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A B S T R A C T  

Let G be a finite, complex reflection group acting on a complex vector space V, and 6 its disciminant 
polynomial. The fibres of 6 admit commuting actions of G and a cyclic group. The virtual G x Cm 
character given by the Euler characteristic of a fibre is a refinement of the zeta function of the geo- 
metric monodromy, calculated in [8]. We show that this virtual character is unchanged by replacing 

by a slightly more general class of polynomials. We compute it explicitly, by studying the poset of 
normalizers of centralizers of regular elements in G, and the subspace arrangement given by the 
proper eigenspaces of elements of G. As a consequence we also compute orbifold Euler character- 
istics and find some new 'case-free' information about the discriminant. 

1. S U M M A R Y  

Let G be a finite reflection g roup  ac t ing  on  the vector  space V = C e. Let ,4 de- 

note  the set of  reflecting hyperp lanes  of  G. For  each H E M, let a n  E V* be a 

l inear  func t iona l  with kernel  H.  The d i s c r iminan t  p o l y n o m i a l  6 of  G is defined 

to be 

eH 
6 - -  I ]  a n , 

H E A  

where eH is the order  of  the subgroup  of  G tha t  fixes H pointwise.  6 is the G- 
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invariant polynomial of smallest degree whose zero set is exactly the set of re- 
flecting hyperplanes. Let m -- deg 6. 

The fibres of 6 over C* are diffeomorphic, by a theorem of Milnor [16]; let 
F = 8-1(1), the Milnor fibre of 6. The action of G on V restricts to an action on 
F. At the same time, a cyclic group C,n acts on F, generated by a geometric 
monodromy map h : F ~ F defined by h(x) = e2~i/mx. 

The actions of G and Cm commute. Let F = G × Cm. Then H.  (F, C) is a fi- 
nite-dimensional representation of F. In this paper, we consider the Euler 
characteristic of F, valued in the character ring of F. That is, we define a virtual 
character Xr by 

(1.1) xr(F)(g) = ~ (-1)PTr(g, Hp(F,C)). 
p>_O 

This is a refinement of the usual zeta function of the monodromy of the Milnor 
fibre, which Denef and Loeser [8] have calculated for all reflection groups. 
Their technique uses Springer's theory of regular elements [20]: g E G is called 
a regular element of G iff it has an eigenvector that is not contained in any re- 
fleeting hyperplane. 

In particular, Springer [20] has shown that the centralizer of a (noncentral) 
regular element in G acts as a reflection group on a (proper) subspace of V. 
Using this idea and its elaboration in [8,15], we find a recursive formula for the 
Euler characteristic Xr (Theorem 3.13). 

For a fixed reflection group G, let MG = M = V - U14 e.aH be the hyperplane 
complement, and U its image in P(V). These spaces have been studied ex- 
tensively in the context of hyperplane arrangement theory; see, for example, 
[14]. On the other hand, let £ denote the set of all maximal eigenspaces E of 
elements of G for which E ~ V. Let 

(1.2) M ° =  V -  U E, 
EEg 

and U ° the image o f M  ° in P(V). U ° is the complement of a projective subspace 
arrangement, in the sense of Bj6rner [1], and to the authors' knowledge has not 
been studied directly before. 

G/Z(G) acts freely on U °. We find a formula for the Euler characteristic of 
the orbit space in terms of degrees, codegrees, and regular numbers (4.22), and 
we calculate it for each irreducible G (Theorem 3.15). We show that this de- 
termines Xr for each G (Theorem 3.13). 

2. SPRINGER'S  THEORY OF REGULAR ELEMENTS 

In this section, we recall the theory of regular elements and set up our notation. 
We refer to [17] for background on reflection groups and hyperplane arrange- 
ments and to [20] for background on the theory of regular elements. 

Let V = C e and let G be a finite reflection group acting on V. We will denote 
by C[V] the algebra of polynomial functions on V. The degrees d l , . . . ,  de of G 
are the degrees of any set of homogeneous polynomials which generate the G- 
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invariant polynomial ring C[ V] 6. The order of  G and of  its centre Z(G) are de- 
termined in terms of  its degrees: 

(2.3) Ial = 11 d, IZ(a)l = gcd{di} 
i = l  

A vector v E V is called regular if it is not contained in a reflection hyperplane 
of  G. An element g E G is called regular if it has a regular eigenvector. Let g E G 
be regular of  order d. Let v be a regular eigenvector with corresponding eigen- 
value ~ and let V(g, ~) denote the ~-eigenspace of  g. We will refer to (g, ~) as a 
regular (d-)pair. 

With this notation, we have: 

Theorem 2.4 (Springer [20]). 
(a) The root of unity ~ has order d. 
(b) V(g, ~) has dimension a(d) = 1{i : dldi}l. 
(c) The centralizer CG(g) is a reflection group in V(g, ~) whose degrees are 

{ ~. : dldi } and whose order is [Idldl di. 

The orders of  the regular elements of  G are called the regular numbers of G. Let 
denote the poset of  regular numbers, ordered by divisibility. 
The group G < GL(V) also acts naturally on the algebra of  polynomial vec- 

tor fields on V, C[V] ® V. The module (C[V] ® V) 6 is free over C[V] 6. Fol- 
lowing [2], the codegrees d~, . . . ,  d~ are defined to be the degrees of  a homo- 
geneous basis, with the convention that derivations have degree -1 .  By a 
theorem of Orlik and Solomon [19] 

(2.5) ~ dimHi(U,C) ti = 11 (1 + (d* + 1)t) 
i = 1  i = 2  

Using a case-based argument, Denef  and Loeser [8, Theorem 2.8] proved that, 
for a regular d-pair (g, ~), the codegrees of  Co(g) acting on V(g, ~) are 

(2.6) {d ; :  did; } 

Lehrer and Springer [15, Theorem C] later reproved this result in a case-free 
way. 

3. E U L E R  C H A R A C T E R I S T I C S  

Following [2], for each G-orbit of  hyperplanes C E A/G, set 

~C. H ec 
HeC 

where ec is defined to be the common value of  eH for all H E C. noting that eH is 
constant for all H E C. Consider any homogeneous, G-invariant polynomial 
f E C[V] ~ with zero locus equal to UHe.4 H. T h e n f  has the form 
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(3.7) f =  H 5~e 
CeA/G 

for some positive integers ac; in particular, the discriminant is obtained by 
choosing all ac = 1. We shall call s u c h f  unreduced discriminantpolynomials. 

Denote the degree o f f  as above by nt Thenf(gv)  = f ( f v )  = (mf(v) for any 
regular element g with eigenvalue v, so the order of ( must divide m. That is, all 
regular numbers d E R divide m. 

Let F = f -1  (1). Note that the projectivization map from M to U restricted to 
F shows that F is a cyclic m-fold cover of U. 

Let P = 7q (M, 1), the pure Artin braid group corresponding to the group G. 
Since F is homotopy-equivalent to an infinite cyclic cover of M, we have 

P Ho(F, C) =~ H°(M,C[x,x-1]), where C[x,x -l] ~ C T~I(F ) as a P-module; see [9, 
Section 2.1] and [10]. Explicitly, P has a set of generators {Tn : H E ,A} for 
which 7/-/acts by multiplication by x ~cec. 

The complement M is known to be a K(P, 1) space for all irreducible reflec- 
tion groups with the possible exception of G24, G27, G29, G31, G33, and G34; see 
[2, (2.11)] for references. Thus we have Ho(F, C) --- Ho(P, C[x, x-l]) except per- 
haps in these cases. Let B = T q ( M / G ,  1), the braid group. Then 
Ho(P, C[x+l]) a ~ Ho(B, C[x+l]) (over C). For all real reflection groups, this is 
computed explicitly in [7]. 

The Lefschetz zeta function of F is defined to be 

Z(F) = H d e t ( 1  - h, tlHAF,C)) (-1F, 
p>O 

where h* denotes a preferred generator of Cm acting in homology. Since a 
complex representation of Cm is determined by the characteristic polynomial 
of a generator of the group, the zeta function can be seen as the restriction to 
Cm of the Euler characteristic xr(F) defined in (1.1), written multiplicatively. 
We will identify Cm = (h*) with the cyclic group of m elements in C*. For con- 
venience, we will take the convention that a E Cm acts on F by multiplication 
by a-1. 

For a reflection group G and integers dim, define 

tG xCm Id( G) = Ia  = 1 " G 

whenever Ca is a cyclic subgroup of order d generated by a regular pair (g, 4) of 
order d. 

Lemma 3.8. The cyclic groups generated by any two regular pairs of  the same 
order are conjugate in 1". In particular, the definition Of ld( G) above does not de- 
pend on the choice of  regular pair (g, (). The normalizer in 1" of  the cyclic subgroup 
generated by (g, () E F is Ca(g) x Cm. 

Proof. Let (g, () and (g', ~) be two regular pairs of  order d, generating cyclic 
groups K and K' ,  respectively. Since any two primitive roots of unity of the 
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same order generate the same cyclic subgroup of  C*, ~ = ck for some k. Then 
(gk, ~) is also a regular pair of  order d, so gk and g'  are conjugate, by [20, 4.2]. It 
follows that the subgroups K and K '  are conjugate. Id(G) is well defined since 
the permutat ion characters induced from K and K '  are the same [6, 10.12]. 
Since (h, a) C Nr((g, ~)) iff (hgh -1, a) = (gk, ~k) for some k iff h E Co(g), 
a c Cm, we have that Nr(((g,~))) = Co(g) × Cm. [] 

The following theorem appeared independently as [8, Theorem 2.5] and [14, 
Corollary 5.8]. 

Lemma 3.9. / f  (g, () is a regular pair and V is the (-eigenspace o f  g, then the 
centralizer C(g) acts as a reflection group on V. Its reflecting hyperplanes are 
{ H n V : H 6 A } .  

Definition 3.10. For a regular d-pair (g, ~), we define U(g, () as the projective 
hyperplane complement for C6(g) acting on V(g, ~) where (g, ~) is a regular d- 
pair. 

From Lemma 3.8, C6(g) is conjugate to CG(g') if (g, ~) and (g', ~) are both 
regular d-pairs. This means that they are isomorphic as reflection groups, and 
we will refer to them, up to isomorphism, as G(d), as in [15]. 

By the lemma above, then, U(g, ~) and U(g', ~) are diffeomorphic; we will 
refer to them as U6(d). 

Definition 3.11. Define a poset 79 = De by 

79 = {d : d = IZ(CG(g))[ for a regular element g}, 

ordered by divisibility. That is, 79 is the set of  orders of regular elements g that 
are maximal with respect to the property of  having a given centralizer. For 
elements d E ~6 ,  define r d] to be the least multiple of  d in D. 

Note that {G(d) : d E D} forms a complete set of  representatives of  the iso- 
morphism classes of  centralizers of  regular elements. Observe that [d~ = 

IZ(G(d))l = gcd{di : aide}. 
Recall M ° C_ M from (1.2), and U ° C_ U. By construction, 

Proposition 3.12. G/Z(G) acts freely on U °. 
We can now state our main result. 

Theorem 3.13. Let G be a reflection group, f an unreduced discriminant poly- 
nomial (3.7) of  degree m, and F its Milnor fibre. Then 

xr (F)  = ~ adla, 
d C D  

where the integers aa are given by 

(3.14) ad = x(U(d)°/G(d))  

A case analysis gives a more refined description. First, xr(F)  is zero unless G is 
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irreducible, since x(U) = 0 in this case: this appears first in the language of 
matroids in [5]. Denef and Loeser [8, 2.9] show that the centralizers of regular 
elements in irreducible G are themselves irreducible. With this in mind, it is 
enough to calculate az = x(U°/G),  where z = IZ(G)I, for each irreducible G. We 
obtain: 

Theorem 3.15. For an irreducible reflection group G of rank n, x (U°/G)  = 
( _ l ) n - l  i f  G is in the list below. Otherwise, x(  U° / G) = O. 

(a) Irreducibles o f r a n k  < 2; 
(b) Irreducibles of  the form G(deg, eg, g), except G(3, 3, 3); 
(c) G(dee, eg, 2g) where eg is odd," 
(d) Exceptionals G29 and G34. 

Corol lary 3.16. For a Milnor fibre of  a given reflection group as above, Xr is a 
linear combination o f a t  most six permutation characters Id, with coefficients + 1. 

The value of Xr for each irreducible reflection group is tabulated in Section 6. 
We also observe empirically that, like the zeta function, Xr continues to be a 

braid diagram invariant, in the sense of Brou6, Malle, and Rouquier [2]. 

Example  3.17. Let G be the irreducible reflection group of type E8. The degrees 
are [2, 8, 12, 14, 18, 20, 24, 30] and the poset D is: 

1 

2 

4 

8 

where the numbers on the left of the diagram are the ranks of each of the cen- 
tralizer subgroups corresponding to the elements of D in that row. By the 
Shephard-Todd classification, the centralizers of elements of order 4 and 6 are, 
respectively, G31 and G32. Applying Theorems 3.13 and 3.15 shows that 

~ E s x C m  = 130 q- 124 + / 2 0  - -  /12 - -  11o - / 8 .  

The rest of this paper is as follows. Theorem 3.13 is proven in Section 4. 
Theorem 3.15 is proven in Section 6. We are unable to provide a case-free proof 
of Theorem 3.15 in general, although in Section 5 we do so for rank 2 irre- 
ducibles. 

4. PROOF OF THEOREM 3.13 

Throughout this section, fix a particular reflection group G acting on V = C e. 
We will use the notation of Section 3. 
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For a regular element g E G of order d, let it(d) be the order of  its centralizer, 
and let u6(d) be the Euler characteristic of  U(d). Then i (d )= I-Idldidi 
(Theorem 2.4). By evaluating (2.5) at t = - 1  and using (2.6), we see u(d) = 

( - d ;  ). 

If  (g, () is a regular pair of  order d, then by [20, 3.4], there is a regular pair 
(h, ~) of order rd] for which C(g) = C(h) (and, hence, U(g, () --- U(h, ~)). It 
follows that i(d) -- i([at]) and u(d) = u([d] ). 

For (g, () E G x Cm, we have that 

(4.18) 
xr(F)(g,  () = x (F  (g'¢)) = deg(6),  x( U(g, ()) 

= ~ m.  u([d]) if (g, () is regular of  order d; 
[ 0 otherwise. 

where the first equality follows from a refinement of  the Hopf-Lefschetz fixed 
point theorem [3] and the second equality is a consequence of  the fact that F is a 
cyclic m-fold cover of  U. 

Lemma 4.19. There exist rationals {ad : d E 79}for which 

(4.20) Xr = ~ aala. 
dEW 

Proof. We claim that, if Id is induced from a regular pair (g, () of  order d, then 

f ~ IC(h)l if (h, ~) is regular of  order d', d'ld; (4.21) Id(h, 
l 0 otherwise. 

This follows by directly evaluating the induced character and using Lemma 3.8: 
Id(h, ~) is nonzero only if (h, ~) is conjugate to a power of  (g, (), the generator of  
Cd, which is equivalent to (h, ~) being a regular pair of  an order dividing that of  
g. 

Define an equivalence relation ~ on G × C,n by setting (g, () ~ (h, ~) iff ei- 
ther: neither is a regular pair; or, both are regular pairs, and [g] = [h~. 

The equivalence classes of  ~ are unions of  conjugacy classes. Moreover, 
(4.21) shows that each Id is constant on classes of  ,~. 

The characters Ia span the Q-vector space of  functions that are both constant 
on ~ classes and zero on the nonregular equivalence class, since their values on 
the regular pairs form a triangular matrix, by (4.21). 

By (4.18), Xr is such a class function, which completes the proof. [] 

4.1. coefficients ad from (co)degrees 

By evaluating (4.20) on a regular pair of  order d E 79, we obtain 

m . u ( d )  = ak m" 
kET~:dlk ~t (d ) ,  

whence by M6bius inversion, 
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~:~lk "( ) '  
(4.22) 

= d ~ 2  .(d,k)l-I a;l-[ d/-1 
k:dlk /:kid* i:kldi 

d; ¢-o 

where # is the M6bius function of  the poset 79. 

Remark 4.23. Any rational character of  a finite group can be expressed as a 
rational linear combination of induced permutat ion characters from cyclic 
subgroups by the Artin-Brauer induction theorem [6, 15.2]. The coefficients can 
be determined and are non-zero only if the character is non-zero on that cyclic 
subgroup. In our situation, however, the cyclic subgroups Cd, d E D are re- 
presentatives of  isomorphism classes (hence a subset of  the set) of cyclic sub- 
groups of F with x r ( F )  non-zero. Our argument above is then a direct way to 
compute the coefficients ad, d E D for our special case. 

4.2. induction from a centralizer subgroup. 

Given a regular element go E G of order e E 79, let H = C6(go). From [20, 4.2], 

and Definition 3.11 we observe: 

Lemma 4.24. The maximal regular numbers o f  H a r e  Dn  = {d E 794 : eld}. 

By Lemma 4.19, 

Xn×Cm = ~ aJla(H), and 
d E 79H 

Xa×Cm = Y~ aald 
dE79 

for some coefficients {a'd},  and {aa}. 

Theorem 4.25. I f  G and H are as above, andm'lm, then 

TG×Cm 
X G x f m  = X n x C  m, n x C m  , + Y~ aala. 

d E 79:e~d 

Consequently, in the notation above, a a = a~for all d E DH. 

Proof. We need to show that the values ad given by equation (4.22) for d E D/4 
are the same in H as they are in G. Specifically, we need to show for multiples k 
of  e, that i6(k) = in(k), and that uG(k) = un(k).  

So suppose that g E H is a regular element of order k, where elk. Then go is 
conjugate to a power of g, so C~(g) c_ Cc(go) = H; that is, C6(g) = Cn(g), so 
iG(k) = iv(k).  

Now assume, without loss of  generality, that g = g~ for some r, and choose 
so that (g, if) is a regular pair. Then the ~ eigenspace o f g  in VG is contained in 
Vn, so UG(g, ~) = Ul4(g, ~) (Lemma 3.9.) Then ua(k) = un(k)  as well. [] 
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4.3. interpretation of coefficients ad. 

For d E 79, let Fd = F D I'd, where 

Vd---- Df/-l(0), 
d~d~ 

the variety of  eigenvectors of  elements of  G having eigenvalue a primitive dth 
root of  unity; see [20, 3.2]. In particular, Fz = F, where z is the order of  the 
centre of  G. Let 

did' 
d'C:d 

Proposition 4.26. For any d E 79, 

FO Xo×c,.(Fd) = S ,  Xo×c,.( 
diED 
did' 

Proof. The finite collection {Fd, : d id ' }  of closed subsets of  Fa, is closed under 
intersections and contains Fa as an element. So in the terminology of  [11, 2], 
this is an Eulerian collection. In addition, by [11, 2.5], the equivariant Euler 
characteristic is an additive function. Then the result follows directly from [11, 
2.2]. [] 

To complete the proof  of  Theorem 3.13, it remains to show that the coefficients 
ad given by Lemma 4.19 satisfy ad = x ( U ( g ,  ( ) ° / C 6 ( g ) )  for regular pairs (g, () 
of  order d E D. 

Let z = IZ(G)I. From Proposition 3.12, the quotient map F z -~ U ° / G  is a 
covering with deck transformation group G x Cm/((g,  ()), where (g, () is any 
regular z-pair. It follows that 

F o .to×c,, XG×Cm( ) = x ( U ° / G )  " 1 , q  , 

= x ( U ° / G )  • Iz. 

By Theorem 4.25, then, for each d E D, 

x r ( F $ )  = x ( U ( d ) ° / a ( d ) ) t d ,  

Now, using Proposition 4.26 with d = z, we have 

x r ( F )  = ~ xr(F~) 
dE D 

= E a j a ;  
dE D 

equating the coefficient of  Id for each d gives the characterization of  the values 
ad that we claimed. 
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5. THE R A N K  TWO CASE 

For finite groups acting on C 2, a stronger version of Theorem 3.15(a) is ob- 
tained from the theory o f d u  Val singularities, for which we refer to [12]. 

Theorem 5.37. Let G be an irreducible finite subgroup of U2(C). Then 

x(U~/G) = -1.  

Proof. Note that a finite subgroup G of GLe(C) can always be embedded in 
Ue(C). Let Z := Z(Ue(C)) = {aI  : a ~  = 1}. Let H := (G. Z) N SUb(C); then 
Z(H)  = H N SUb(C). It is easy to check that the map G/Z(G) ~ H / Z ( H )  de- 
fined by gZ(G) H g(det(g)l/e)Z(H) is an isomorphism; therefore G and H are 
both central extensions of the same group H. Then G and H act on C e a n d / t  
acts on pe-  i. Proper eigenspaces for the action of G on C e are the same as those 
for H. Moreover, if v is an eigenvector for an element h c H , its image 
[U] E P g -  1 is a fixed point of hZ(H) C {-1. 

Now, let g = 2. Note that for G < U2(C), there exists a reflection group 
G' _< U2(C) wi th /~  = G/Z(G) ~- G'/Z(G') .  Then p1/ f I  ~- P1/G ~- p1/G' ~ pl 
where the last isomorphism follows from the Shephard Todd Chevalley theo- 
rem. 

Since PSU2(C) ~= S03, lrt is isomorphic to a finite subgroup of S03. The fi- 
nite subgroups of S03 are known: they are the groups of symmetry of the reg- 
ular polyhedra: cyclic, dihedral, tetrahedral (A4), octahedral ($4) and icosahe- 
dral (A5). Since G was assumed to act irreducibly, /(r is not cyclic. For the 
remaining finite subgroups of S03, Klein [13] showed that there are exactly 
three orbits in S 2 of points with nontrivial stabilizers (corresponding to ver- 
tices, barycenters of edges of the regular polyhedron, and barycenters of faces.) 
Since p1/G ~ p1, it follows that U°JG = pl _ (P0,pl,p2}, where thep/'s are the 
3 'special' orbits under the action of H on pl.  Thus X (U°c/G) = 2 - 3 = - 1. [] 

6. PROOF OF THEOREM 3.15 

The Shephard-Todd classification of irreducible (complex) reflection groups 
consists of one infinite family and 34 exceptional groups labelled as G4, . . . ,  G37. 
The tables in Figures 1,2,3 give Xr for the exceptional groups; these values are 
readily calculated from (4.22). 

For any reflection group G, put c(G) = x(U°/G).  From Theorem 3.13, this 
equals the coefficient of Iiz(a)l in Xr. By Theorem 4.25, for d E 79, the coefficient 
ad Of ld is c(G(d)). 

Theorem 3.15 claims that for exceptional irreducible G, c(G) = 0 unless G 
has rank g = 2 or G is one of G29 or G34, in which case c(G) = (-1)  e-1. Our 
proof in ranks g > 2 is by inspection, after having computed Xr for each group. 

The rest of this section is devoted to proving Theorem 3.15 for the infinite 
family of reflection groups G(r,p, g). 
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6.1. (co)degrees and regular numbers. 

For r,p E N withplr  and rank g _> 2, G(r,p, g) is a group of order re/pg!. It is the 
semidirect product of the symmetric group Se acting by permutations on the 
standard basis {ei : 1 < i < g}, and the group of diagonal maps ei ~ Oiei, where 
O r = 1 and (01 .- .  Or) q = 1 where q = rip. The group acts irreducibly on C t i f f  
r > 1 and (r,p,g) ¢ (2,2,2). G(r, 1,g) is the full monomial  group C[>~ St and 
that the Weyl groups At- l ,  Be, De, (;2 and the dihedral groups I2(~) equal res- 
pectively G(1, 1, g), G(2, 1, g), G(2, 2, g), G(6, 6, 2) and G(g, g, 2). The codegrees 
are calculated in [18], and the regular numbers appear in [4]. The degrees of 
G(r,p, g) are 

f r, 2 r , . . . , ( g - 1 ) r ,  gq, plr, r > 1 
(6.28) 

2 , 3 . . . , ( g -  1),g, p = r = l .  

the order of the center z is q gcd(r, g). The codegrees are 

0, r , 2 r , . . . , ( g -  1)r, p < r 
(6.29) O , r , 2 r , . . . , ( g - 2 ) r , ( g - 1 ) r - g  p = r > l , g > l  

0, 1 ,2 , . . . ,  ( g -  2), p = r =  1 , g > 2  

Note that the adjustments in the degrees and codegrees of G(1, 1, g) = St are 
made so that Se acts irreducibly. 

Remark 6.30. Since the degrees and codegrees o f  G(d) are those o f  G which are 
divisible by d, we see for G = G(r,p, g) and e = (gcd(d, r) )-l d, the degrees o f  G(d) 
are 

(6.31) 
{ er ,2er , . . . ,  /f-~-/J er, d ~ gq 

er ,2er , . . . ,  [t~!Jer, gq, dllq 
2 , 3 , . . . , g ,  d = r =  1, 

as noted in [15]. Lehrer and Springer prove indirectly in [15, 5.2] that 
G(d) = G(r' ,p' ,g')  for  G = G(r,p,g) and d E 7¢. In the proposition below we 
make the determination o f  G(d) explicit to help in our computation o f  c(G). 

Proposition 6.32. 
(a) For G -  G(r,p,g), q = rip > 1, we have 7¢ = {d:  dleq} and D = 

{kq : tlklg} where t = gcd(p, g). Then for kq E 79, G(kq) = G(kr/t ,p,  gt/k). 
(b) For G = G(r, r, g), g > 1, we have 7¢ = {d:  dleq} U {d:  dl(g - 1)r} and 

D = {kr:  k l g -  1} u {d:  zldlt } 

where z = gcd(r, g). For kit  - l , k r  # z, we have G(kr) = G(kr, 1, (g - 1)/k) and 
for zldl~ we have G(d) = G(dr/z, r, gz/d). 

Proof. In each case, let z = [Z(G)1, equal to the greatest common divisor of  the 
degrees. In the first case, z = gcd(pq, gq) = tq, where t = gcd(p, g). In the sec- 
ond case, this is just z = gcd(r, g). 
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Case (a): For  G = G(r,p, g) with q > 1, the only maximal regular degree of  G 

is gq [4, 2.11]. Thus the set of regular numbers is R = {d : dlgq}. I f d  C 79, then d 
is a gcd of a subset of the degrees. So qtld, since z = qt is the gcd of all the de- 
grees. To show that 

73 = {kq : gcd(p, g)lkle} 

we need to show that G(d) are distinct for distinct d in this set. Observe that if 
gcd(p, e)lkle, then gcd(p, k) = gcd(p, g). But as is implicitly shown in the proof  
of [15, 5.2] we have for tlklg, 

G(kq) = G(kr/t ,p,  gt/k) 

So we have shown that 73 and G(d), d E 73 are described as in the claim. 
Case (b): For G --- G(r, r, g), with g > 1, the maximal regular degrees are (g - 1)r 
and g [4, 2.11]. So the set of  regular numbers is 

n = {a :  dig} U {d:  d l ( g -  1)r} 

For d E 73, z = gcd(r, g), and zld since d is the gcd of a subset of  the degrees. If  
d E 79 does not divide g, then dl(g-1)r and d is a gcd of  a subset of 
{ r , . . . ,  (g - 1)r} so that rid.We have shown that 73 c_ Tl U T2, where 

(6.33) T1 = {d:  zldle} and T2 = {kr: k l g -  1}. 

Note that these sets intersect iff gcd(r, g) = r, iff r[L To show the inclusion is an 
equality, we have to show that G(d) are distinct for distinct d E T1 U T2. I f  
d C Tl, we have gcd(r,d) = gcd(r,g) = z, so that by the proof  of  [15, 5.2], 
G(d) = G(dr/z, r, gz/d). 

On the other hand, if d = kr where kle - 1 but d ¢ z, we have by the proof  of  
[15, Proposition 5.2] that G(kr) = G(kr, 1, (g - 1)/k). These groups have dis- 
tinct parameters for each d c T1 U T2, so 73 = Tl U T2 as claimed. [] 

6.2. Proo f  of  Theorem 3.15 for G(r,p, g). 

It remains to show that c(G) = 0 for irreducible G = G(r,p, g), except for the 
parameters (deg, eg, g) ~ (3, 3, 3), and for (deg, eg, 2g), where eg is odd. For these 
exceptions, we show c(G)= ( - 1 )  e-l. It will be convenient to let S(m,k)  = 
1/m ~-~dl m #(d) ( -  1 )md/k - 1, where # is the (number-theoretic) M6bius function 

on N. 

Lemma 6.34. 

( - 1 )  kin-1 m = 1, or m = 2 and k odd 
S(m,k)  = O, otherwise. 

Proof.  Recall t h a t  ~dlm #(d) = 6m,1. Consider the case where k is odd and m 
even. Write m = 2st for t odd. Then 
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{ 1 
S (m ,k )  = l E 

m \ dim, mid even  =_(l - 
m dim, 2" [d 

2 
- -  6rn,2 = - - t~m,2.  

m 

The  remain ing  cases are similar.  [ ]  

#(d) + ~ #(d)] 
dim , mid odd  / 

# ( 2 s ) # ( d ) )  

At  the same  t ime,  we will ca lcula te  Xr. 

Proposition 6.35. Let  F = G × Cm and m = deg(66). Then 
(a) For G = G(r,p, g) and q = rip > 1, 

Itq, g odd; 
Xr = -I tq,  g and p even; 

ltq - Iqt/2, g even, p odd. 

(b) For G = G(r, r, g), and g > 1, 

I(t-1)r - - / r (g- l ) /2  q -  It, g odd; 
Xr = I(t-l)r - It, r, g even; 

I(g_l)r d- It - IU2 g even, r odd. 

Proof .  We will handle  Cr as the special  case G(r, 1, 1) o f ( a )  and  St as the special  
case G(1, l ,e)  of  (b). Recal l  tha t  n = rk(G(r ,p ,g) )  = g unless r = p  = 1 when  
n = r k ( G ( 1 , 1 , e ) )  = ~ -  1 since G( I ,  l ,e)  = St acts  i r reducibly  on an g -  1 di- 

mens iona l  space.  
(a) For  G = G(r,p, g), p < r, we have 

79 = {kq : tlklg } 

where  t = gcd(p, g) and  for  tlkle, G(kq) = G(kr / t ,p ,  St~k). So 

k "u(kq) c(a) = atq = tq E I~(tq, q) 
tqlkq 

l/t'/k-1 

= S(g/t ,  t) 

= ~ ' ( - 1 )  t - l  g =  t or g =  2t, t odd (g~ or ~ o , p  odd.) 

/ 0 otherwise .  

Fo r  G(kq) = G(kr / t ,p ,  gt/k) with tlklt we have  

( (--1) tt/k-1, k = g or  k = g/2,p  odd  
e( G(kq) ) = akq = 0, o therwise .  

This  shows tha t  
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/gq, g odd; 
~F = --Igq, p, g even; 

I ~ q  - -  Iqel2, g even, p odd,  

as required. 
(b) For  G = G(r, r, g), g > 1, by Proposi t ion 6.32, 79 = Tl U T2, defined in 

(6.33). For  d E 7"1, we have G(d) = G(dr/z ,  r, gz/d),  and for d E T2, G(d) = 
G(kr, 1, (g - 1)/k). Since z = god(r, g), we have z E T1, and z E T2 if  and only if 
z z r .  

c(a)  = az = z ~ #(z,  d) i(d) 
d E D  

u(z) =zi +z E .(z,d) +z E kr) u(kr)( 
de r j -  {z} kre r2-{z} i , k r  

__ l_)r; e) z a 
" -" g ( g -  1)r ~-? E # ( z ) ( - 1 )  a/" 

1 ~ {1~ 
Z 

+ (g - 1~----~ ~ IZ(z, k r ) ( - 1 )  ( t - l ) / k -1  
) k l f - l , k r # z  

Z Z 
= (-1)e-1 (g 1)-----~ + S ( e / z , z )  + (e - l'-------r E #(z,  k r ) ( _ l ) ( e - 1 ) / k - ,  

- -  ) k l t - l , k r # z  

Note that  i f z  # r then #(z, r) = - 1  and #(z,  kr) = 0 for all 1 # klg - 1 whereas 
i f z  = r then #(z, kr) = # ( k r / z )  = #(k). So we have 

c(G) = S(g/z ,  z) + 6zrg(g -- 1, 1) 

This means that  c(G) -- ( -1 )  n-  1 where n = rk (G) iff 

glr, 
-e]r 

~r,g) = (1,3) 

(r, g) # (2, 2), (3, 3) 
r odd 

Otherwise c(G) = 0. Note  that  c(G(2, 2, 2)) = 0 agrees with the s ta tement  since 
G(2, 2, 2) is reducible. Also observe that  if G = G(r,p,  g) is a rank 2 irreducible, 
we obtain c(G) = - 1 as was predicted in Section 5. This includes the case of  the 
rank 2 irreducible G(1, 1,3) = $3. 

To compute  Xr, it remains only to find aa, for d c 79. I f  d E T1, by part  (a), 

_~ ~ { (--1) "~-1 d = t ,  or d = g / 2 ,  r odd; 
ad = c(G( ,r, )) = 0 otherwise. 

For  d E T2, 

ad = c(G(kr, 1 ,~ - ) - ) )  = 1 
d = ( g -  1)r; 
d = r ( t?-  1)/2, e odd; 
otherwise. 

The expression for Xr in (b) follows. [] 
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4# Xr 4# Xr 
3 I~ 13 112 - - /4  
4 I 6 + 1 4 - I 2  14 1 2 4 - 1 6  
5 1 1 2 - / 6  15 - /12  
6 I 1 2 - / 4  16 1 3 o + 1 2 o - I 1 o  
7 - I12  17 I 6 o -  12o 
8 I 1 2 + I 8 - - 1 4  18 160--13o 
9 124 - - /8  19 --/60 
10 124 - 112 20 I30 + I12 - / 6  
I i  --124 21 160 - 112 
12 I8+I6-I2 22 120+I12-I4 

Figure 1. Xr for G3 and rank-2 exceptionals 

4# Xr 4# Xr 
23 11o+16 28 I 1 2 q - 1 8 - I 6 - I 4  
24 114 q-/6 29 12o - 14 
25 I12+I9-16 30 I3o+I2o+I12-Iio-I6-I4 
26 /18 31 124+12o-112- /8  
27 13o 32 13o+124-112 

Figure 2. Xr for exceptionals of rank 3 and 4 

4# rank XF 
33 5 I18 -q- 110 
34 6 142 - 16 
35 6 I12 + 18 - 16 - / 4  
36 7 118 + 114 
37 8 130 + 124 + 120 - 112 - Ii0 - I8 

Figure 3. Xr for exceptionals of rank > 5 

7. O R B I F O L D  E U L E R  C H A R A C T E R I S T I C S  

The orbifold Euler characteristic of a space X under the action of a group G is 
defined to be 

E x(X~lCc(g)), 
[e] 

where the sum is taken over all conjugacy classes of G. 
The orbifold Euler characteristic of the Milnor fibre F under the action of a 

G × Cm can be expressed in terms of the integers {ad} from (3.14), and we in- 
clude its calculation here as an example. 
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Lemma 7.36. For any reflection group G, 

x (U/G)  = ~ ad. 
dED 

Proof. We have a disjoint union U = Ud~v G. U(d) °. The claim follows by 
Proposition 3.12, additivity of the equivariant Euler characteristic (cf. [11, 2.5]), 
and the definition ad = x(U(d)°)/G(d) • [] 

Theorem 7.37. Let G be a reflection group, f an unreduced discriminant poly- 
nomial of  degree m, and F its Milnor fibre. The orbifold Euler characteristic o f f  
with respect to F = G × Cm equals 

daa , 
dE79 

in the notation of  Section 3. 

Proof. For a regular pair (g, if), we have F(g,¢)/C(g, () = Ug/Cc(g). Recall that 
if (g, if) is not a regular pair, then the set of fixed points is empty, so we need 
only consider a sum over conjugacy classes of regular pairs in G × Cm. 

Using Lemma 3.8, there are ~b(d) conjugacy classes of regular pairs of order 
d, for each regular number d. So we have 

Z x(F(g'¢)/C(g,~)) -- 
[(g,¢)] 

where the second equality 
Lemma 3.9. [] 

S, 
dE'P. 

~(d)aFd] 
dET~ 

= ~ ~ fb(d')ad 
dED d'ld 

= ~ dad, 
dED 

follows from Lemma 7.36 together with 

Remark 7.38. By way of comparison, the ordinary or orbifold Euler char- 
acteristics of F / F  are equal to the image of Xr under homomorphisms from the 
character ring of F to Z that take Id to 1, or to d, respectively. 

8. C O N C L U D I N G  R E M A R K S  

This investigation leaves the obvious open question of whether Theorem 3.15 
could be proven in a more conceptual way. Our proof depends on knowing 
(co)degrees and regular numbers for each group, which are not reflected in the 
simplicity of the statement. 

We also note that F = G × Cm is not the most general group for which these 
calculations make sense. In general one should replace G by N(G), the nor- 
malizer of G in U(V), and Cm by A = Cm >4 GaI(Km/K), where K is the splitting 
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field for  N(G) a n d  Km is t he  e x t e n s i o n  o f  K c o n t a i n i n g  all  m t h  r o o t s  o f  uni ty .  

N o t e  t h a t  Gal(Km/K) is a f in i te  g r o u p  o f  o r d e r  d i v i d i n g  ~(m)  w h i c h  ac ts  o n  C 

b y  i n f l a t i o n  to G a l ( C / K ) ,  s ince  Km/K is a G a l o i s  e x t e n s i o n ,  T h i s  a c t i o n  c a n  be  

e x t e n d e d  to a d i a g o n a l  a c t i o n  o n  C n w h i c h  s t ab i l i zes  F = 6-1(1)  s ince  the  

coeff ic ients  o f  6 lie in  K.  N o t e  t h a t  Gal(Kr,,/K) fq Cm = 1 a n d  t h a t  G a I ( K m / K )  

n o r m a l i z e s  Cm. T h e  a c t i o n s  o f  Gal(Km/K) a n d  N(G) o n  F c o m m u t e  b y  c o n -  

s t r u c t i o n .  I t  m a y  be  i n t e r e s t i n g  to  e x a m i n e  the  A - m o d u l e  s t r u c t u r e  o f  the  

e q u i v a r i a n t  E u l e r  c h a r a c t e r i s t i c  XA. I t  is p r o b a b l e  t ha t  a n  a n s w e r  w o u l d  i nvo lve  

S p r i n g e r ' s  tw i s t ed  r e g u l a r  n u m b e r s .  
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