the Hamiltonian has the form

$$H_{n+1} = \frac{y^2}{2} + P_{n+1}(x),$$

* The work was supported in part by Australia Research Counsil under the Discovery Projects scheme (grant ID: DP0559111).

** Supported by Shanghai Leading Academic Discipline Project #T0401.

* Corresponding author.
E-mail address: zanghred@sjtu.edu.cn (H. Zang).
where $P_{n+1}(x)$ is a polynomial in x of degree $n + 1$, see [2,3,5,6,8,12,15]. The key point used in [2–5,15] is to find simple zeros of a Melnikov function which is also called a Abelian integral.

As we know, when we study Hopf bifurcation for a planar polynomial system a typical way to find limit cycles is to change the stability of a focus. [6,10] used this idea to find limit cycles near a homoclinic loop or a heteroclinic loop. That is, a limit cycle can be bifurcated from a homoclinic loop or a heteroclinic loop when its stability changes. A final limit cycle can be obtained by making the homoclinic or heteroclinic loop broken. Then the method was developed to investigate the limit cycle bifurcation from a double homoclinic loop by Han and Chen [8], and was used to study the existence of 11 limit cycles for some cubic system by [11,13,14]. In this paper, we develop this method to study the bifurcations of limit cycles for quintic system with the double figure eight loop, consisting of two homoclinic loops and a heteroclinic loop.

Consider the following perturbed Hamiltonian system

\[
\begin{align*}
\dot{x} &= y + \varepsilon(a_{10}x + a_{30}x^3 + a_{12}xy^2 + a_{14}xy^4 + a_{50}x^5 + a_{32}x^3y^2) \\
&= f(x, y) + \varepsilon P(x, y), \\
\dot{y} &= -x^5 - bx^3 - x + \varepsilon(b_{01}y + b_{21}x^2y + b_{03}y^3 + b_{05}y^5 + b_{41}x^4y + b_{23}x^2y^3) \\
&= g(x, y) + \varepsilon Q(x, y),
\end{align*}
\]

(1.1)_e

where b is a negative constant with $b < -\frac{4}{\sqrt{3}}$ and $\varepsilon > 0$ is small. We consider the coefficients a_{ij} and b_{ij} in (1.1)_e as parameters. Our main result can be stated as follows.

Theorem. Let $b = -\frac{5}{2}$. Then system (1.1)_e can have 14 limit cycles and two different distributions are given in Fig. 1.

2. **The properties of system (1.1)_e and some preliminaries**

In what follows, we are going to obtain a complete analysis of system (1.1)_e. From (1.1)_e, we know that system (1.1)_0 has the first integral of the form

\[
H(x, y) = \frac{y^2}{2} + \frac{x^2}{2} + \frac{b}{4}x^4 + \frac{x^6}{6}
\]

and the phase portraits is shown in Fig. 2.
Fig. 2.

\[H = 0 \text{ and } H = -\frac{b}{4} + \frac{b^3}{24} + \frac{\sqrt{b^2 - 4}}{6} - \frac{b^2 \sqrt{b^2 - 4}}{24} \] correspond to the centers \(O(0, 0) \), \(O_{10} = (-\sqrt{-b + \sqrt{b^2 - 4}}/\sqrt{2}, 0) \) and \(O_{20} = (\sqrt{-b + \sqrt{b^2 - 4}}/\sqrt{2}, 0) \) respectively.

\[L_1 = \left\{ (x, y) \mid H(x, y) = -\frac{b}{4} + \frac{b^3}{24} - \frac{\sqrt{b^2 - 4}}{6} + \frac{b^2 \sqrt{b^2 - 4}}{24}, \right. \]
\[\left. -\sqrt{-\frac{b}{2} + \sqrt{b^2 - 4}} < x < -\frac{\sqrt{-b - \sqrt{b^2 - 4}}}{\sqrt{2}} \right\} \]

corresponds to the saddle point \(S_{10} = (-\sqrt{-b - \sqrt{b^2 - 4}}/\sqrt{2}, 0) \) and homoclinic loop,

\[L_2 = \left\{ (x, y) \mid H(x, y) = -\frac{b}{4} + \frac{b^3}{24} - \frac{\sqrt{b^2 - 4}}{6} + \frac{b^2 \sqrt{b^2 - 4}}{24}, \right. \]
\[\left. \frac{\sqrt{-b - \sqrt{b^2 - 4}}}{\sqrt{2}} < x < \sqrt{-\frac{b}{2} + \sqrt{b^2 - 4}} \right\} \]

corresponds to the saddle point \(S_{20} = (\sqrt{-b - \sqrt{b^2 - 4}}/\sqrt{2}, 0) \) and homoclinic loop, \(L = L_3 \cup S_{20} \cup L_4 \cup S_{10} \) is a 2-polycycle, where

\[L_3 = \left\{ (x, y) \mid H(x, y) = -\frac{b}{4} + \frac{b^3}{24} - \frac{\sqrt{b^2 - 4}}{6} + \frac{b^2 \sqrt{b^2 - 4}}{24}, \right. \]
\[\left. -\frac{\sqrt{-b - \sqrt{b^2 - 4}}}{\sqrt{2}} < x < \frac{\sqrt{-b - \sqrt{b^2 - 4}}}{\sqrt{2}}, \quad y \geq 0 \right\} \]

and

\[L_4 = \left\{ (x, y) \mid H(x, y) = -\frac{b}{4} + \frac{b^3}{24} - \frac{\sqrt{b^2 - 4}}{6} + \frac{b^2 \sqrt{b^2 - 4}}{24}, \right. \]
\[\left. -\frac{\sqrt{-b - \sqrt{b^2 - 4}}}{\sqrt{2}} < x < \frac{\sqrt{-b - \sqrt{b^2 - 4}}}{\sqrt{2}}, \quad y \leq 0 \right\} \]

are heteroclinic orbits connecting hyperbolic saddle points \(S_{10} \) and \(S_{20} \) and \(L \) is clockwise oriented. Let \(\Gamma = L_1 \cup L_2 \cup L_3 \cup L_4 \) is the double figure eight loop, see Fig. 2. Obviously, system \((1.1)_\varepsilon\) has still five critical points \(O(0, 0), O_{1\varepsilon}, O_{2\varepsilon}, S_{1\varepsilon}, S_{2\varepsilon}. \) For \(\varepsilon \) small, system \((1.1)_\varepsilon\) has separatrices \(L_i^u \) and \(L_i^s, i = 1, 2, 3, 4, \) near the saddle points \(S_{1\varepsilon}, i = 1, 2, \) and \(L_1^u \cup L_3^u \) and \(L_2^s \cup L_4^s \) are the unstable manifolds of \(S_{1\varepsilon} \) and \(S_{2\varepsilon} \) respectively, and \(L_1^s \cup L_3^s \) and \(L_2^s \cup L_4^s \) are the stable manifolds of \(S_{1\varepsilon} \) and \(S_{2\varepsilon} \) respectively.
Let $\delta = (\delta_1, \delta_2, \delta_3, \delta_4, \delta_5) = (a_{10} + b_{01}, 3a_{30} + b_{21}, 5a_{50} + b_{41}, a_{12} + 3b_{03}, a_{14} + 5b_{05})$, $\delta_6 = 3(a_{32} + b_{23}) > 0$. We take δ as a vector parameter. Recall that the directed distance from L_{u_i} to L_{s_i} is measured by

$$d_i(\varepsilon, \delta) = \varepsilon N_i M_i(\delta) + O(\varepsilon^2),$$

(2.1)

where $N_i > 0, i = 1, 2, 3, 4$, is a constant, and

$$M_i(\delta) = \int_{L_i} Q \, dx - P \, dy.$$

(2.2)

For example, if $d_1(\varepsilon, \delta) < 0, d_2(\varepsilon, \delta) < 0$, the relative position of L_{u_i} and L_{s_i} is shown in Fig. 3, $i = 1, 2$.

For the expression of $M_i(\delta), i = 1, 2, 3, 4$, by (2.1) and (2.2), we have

Lemma 2.1. For (1.1)$_\varepsilon$, we have

$$M_i(\delta) = \delta_1 B_{01} + \delta_2 B_{21} + \delta_3 B_{41} + \frac{\delta_4}{3} B_{03} + \frac{\delta_5}{5} B_{05} + \frac{\delta_6}{3} B_{23}, \quad i = 1, 2,$$

$$M_i(\delta) = \delta_1 A_{01} + \delta_2 A_{21} + \delta_3 A_{41} + \frac{\delta_4}{3} A_{03} + \frac{\delta_5}{5} A_{05} + \frac{\delta_6}{3} A_{23}, \quad i = 3, 4,$$

where

$$A_{01} = \int_{L_3} y \, dx = \int_{L_4} y \, dx, \quad A_{21} = \int_{L_3} x^2 y \, dx = \int_{L_4} x^2 y \, dx,$$

$$A_{03} = \int_{L_3} y^3 \, dx = \int_{L_4} y^3 \, dx, \quad A_{05} = \int_{L_3} y^5 \, dx = \int_{L_4} y^5 \, dx,$$

$$A_{23} = \int_{L_3} x^2 y^3 \, dx = \int_{L_4} x^2 y^3 \, dx, \quad A_{41} = \oint_{L_1} x^4 y \, dx = \oint_{L_2} x^4 y \, dx,$$

$$B_{01} = \oint_{L_1} y \, dx = \oint_{L_2} y \, dx, \quad B_{21} = \oint_{L_1} x^2 y \, dx = \oint_{L_2} x^2 y \, dx,$$

$$B_{03} = \oint_{L_1} y^3 \, dx = \oint_{L_2} y^3 \, dx, \quad B_{05} = \oint_{L_1} y^5 \, dx = \oint_{L_2} y^5 \, dx,$$

$$B_{23} = \oint_{L_1} x^2 y^3 \, dx = \oint_{L_2} x^2 y^3 \, dx.$$
\[B_{23} = \oint_{L_1} x^2 y^3 \, dx = \oint_{L_2} x^2 y^3 \, dx, \quad B_{41} = \oint_{L_1} x^4 y \, dx = \oint_{L_2} x^4 y \, dx. \]

Proof. We only prove the expression of \(M_i(\delta) \), \(i = 1, 2 \). Using the same arguments, we can obtain the expression of \(M_3(\delta) \) and \(M_4(\delta) \). Notice that

\[-\oint_{L_1} x \, dy = \oint_{L_1} y \, dx \equiv B_{01}, \quad -\frac{1}{3} \oint_{L_1} x^3 \, dy = \oint_{L_1} x^2 y \, dx \equiv B_{21}, \]

\[-3 \oint_{L_1} xy^2 \, dy = \oint_{L_1} y^3 \, dx \equiv B_{03}, \quad -5 \oint_{L_1} xy^4 \, dy = \oint_{L_1} y^5 \, dx \equiv B_{05}, \]

\[-\frac{1}{5} \oint_{L_1} x^5 \, dy = \oint_{L_1} x^4 y \, dx \equiv B_{41}, \quad -\oint_{L_1} x^3 y^2 \, dy = \oint_{L_1} x^2 y^3 \, dx \equiv B_{23}. \]

Eq. (2.2) and the straightforward computation gives

\[M_1(\delta) = M_2(\delta) = (a_{10} + b_{01}) \oint_{L_1} y \, dx + (b_{21} + 3a_{30}) \oint_{L_1} x^2 y \, dx \]

\[+ \left(b_{03} + \frac{1}{3}a_{12} \right) \oint_{L_1} y^3 \, dx + \left(b_{05} + \frac{1}{5}a_{14} \right) \oint_{L_1} y^5 \, dx \]

\[+ (b_{41} + 5a_{50}) \oint_{L_1} x^4 y \, dx + (a_{32} + b_{23}) \oint_{L_1} x^2 y^3 \, dx \]

\[= \delta_1 B_{01} + \delta_2 B_{21} + \delta_3 B_{41} + \frac{\delta_4}{3} B_{03} + \frac{\delta_5}{5} B_{05} + \frac{\delta_6}{3} B_{23}. \]

The proof is completed. \(\square \)

Using Mathematics 4.0, for \(b = -\frac{5}{2} \), we have

\[A_{01} = 2 \int_{0}^{\frac{\sqrt{2}}{2}} \sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \, dx \doteq 0.44296, \]

\[A_{21} = 2 \int_{0}^{\frac{\sqrt{2}}{2}} x^2 \sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \, dx \doteq 0.0433278, \]

\[A_{03} = 2 \int_{0}^{\frac{\sqrt{2}}{2}} \left(\sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \right)^3 \, dx \doteq 0.0688018, \]

\[A_{05} = 2 \int_{0}^{\frac{\sqrt{2}}{2}} \left(\sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \right)^5 \, dx \doteq 0.01268728, \]
\[
\begin{align*}
A_{23} &= 2 \int_0^{\sqrt{\frac{\pi}{2}}} x^2 \left(\sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \right)^3 \, dx \doteq 0.00365236, \\
A_{41} &= 2 \int_0^{\sqrt{\frac{\pi}{2}}} x^4 \sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \, dx \doteq 0.00916792, \\
B_{01} &= 2 \int_0^{\sqrt{\frac{\pi}{2}}} x^2 \sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \, dx \doteq 0.91058, \\
B_{21} &= 2 \int_0^{\sqrt{\frac{\pi}{2}}} x^4 \sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \, dx \doteq 1.54361, \\
B_{03} &= 2 \int_0^{\sqrt{\frac{\pi}{2}}} \left(\sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \right)^3 \, dx \doteq 0.34257, \\
B_{05} &= 2 \int_0^{\sqrt{\frac{\pi}{2}}} \left(\sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \right)^5 \, dx \doteq 0.1543964, \\
B_{23} &= 2 \int_0^{\sqrt{\frac{\pi}{2}}} x^2 \left(\sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \right)^3 \, dx \doteq 0.62931, \\
B_{41} &= 2 \int_0^{\sqrt{\frac{\pi}{2}}} x^4 \sqrt{\frac{11}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \, dx \doteq 2.88248.
\end{align*}
\]

Notice the symmetry of system (1.1), we have \(d_1(\epsilon, \delta) = d_2(\epsilon, \delta)\) and \(d_3(\epsilon, \delta) = d_4(\epsilon, \delta)\). Consider the equations \(d_i(\epsilon, \delta) = 0, \ i = 1, 2, 3, 4\). The implicit function theorem implies that two functions

\[
\phi_1(\epsilon, \delta_2, \delta_3, \delta_4, \delta_5, \delta_6) = -\left(\frac{B_{21}}{B_{01}} \delta_2 + \frac{B_{41}}{B_{01}} \delta_3 + \frac{B_{03}}{3B_{01}} \delta_4 + \frac{B_{05}}{5B_{01}} \delta_5 + \frac{B_{23}}{3B_{01}} \delta_6 \right) + O(\epsilon)
\]

and

\[
\phi_2(\epsilon, \delta_3, \delta_4, \delta_5, \delta_6) = \frac{1}{A_{21}B_{01} - A_{01}B_{21}} \left[(A_{01}B_{41} - A_{41}B_{01})\delta_3 + \frac{A_{01}B_{03} - A_{03}B_{01}}{3} \delta_4 + \frac{A_{01}B_{05} - A_{05}B_{01}}{5} \delta_5 + \frac{A_{01}B_{23} - A_{23}B_{01}}{3} \delta_6 \right] + O(\epsilon)
\]
exist such that for $\varepsilon > 0$ small
\[d_1(\varepsilon, \delta) = d_2(\varepsilon, \delta) \geq 0 \text{ (resp., } < 0) \text{ if and only if } \delta_1 \geq \phi_1 \text{ (resp., } < \phi_1) , \]
and
\[d_3(\varepsilon, \delta) = d_4(\varepsilon, \delta) \geq 0 \text{ (resp., } < 0) \text{ if and only if } \delta_2 \leq \phi_2 \text{ (resp., } > \phi_2). \]
Thus, two homoclinic loops $L^*_1(\varepsilon, \delta_2, \delta_3, \delta_4, \delta_5, \delta_6)$ and $L^*_2(\varepsilon, \delta_2, \delta_3, \delta_4, \delta_5, \delta_6)$ exist near L_1 and L_2 respectively as $\delta_1 = \phi_1$, and a heteroclinic loop $L^*(\delta_3, \delta_4, \delta_5, \delta_6) = L^*_3 \cup L^*_4$ exists near $L = L_3 \cup L_4$ as $\delta_1 = \phi_1$ and $\delta_2 = \phi_2$. In other words, a double figure eight loop $\Gamma^*(\varepsilon, \delta_3, \delta_4, \delta_5, \delta_6) = L^*_1 \cup L^*_2 \cup L^*$ exists near $\Gamma = L_1 \cup L_2 \cup L$ as $\delta_1 = \phi_1$ and $\delta_2 = \phi_2$. Further we consider the stability of the homoclinic loop, heteroclinic loop and the double figure eight loop. Denote by $\lambda_{i1}(\varepsilon, \delta) = -\frac{\lambda_{i2}(\varepsilon, \delta)}{\lambda_{i1}(\varepsilon, \delta)}$ the hyperbolic ratio of $S_{i\varepsilon}$, where $\lambda_{i2} < 0 < \lambda_{i1}$ are the eigenvalues of $S_{i\varepsilon}$ ($i = 1, 2$), and we have $r_i(\varepsilon, \delta) = r_{i0} + \varepsilon r_i^*(\varepsilon, \delta)$. By computing, we know $r_{i0} = r_1(0, 0) = 1$. From (1.1)$_\varepsilon$, the linear part of system (1.1)$_\varepsilon$ at $S_{i\varepsilon}$ is given by the matrix
\[\begin{pmatrix}
\lambda - f_x(S_{i\varepsilon}) & -f_y(S_{i\varepsilon}) \\
-g_x(S_{i\varepsilon}) & \lambda - g_y(S_{i\varepsilon})
\end{pmatrix}, \]
where $S_{1\varepsilon} = (x_1, y_1) = (-\frac{\sqrt{2}}{2} + O(\varepsilon^2), \frac{\sqrt{2}}{2} (a_{10} + \frac{1}{2}a_{30} + \frac{1}{4}a_{50})\varepsilon + O(\varepsilon^2)), S_{2\varepsilon} = (-x_1, -y_1)$, and
\[f_x(S_{1\varepsilon}) = f_x(S_{2\varepsilon}) = \left(a_{10} + \frac{3}{2}a_{30} + \frac{5}{4}a_{50} \right) \varepsilon + O(\varepsilon^2), \]
\[f_y(S_{1\varepsilon}) = f_y(S_{2\varepsilon}) = 1 + O(\varepsilon^2), \]
\[g_x(S_{1\varepsilon}) = g_x(S_{2\varepsilon}) = \frac{3}{2} + O(\varepsilon^2), \]
\[g_y(S_{1\varepsilon}) = g_y(S_{2\varepsilon}) = \left(b_{01} + \frac{1}{2}b_{21} + \frac{1}{4}b_{41} \right) \varepsilon + O(\varepsilon^2). \]
Therefore,
\[\lambda_{11} = \lambda_{21} = \frac{f_x(S_{1\varepsilon}) + g_y(S_{1\varepsilon}) + \sqrt{(f_x(S_{1\varepsilon}) - g_y(S_{1\varepsilon}))^2 + 4f_y(S_{1\varepsilon})g_x(S_{1\varepsilon})}}{2}, \]
\[\lambda_{12} = \lambda_{22} = \frac{f_x(S_{1\varepsilon}) + g_y(S_{1\varepsilon}) - \sqrt{(f_x(S_{1\varepsilon}) - g_y(S_{1\varepsilon}))^2 + 4f_y(S_{1\varepsilon})g_x(S_{1\varepsilon})}}{2}. \]
And hence,
\[r_1(\varepsilon, \delta)r_2(\varepsilon, \delta) = (r_1(\varepsilon, \delta))^2 = 1 - 2\text{div}(S_{1\varepsilon})\Delta = 1 - \left(\frac{2\sqrt{6}}{3} + O(\varepsilon) \right) \text{div}(S_{1\varepsilon}), \]
where
\[\Delta = \frac{\Delta_1}{(f_x(S_{1\varepsilon}))^2 + (g_y(S_{1\varepsilon}))^2 + 2f_y(S_{1\varepsilon})g_x(S_{1\varepsilon}) + \text{div}(S_{1\varepsilon})\Delta_1}, \]
\[\Delta_1 = \sqrt{(f_x(S_{1\varepsilon}) - g_y(S_{1\varepsilon}))^2 + 4f_y(S_{1\varepsilon})g_x(S_{1\varepsilon})}. \]
By above analysis, we have
\[r_1(\varepsilon, \delta)r_2(\varepsilon, \delta) \geq 1 \text{ (} < 1 \text{) if and only if } \text{div}(S_{1\varepsilon}) = \text{div}(S_{2\varepsilon}) \leq 0 \text{ (} > 0 \text{)}, \]
\[(2.3) \]
Under $\delta_1 = \phi_1$, $\delta_2 = \phi_2$, we can obtain

\[
\text{div } |S_1| = \text{div } |S_2| = \varepsilon (P_x + Q_y) (S_1) = \varepsilon \left(\frac{\delta_1}{2} + \frac{\delta_3}{4} \right) + O(\varepsilon^2)
\]

\[
= \frac{1}{A_{01} B_{21} - A_{21} B_{01}} \left(\frac{A_{41} B_{01} - A_{01} B_{41}}{2} + A_{21} B_{41} - A_{41} B_{21} \right)
+ \frac{A_{01} B_{21} - A_{21} B_{01}}{4} \left(\frac{A_{03} B_{01} - A_{01} B_{03}}{2} + A_{21} B_{03} - A_{03} B_{21} \right) \delta_3
+ \frac{1}{5} \left(\frac{A_{05} B_{01} - A_{01} B_{05}}{2} + A_{21} B_{05} - A_{05} B_{21} \right) \delta_5
+ \frac{1}{3} \left(\frac{A_{23} B_{01} - A_{01} B_{23}}{2} + A_{21} B_{23} - A_{23} B_{21} \right) \delta_6 \varepsilon + O(\varepsilon^2)
\]

\[
= \frac{1}{A_{01} B_{21} - A_{21} B_{01}} (X_0 \delta_3 + X_1 \delta_4 + X_2 \delta_5 + X_3 \delta_6)
\equiv \varepsilon \sigma_0(\varepsilon, \delta_3, \delta_4, \delta_5, \delta_6),
\]

where

\[
X_0 = \frac{A_{41} B_{01} - A_{01} B_{41}}{2} + A_{21} B_{41} - A_{41} B_{21} + \frac{A_{01} B_{21} - A_{21} B_{01}}{4},
\]

\[
X_1 = \frac{1}{3} \left(\frac{A_{03} B_{01} - A_{01} B_{03}}{2} + A_{21} B_{03} - A_{03} B_{21} \right),
\]

\[
X_2 = \frac{1}{5} \left(\frac{A_{05} B_{01} - A_{01} B_{05}}{2} + A_{21} B_{05} - A_{05} B_{21} \right),
\]

\[
X_3 = \frac{1}{3} \left(\frac{A_{23} B_{01} - A_{01} B_{23}}{2} + A_{21} B_{23} - A_{23} B_{21} \right).
\]

By computing, we can obtain $X_0 \doteq -0.36242176 < 0$. The implicit function theorem implies that a unique function

\[
\phi_3(\varepsilon, \delta_4, \delta_5, \delta_6) = -\frac{1}{X_0} (X_1 \delta_4 + X_2 \delta_5 + X_3 \delta_6) + O(\varepsilon)
\]

exists such that for $\varepsilon > 0$ small

\[
\sigma_0(\varepsilon, \delta) \geq 0 \quad < 0 \quad \text{if and only if} \quad \delta_3 \leq \phi_3 \quad (> \phi_3).
\]

From (2.3),

\[
\sigma_1(\varepsilon, \delta) \geq 1 \quad < 1 \quad \text{if and only if} \quad \delta_3 \geq \phi_3 \quad (< \phi_3).
\]

By [7], we know that if $\delta_3 = \phi_3$, then the integrals $\int_{L_i^*} (P_x + Q_y) dt = \sigma_{1i}(\varepsilon)$, $i = 1, 2$, and $\int_{L_i^*} (P_x + Q_y) dt = \sigma_{1i}(\varepsilon)$, $i = 3, 4$, converge finitely, and they hold that

\[
\sigma_{1i}(\varepsilon) = \int_{L_i^*} (P_x + Q_y) dt = \int_{L_i} (P_x + Q_y) dt + O(\varepsilon), \quad i = 1, 2,
\]

\[
\sigma_1(\varepsilon) = \int_{L^*} (P_x + Q_y) dt = \int_{L} (P_x + Q_y) dt + O(\varepsilon) = \sum_{i=3}^{4} \int_{L_i} (P_x + Q_y) dt + O(\varepsilon).
\]
Lemma 2.2. (1) Assume $\delta_i = \phi_i$, $i = 1, 2, 3$. Then

$$\sigma_{11} = \sigma_{12} = Y_1 \delta_4 + Y_2 \delta_5 + Y_3 \delta_6 + O(\varepsilon);$$

(2) Assume $\delta_i = \phi_i$, $i = 1, 2, 3$, and $\sigma_{11} = \sigma_{12} = 0$, and then

$$\sigma_1 = 2\sigma_{13} = 2\sigma_{14} = Z_1 \delta_5 + Z_2 \delta_6 + O(\varepsilon),$$

where

$$Y_1 = \frac{b_1(A_{41}B_{03} - A_{03}B_{41} + \frac{A_{03}B_{01} - A_{01}B_{03}}{4})}{3X_0} - \frac{X_1}{X_0} \left(\frac{b_1}{2} + b_2\right) + B_{01},$$

$$Y_2 = \frac{b_1(A_{41}B_{05} - A_{05}B_{41} + \frac{A_{05}B_{01} - A_{01}B_{05}}{4})}{5X_0} - \frac{X_2}{X_0} \left(\frac{b_1}{2} + b_2\right) + B_{03},$$

$$Y_3 = \frac{b_1(A_{41}B_{23} - A_{23}B_{41} + \frac{A_{23}B_{01} - A_{01}B_{23}}{4})}{3X_0} - \frac{X_3}{X_0} \left(\frac{b_1}{2} + b_2\right) + B_{21},$$

$$Z_1 = \frac{a_1(A_{05}B_{41} - A_{41}B_{05} + \frac{A_{01}B_{05} - A_{05}B_{01}}{4})}{5X_0} + \frac{X_2}{X_0} \left(\frac{a_1}{2} + a_2\right) + A_{03}$$

$$- \frac{Y_2}{Y_1} \left[a_1(A_{03}B_{41} - A_{41}B_{03} + \frac{A_{01}B_{03} - A_{03}B_{01}}{4})/3X_0 + \frac{X_1}{X_0} \left(\frac{a_1}{2} + a_2\right) + A_{01}\right],$$

$$Z_2 = \frac{a_1(A_{23}B_{41} - A_{41}B_{23} + \frac{A_{01}B_{23} - A_{23}B_{01}}{4})}{3X_0} + \frac{X_3}{X_0} \left(\frac{a_1}{2} + a_2\right) + A_{21}$$

$$- \frac{Y_3}{Y_1} \left[a_1(A_{03}B_{41} - A_{41}B_{03} + \frac{A_{01}B_{03} - A_{03}B_{01}}{4})/3X_0 + \frac{X_1}{X_0} \left(\frac{a_1}{2} + a_2\right) + A_{01}\right],$$

$$a_1 = 2 \int_0^{\sqrt{\frac{11}{12} - \frac{x^2}{3}}} \frac{1}{x^2} \, dx \approx 1.525974, \quad a_2 = 2 \int_0^{\sqrt{\frac{11}{12} - \frac{x^2}{3}}} \frac{x^2}{\sqrt{\frac{11}{12} - \frac{x^2}{3}}} \, dx \approx 0.261096,$$

$$b_1 = 2 \int_{\sqrt{\frac{x^2}{3}}}^{\sqrt{\frac{11}{12}} - \frac{x^2}{3}} \frac{1}{x^2} \, dx \approx 3.91542, \quad b_2 = 2 \int_{\sqrt{\frac{x^2}{3}}}^{\sqrt{\frac{11}{12}} - \frac{x^2}{3}} \frac{x^2}{\sqrt{\frac{11}{12} - \frac{x^2}{3}}} \, dx \approx 7.22082.$$

Proof. We need only to prove $\sigma_{11}(0) = Y_1 \delta_4 + Y_2 \delta_5 + Y_3 \delta_6$ if $\delta_i = \phi_i|_{\varepsilon = 0}$. In fact, the equations $\delta_i = \phi_i|_{\varepsilon = 0}$, for $i = 1, 2$ imply that

$$\delta_1 = -\left(\frac{B_{02}}{B_{01}} \delta_2 + \frac{B_{41}}{B_{01}} \delta_3 + \frac{B_{03}}{3B_{01}} \delta_4 + \frac{B_{05}}{5B_{01}} \delta_5 + \frac{B_{23}}{3B_{01}} \delta_6\right),$$

$$\delta_2 = \frac{1}{A_{21}B_{01} - A_{01}B_{21}} \left[(A_{01}B_{41} - A_{41}B_{01}) \delta_3 + \frac{A_{01}B_{03} - A_{03}B_{01}}{3} \delta_4
ight.$$}

$$+ \frac{A_{01}B_{05} - A_{05}B_{01}}{5} \delta_5 + \frac{A_{01}B_{23} - A_{23}B_{01}}{3} \delta_6\right],$$

$$\delta_3 = -\frac{1}{X_0} (X_1 \delta_4 + X_2 \delta_5 + X_3 \delta_6).$$

Hence, by symmetry, we have
\[\sigma_{11}(0) = \sigma_{12}(0) = \oint (P_x + Q_y) \, dt \]

\[= \delta_1 \oint \frac{1}{y} \, dx + \delta_2 \oint \frac{x^2}{y} \, dx + \delta_3 \oint \frac{x^4}{y} \, dx \]

\[+ \delta_4 \oint y \, dx + \delta_5 \oint y^3 \, dx + \delta_6 \oint x^2 y \, dx \]

\[= \left(\delta_1 + \frac{\delta_2}{2} + \frac{\delta_3}{4} \right) \oint \frac{1}{y} \, dx + \left(\delta_2 + \frac{\delta_3}{2} \right) \oint \frac{x^2}{y} \, dx \]

\[+ \delta_4 \oint y \, dx + \delta_5 \oint y^3 \, dx + \delta_6 \oint x^2 y \, dx \]

\[= \left(\delta_2 + \frac{\delta_3}{2} \right) b_1 + \delta_3 b_2 + B_0 \delta_4 + B_0 \delta_5 + B_2 \delta_6. \]

Substituting \(\delta_1, \delta_2, \delta_3 \) into the above equality, we obtain

\[\sigma_{11}(0) = \sigma_{12}(0) = Y_1 \delta_4 + Y_2 \delta_5 + Y_3 \delta_6. \]

By computing, we know \(Y_1 \approx 0.546349 > 0 \). Therefore the implicit function theorem implies that a unique function \(\phi_4(\delta_4, \delta_5, \delta_6) = -\frac{Y_2}{Y_1} \delta_5 - \frac{Y_3}{Y_1} \delta_6 + O(\varepsilon) \) exists such that for \(\varepsilon > 0 \) small

\[\sigma_{11} \geq 0 \quad (\varepsilon < 0) \quad \text{if and only if} \quad \delta_4 \geq \phi_4(\varepsilon < \phi_4). \]

In the same way, under \(\delta_i = \phi_i, \ i = 1, 2, 3, 4, \) we can obtain \(\sigma_1 = Z_1 \delta_5 + Z_2 \delta_6 + O(\varepsilon) \). This completes the proof. \(\square \)

From Lemma 2.2, we know \(Z_1 \approx -0.066157 < 0 \). By the implicit function theorem again there exists a unique function

\[\phi_5(\varepsilon, \delta_6) = -\frac{Z_2}{Z_1} \delta_6 + O(\varepsilon) \quad \text{if and only if} \quad \delta_5 \leq \phi_5(\varepsilon > \phi_5). \]

If denotes by \(R_{1i} \) the first order saddle value at the saddle points \(S_{i\varepsilon} \) of the system (1.1) \(\varepsilon, i = 1, 2, \) then by [9], we have

Lemma 2.3. Assume \(\delta_i = \phi_i, \ i = 1, \ldots, 5, \) then

\[R_{11} = R_{21} = \left(-\frac{7}{9} \delta_1 - \frac{23}{90} \delta_2 - \frac{83}{180} \delta_3 + \frac{3}{10} \delta_4 + \frac{3}{20} \delta_6 \right) \varepsilon + O(\varepsilon^2). \]

Proof. If let \(T_i \) be an reversible matrix such that \(\det T_i = 1, \) \(T_i D_i T_i^{-1} = \text{diag}(\lambda_{i1}, \lambda_{i2}), \) where

\[D_i = \frac{\partial (f, g)}{\partial (x, y)}(S_i), \ i = 1, 2, \) and \(T_2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \) then

\[T_2 \begin{pmatrix} a_{10} + \frac{3 a_{10}}{2} + \frac{5 a_{20}}{4} \varepsilon + O(\varepsilon^2) \\ \frac{3}{2} + O(\varepsilon^2) \end{pmatrix} \begin{pmatrix} 1 + O(\varepsilon^2) \\ b_{01} + \frac{b_{11}}{2} + \frac{b_{21}}{4} \varepsilon + O(\varepsilon^2) \end{pmatrix} = \begin{pmatrix} \lambda_{21} & 0 \\ 0 & \lambda_{22} \end{pmatrix} T_2 \]

and \(ad - bc = 1. \) Thus, we can obtain the following equations
\[a \lambda_{21} = \frac{3b}{2} + a \left(\frac{3}{2}a_{10} + \frac{5}{4}a_{50} \right) \varepsilon + O(\varepsilon^2),\]
\[b \lambda_{21} = a + b \left(\frac{b_{01} + \frac{b_{21}}{2} + \frac{b_{41}}{4}}{2} \right) \varepsilon + O(\varepsilon^2),\]
\[c \lambda_{22} = \frac{3d}{2} + c \left(\frac{3}{2}a_{10} + \frac{5}{4}a_{50} \right) \varepsilon + O(\varepsilon^2),\]
\[d \lambda_{22} = c + d \left(\frac{b_{01} + \frac{b_{21}}{2} + \frac{b_{41}}{4}}{2} \right) \varepsilon + O(\varepsilon^2).\]

Therefore, we have
\[T_2 \left(\begin{array}{c} \frac{1}{\sqrt{6}} + \frac{b_{01} + \frac{b_{21}}{2} + \frac{b_{41}}{4} - a_{10} - \frac{1}{2}a_{30} - \frac{5}{4}a_{50}}{12} \varepsilon + O(\varepsilon^2) \\ \frac{1}{2} + \frac{\sqrt{6}(a_{10} + \frac{3}{2}a_{30} + \frac{5}{4}a_{50} - b_{01} - \frac{1}{2}b_{21} - \frac{1}{4}b_{41})}{12} \varepsilon + O(\varepsilon^2) \end{array} \right), \]

Now making a linear transformation of the form
\[\left(\begin{array}{c} u \\ v \end{array} \right) = T_2 \left(\begin{array}{c} x - x_2 \\ y - y_2 \end{array} \right), \]

where
\[S_2 \varepsilon = (x_2, y_2) = \left(\frac{\sqrt{2}}{2} + O(\varepsilon^2), -\frac{\sqrt{2}(a_{10} + \frac{3}{2}a_{30} + \frac{5}{4}a_{50})}{2} \varepsilon + O(\varepsilon^2) \right). \]

For \((u, v)\) near the origin, we obtain from (1.1)\(_\varepsilon\),
\[\dot{u} = Y + \frac{\sqrt{6}}{3} \left(-X^5 + \frac{5}{2}X^3 - X \right) + \left[-\frac{\sqrt{2}}{2} A + a_{10}X + a_{30}X^3 + a_{12}XY^2 + a_{14}XY^4 \\
+ a_{50}X^5 + a_{32}X^3Y^2 \right] \varepsilon + O(\varepsilon^2) \]
\[\equiv \lambda_{21} \left[u + \sum_{k=2}^{3} \sum_{j+l=k} m_{jl}u^jv^l + O(|u, v|^4) \right], \]
\[\dot{v} = -\frac{\sqrt{6}}{4} Y + \frac{1}{2} \left(-X^5 + \frac{5}{2}X^3 - X \right) + \left[-\frac{\sqrt{6}}{4} \left(-\frac{\sqrt{2}}{2} A + a_{10}X + a_{30}X^3 + a_{12}XY^2 \\
+ a_{14}XY^4 + a_{50}X^5 + a_{32}X^3Y^2 \right) + \frac{2}{3} \left(-5X^4N + \frac{15}{2}X^2N - N + b_{01}Y + b_{21}X^2Y + b_{03}Y^3 \\
+ b_{05}Y^3 + b_{41}X^4Y + b_{23}X^2Y^3 \right) + \frac{1}{2} \left(b_{01} + \frac{b_{21}}{2} + \frac{1}{4}b_{41} - a_{10} - \frac{3}{2}a_{30} - \frac{5}{4}a_{50} \right) \right] \varepsilon + O(\varepsilon^2) \]
\[\equiv -\lambda_{22} \left[-v + \sum_{k=2}^{3} \sum_{j+l=k} n_{jl}u^jv^l + O(|u, v|^4) \right], \]
where

\[X = \frac{\sqrt{2}}{2} + \frac{u}{2} - \frac{\sqrt{6}}{3}v, \quad Y = \frac{\sqrt{6}}{4}u + v, \quad A = a_{10} + \frac{a_{30}}{2} + \frac{a_{50}}{4}, \]

\[N = \left(\frac{\sqrt{6}}{12}u + \frac{3}{4}v \right) \left(a_{10} + \frac{3}{2}a_{30} + \frac{5}{4}a_{50} - b_{01} - \frac{1}{2}b_{21} - \frac{1}{4}b_{41} \right). \]

According to [9] the first saddle value of (1.1) \(\varepsilon \) at \(S_{i\varepsilon} \) is given by

\[R_{i1} = m_{21} + n_{12} - m_{20}m_{11} + n_{02}n_{11}, \quad i = 1, 2. \quad (2.4) \]

The straightforward computing give

\[
m_{21} = \frac{5\sqrt{6}}{12} + \left[-\frac{5(a_{10} + b_{01})}{12} + \frac{(a_{12} + 3b_{03})}{4} + \frac{3(a_{32} + b_{23})}{8} \right. \\
- \frac{3(3a_{30} + b_{21})}{8} - \frac{29(5a_{50} + b_{41})}{48} \] \(\varepsilon + O(\varepsilon^2), \)

\[
m_{20} = \frac{5\sqrt{2}}{24} + \frac{1}{48\sqrt{3}} \left[(18a_{12} + 36a_{30} + 9a_{32} + 60a_{50} - 20b_{01} + 14b_{21} + 19b_{41})\varepsilon \right] \\
+ O(\varepsilon^2), \)

\[
m_{11} = -\frac{5\sqrt{3}}{9} + \frac{1}{18\sqrt{2}} \left[(20a_{10} + 18a_{12} - 6a_{30} + 9a_{32} - 35a_{50})\varepsilon \right] + O(\varepsilon^2), \)

\[
n_{02} = \frac{5\sqrt{3}}{18} - \frac{1}{36\sqrt{2}} \left[(18a_{12} + 36a_{30} + 9a_{32} + 60a_{50} - 20b_{01} + 14b_{21} + 19b_{41})\varepsilon \right] \\
+ O(\varepsilon^2), \)

\[
n_{11} = -\frac{5\sqrt{2}}{12} - \frac{1}{24\sqrt{3}} \left[(20a_{10} + 18a_{12} - 6a_{30} + 9a_{32} - 35a_{50})\varepsilon \right] + O(\varepsilon^2), \)

\[
n_{12} = -\frac{5\sqrt{3}}{12} + \left[-\frac{5(a_{10} + b_{01})}{12} + \frac{(a_{12} + 3b_{03})}{4} + \frac{3(a_{32} + b_{23})}{8} \right. \\
- \frac{3(3a_{30} + b_{21})}{8} - \frac{29(5a_{50} + b_{41})}{48} \] \(\varepsilon + O(\varepsilon^2). \)

Substituting \(m_{21}, m_{10}, m_{11}, n_{02}, n_{11}, n_{12} \) into (2.4), we have

\[R_{21} = \left(-\frac{7}{9}\delta_1 - \frac{23}{90}\delta_2 - \frac{83}{180}\delta_3 + \frac{3}{10}\delta_4 + \frac{3}{20}\delta_6 \right)\varepsilon + O(\varepsilon^2). \]

Using the same arguments, we obtain

\[R_{11} = R_{21} = \left(-\frac{7}{9}\delta_1 - \frac{23}{90}\delta_2 - \frac{83}{180}\delta_3 + \frac{3}{10}\delta_4 + \frac{3}{20}\delta_6 \right)\varepsilon + O(\varepsilon^2). \]

This is the end of Lemma 2.3. \(\square \)

By [7,9,10], we know if \(r_{10} = r_{20} = 1, \sigma_1 = 0, \) and then \(\sigma_2 = R_{11} + R_{21} = 2R_{11}, \) where \(\sigma_2 \) is defined as [9]. Hence, we have \(\sigma_2 = 2R_{11} > 0 \) for (1.1) \(\varepsilon \) when \(\delta_i = \phi_i, i = 1, \ldots, 5. \) Further we have the following rule to discriminate the stability of \(L_i^* \) (\(i = 1, 2 \)), \(L^* \) and the double figure eight loop \(\Gamma^* \).
Lemma 2.4. For $\varepsilon > 0$ small, the homoclinic loops L^*_1 and L^*_2 are stable inside (resp., unstable) if $\sigma_0(\varepsilon, \delta) < 0$ (resp., > 0) or $\sigma_0 = 0$ and $\sigma_1 = \sigma_1 < 0$ (resp., $\sigma_1 = \sigma_1 > 0$) or $\sigma_0 = \sigma_1 = \sigma_1 = 0$ and $R_{11} = R_{21} > 0$ (resp., $R_{11} = R_{21} < 0$).

Lemma 2.5. For $\varepsilon > 0$ small, the heteroclinic loop L^* is stable inside (resp., unstable) if $r_1(\varepsilon, \delta) = 0$ (resp., $r_1(\varepsilon, \delta) < 0$) or $r_1(\varepsilon, \delta) = 1$ and $\sigma_1 < 0$ (resp., $\sigma_1 > 0$) or $r_1(\varepsilon, \delta) = 1$ and $\sigma_1 = 0$ and $\sigma_2 > 0$ (resp., $\sigma_2 < 0$).

Lemma 2.6. For $\varepsilon > 0$ small, the double figure eight loop Γ^* is stable outside (resp., unstable) if $r_1(\varepsilon, \delta) = 0$ (resp., $r_1(\varepsilon, \delta) = 1$) or $r_1(\varepsilon, \delta) = 1$ and $\sigma_1 < 0$ (resp., $\sigma_1 > 0$) or $r_1(\varepsilon, \delta) = 1$ and $\sigma_1 = 0$ and $\sigma_2 > 0$ (resp., $\sigma_2 < 0$).

3. Proof of the main results

In the following, we will find a larger limit cycles which surrounds all five singular points. By [11,14] we need to consider the relative position of separatrices near the double figure eight loop Γ^* and the behavior of orbits near a large periodic orbit L^*_h. The first order Melnikov function of L^*_h is

$$M^*(h) = \oint_{L^*_h} Q \, dx - P \, dy, \quad h > \frac{11}{96}.$$

Here L^*_h: $H(x, y) = h$ surrounds all singular points of system (1.1) for $h > \frac{11}{96}$ and $\varepsilon > 0$ small. From Lemmas 2.1 and 2.2, when $\delta_i = \phi_i$, $i = 1, \ldots, 5$, we can obtain

$$M^*(\frac{13}{96}) = \delta_1 \oint_{L^*_h} y \, dx + \delta_2 \oint_{L^*_h} x^2 y \, dx + \frac{1}{4} \delta_4 \oint_{L^*_h} y^3 \, dx + \frac{1}{5} \delta_5 \oint_{L^*_h} y^5 \, dx$$

$$+ \delta_3 \oint_{L^*_h} x^4 \, dx + \frac{1}{3} \delta_6 \oint_{L^*_h} x^2 y^3 \, dx + O(\varepsilon).$$

Using Mathematica 4.0, for $h = \frac{13}{96}$, we have

$$\oint_{L^*_h} y \, dx = 2 \int_{x_1}^{x_2} \sqrt{\frac{13}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \, dx \approx 3.12974,$$

$$\oint_{L^*_h} x^2 y \, dx = 2 \int_{x_1}^{x_2} x^2 \sqrt{\frac{13}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \, dx \approx 3.48546,$$

$$\oint_{L^*_h} x^4 \, dx = 2 \int_{x_1}^{x_2} x^4 \sqrt{\frac{13}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \, dx \approx 6.22568,$$

$$\oint_{L^*_h} y^3 \, dx = 2 \int_{x_1}^{x_2} \left(\sqrt{\frac{13}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2}\right)^3 \, dx \approx 1.006234.$$
\[\oint_{L^*} x^2 y^3 \, dx = 2 \int_{x_1}^{x_2} x^2 \left(\sqrt{\frac{13}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \right)^3 \, dx \doteq 1.47457, \]

\[\oint_{L^*_h} y^5 \, dx = 2 \int_{x_1}^{x_2} \left(\sqrt{\frac{13}{48} - \frac{x^6}{3} + \frac{5x^4}{4} - x^2} \right)^5 \, dx \doteq 0.429204, \]

where

\[x_1 = -x_2 = -\frac{1}{4} \sqrt{60 + (53568 - 3456\sqrt{58})^{1/3} + 12(31 + 2\sqrt{58})^{1/3}}. \]

Hence, \(M^*(h) = -0.00226\delta_6 + O(\varepsilon) \). By the Poincaré–Bendixson theorem one large cycle \(\Gamma_1 \) exists which surrounds five singular points since the double figure eight loop \(\Gamma^* \) is unstable for \(\sigma_2 > 0 \) (see Fig. 4).

Now we are in a position to prove our main result. From the above analysis, we know the single homoclinic loop \(L_i^* \) (\(i = 1, 2 \)) and the heteroclinic loop \(L^* \) are stable, and the double figure eight loop is unstable, when \(R_{11} > 0 \). Keep \((\varepsilon, \delta_6) \) fixed and let \(\delta_5 < \phi_5 \) and \(0 < \phi_5 - \delta_5 \ll \varepsilon \). Thus \(L^* \) has changed their stability from stable into unstable, and hence one small stable limit cycle \(L_{31} \) has appeared inside \(L^* \). Keep \(\delta_5 \) fixed and let \(\delta_4 \) satisfy \(0 < \delta_4 - \phi_4 < \phi_5 - \delta_5 \ll \varepsilon \), thus \(L_1^* \) and \(L_2^* \) have changed their stability from stable into unstable, and hence two small stable limit cycles \(L_{11} \) and \(L_{21} \) have appeared with \(L_{11} \subset L_1^* \) and \(L_{21} \subset L_2^* \), see Fig. 5.
Now keep δ_4 fixed and let δ_3 satisfy $0 < \delta_3 - \phi_3 \ll \delta_4 - \phi_4 \ll \phi_5 - \delta_5 \ll \varepsilon$. Again the stability of L_1^* and L_2^* changed, and then another two small unstable limit cycles L_{12} and L_{22} are born out with $L_{11} \subset L_{12} \subset L_1^*$ and $L_{21} \subset L_{22} \subset L_2^*$. Simultaneously the stability of heteroclinic loop L_3^* has got changed again, and then a small unstable limit cycle L_{32} has appeared with $L_{31} \subset L_{32} \subset L_3^*$. Also the double eight figure loop Γ^* has changed its stability from unstable into stable, and hence a large unstable limit cycle Γ_2 has appeared outside Γ^* with $\Gamma_2 \subset \Gamma_1$, see Fig. 6.

Keep δ_3 fixed, if we change δ_2 by $0 < \delta_2 - \phi_2 \ll \delta_3 - \phi_3 \ll \delta_4 - \phi_4 \ll \phi_5 - \delta_5 \ll \varepsilon$. And then L_3^* and L_4^* have broken, and hence generated another one small stable limit cycle L_{33} with $L_{31} \subset L_{32} \subset L_{33} \subset L_*$. Finally keep δ_2 fixed and let δ_1 satisfy $0 < \phi_1 - \delta_1 \ll \delta_2 - \phi_2 \ll \delta_3 - \phi_3 \ll \delta_4 - \phi_4 \ll \phi_5 - \delta_5 \ll \varepsilon$ so that L_1^* and L_2^* have broken and two small stable limit cycles L_{13} and L_{23} have appeared with $L_{11} \subset L_{12} \subset L_{13} \subset L_1^*$ and $L_{21} \subset L_{22} \subset L_{23} \subset L_2^*$, see Fig. 7.

Under $\delta_i = \phi_i$, $i = 1, \ldots, 5$, we have

\[
\text{div}(O(0, 0)) = \delta_1 \varepsilon + O(\varepsilon^2) \doteq -0.0226 \delta_6 \varepsilon + O(\varepsilon^2) < 0,
\]

\[
\text{div}(O_{1\varepsilon}) = \text{div}(O_{2\varepsilon}) = (\delta_1 + 2 \delta_2 + 4 \delta_3) \varepsilon + O(\varepsilon^2) \doteq -0.20055 \delta_6 \varepsilon + O(\varepsilon^2) < 0.
\]

Hence, the singular points O, $O_{1\varepsilon}$ and $O_{2\varepsilon}$ are stable. Notice that L_{11}, L_{21} and L_{31} are also stable. By the Poincaré–Bendixson theorem, we know there are three small unstable limit cycles L_{10}, L_{20} and L_{30} with $L_{10} \subset L_{11}$, $L_{20} \subset L_{21}$ and $L_{30} \subset L_{31}$ respectively. The proof of Fig. 1(a) is completed. Using the same arguments, we can obtain the second distribution.

This is the end of proof for the main result.
References

[1] N.N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb. (N.S.) 30 (72) (1952) 181–196.