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Abstract

In this paper, we find an orthogonal basis for theSa × Sb × Sc-invariant vectors in the irreducibl
representationsS(α,β,γ ) of the symmetric group. The basis chosen is part of a Gel’fand basi
adapted basis) coming from the chain of subgroupsSa+b+c > Sa+b × Sc > Sa × Sb × Sc. This is
a generalization and a completion of the work of Dunkl [Pacific J. Math. 92 (1981) 57–71],
considered theSa × Sb × Sc-invariant vectors inS(N−k,k).
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a finite group andK a subgroup ofG. The pair (G,K) is said to be a
(finite) Gel’fand pair [2] if the permutation representation ofG on the homogeneous spa
G/K decomposes without multiplicity, or equivalently, if the convolution algebra of
K-invariant functions defined onG is commutative. Many examples of finite Gel’fan
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in [2]
pairs, whereG is a Weyl group or a Chevalley group over a finite field, were studied
P. Delsarte, C. Dunkl and D. Stanton; see the surveys [7,15] or the book [11]. The
studied pair was(SN ,SN−m × Sm), whereSh denotes the symmetric group onh letters:
see for example the papers [1,4–6,15], and [3] for a probabilistic application. In [7] D
suggested to study the nonGel’fand pair(SN ,Sa × Sb × Sc), whereN = a + b + c. In [8]
Dunkl constructed a basis for the space ofSa × Sb × Sc-invariant vectors in the irreducibl
representations ofSN canonically associated to partitions ofN in two parts. In the presen
we determine a basis for the space ofSa × Sb × Sc -invariant vectors in the irreducibl
representations associated to partitions ofN in three parts. This completes the work
Dunkl: no other irreducible representation contains nontrivialSa × Sb × Sc-invariant vec-
tors.

Let S(α,β,γ ) the irreducible representations associated to the partition(α,β, γ ) of N .
To reach our goal, we will use the following fact: ifV is an irreducible representation
Sa+b ×Sc, then the dimension of the space ofSa ×Sb ×Sc-invariant vectors inV is � 1 and
if it is = 1 andV appears inS(α,β,γ )↓Sa+b×Sc

then the multiplicity ofV in such restriction
is equal to 1. For every such aV , we will write a nontrivialSa × Sb × Sc-invariant vector
in V ⊆ S(α,β,γ ); therefore, the set of all these vectors will form the desired orthog
basis.

The plan of this paper is the following. In Section 2, we recall some basic prop
of Hahn polynomials; all our invariant vectors will be expressed by mean of this fa
of orthogonal polynomials. In Section 3, we introduce a set of “Radon transformsdij

(compare with [2,16]) on the “flag manifolds”SN/(Sa1 × Sa2 × · · · × Sam), wherea1 +
a2 +· · ·+ am = N , and some “Laplace operators”, for which we give the spectral ana
We also recall the fundamental characterization of the irreducible representations
symmetric group as the intersections of the kernels of a set of Radon transforms
characterization is due to James [10]; see also [13]. In Section 4, the results of the pre
section are interpreted in terms of induced representations. In Section 5, we com
basis for the space ofSN−m × Sm-invariant functions defined onSN/(Sa × Sb × Sc). In
Section 6, we study the effect of the operatorsdij on the vectors of this basis. In Section
we will write an explicit Sa+b × Sc-equivariant isomorphism from a subspace of ri
Sa+b−β−γ × Sβ × Sγ -invariant functions onSa+b onto the space ofSc-invariant vectors
in S(α,β,γ ). Using the results of the preceding sections, we will find theSa × Sb-invariant
vectors in these spaces, obtaining a basis ofSa × Sb × Sc-invariant vectors inS(α,β,γ ). The
main result of the paper is stated in Theorem 7.9

In the present paper, we use several facts from the representation theory of th
metric group. Most of these facts might be deduced from our computations ofK-invariant
vectors, in particular from the discussions of our finite difference equations, but this w
require longer proof and case by case arguments. Conversely, we will use the repres
theory of the symmetric group to shorten many of the proofs of this paper. In other w
if we know that for some values of the parameters an irreducible representation do
contain nontrivialK-invariant vectors then we can avoid the discussion of the finite
ference equation that determines such vectors (but the discussion of the finite diff
equation would give us the same results of the representation theory).

The present paper is strictly connected with [12], where we solved a problem

on a diffusion model onSnm/(Sm × · · · × Sm). The results in this paper should be a first
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step towards the harmonic analysis of more complicated diffusion models. The har
analysis of invariant functions, in particular on the symmetric group, may also be ap
to some statistical problems of Diaconis; see [14].

2. Hahn polynomials

Following [5] and [8], we introduce a family of renormalized Hahn polynomials.
m,a,b, c, x nonnegative integers satisfying:c � a + b,m � min{a, b, c, a + b − c} and
max{c − b,0} � x � min{a, c}, we define:

Em(a, b, c, x)

=
min{m,x}∑

j=max{0,x−c+m}
(−1)j

(
m

j

)
(b − m + 1)j (−x)j (a − m + 1)m−j (x − c)m−j .

The following is a list of some of their properties ([5] and [8]).
Finite difference equations:

(c − x)Em(a, b, c − 1, x) + xEm(a, b, c − 1, x − 1) = (c − m)Em(a, b, c, x), (1)

(a − x)Em(a, b, c + 1, x + 1) + (x + b − c)Em(a, b, c + 1, x)

= (a + b − c − m)Em(a, b, c, x), (2)

(c − x)(a − x)Em(a, b, c, x + 1) + x(x + b − c)Em(a, b, c, x − 1)

= [
(c − x)(a − x) + x(x + b − c) − m(a + b + 1− m)

]
Em(a, b, c, x). (3)

Symmetry relations:

Em(a, b, c, x) = (−1)mEm(b, a, c, c − x), (4)

Em(a, b, c, x) = Em(c, a + b − c, a, x). (5)

From the transformation formula (3.8 in [5])
∑min{c,y}

x=max{0,c−d+y}
(
y
x

)(
d−y
c−x

)
Em(a, b, c, x) =(

d−m
c−m

)
Em(a, b, d, y) and (5) it follows that

min{a,y}∑
x=max{0,a−d+y}

(
y

x

)(
d − y

a − x

)
Em(a, b, c, x) =

(
d − m

a − m

)
Em(d, a + b − d, c, y).

(6)

Particular values:

Em(m,b, c, x) = Em(c,m + b − c,m,x)

m−x
= (−1) m!(b − c + 1)x(c − m + 1)m−x. (7)
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3. Representation theory of the symmetric group and Radon transforms

Let N be a positive integer. A composition ofN is an ordered sequence of nonnega
integersa = (a1, a2, . . . , ah) such thata1 + a2 + · · · + ah = N . A partition λ of N is a
compositionλ = (λ1, λ2, . . . , λh) of N such thatλ1 � λ2 � · · · � λh � 1. We recall that
there exists a canonical one to one correspondence between the set of all partitionN

and the set of all irreducible representations of the symmetric groupSN [9,10,16]. If λ

is a partition ofN , the irreducible representation canonically associated toλ is denoted
by Sλ. The homogeneous spaceΩa = SN/(Sa1 × Sa2 × · · · × Sah

) will be identified with
the set of all “flags”(A1,A2, . . . ,Ah) such that fori = 1, . . . , h, Ai is an ai -subset of
{1,2, . . . ,N} andAi ∩ Aj = ∅ for i �= j (soA1 ∪ A2 ∪ · · · ∪ Ah = {1,2, . . . ,N}). We will
denote byMa the permutation module of all complex valued functions defined onΩa . The
spaceMa will be endowed with the natural scalar product〈f1, f2〉 = ∑

ω∈Ωa
f1(ω)f2(ω)

for f1, f2 ∈ Ma . The Dirac function at a point(A1,A2, . . . ,Ah) ∈ Ωa will be denoted
simply by(A1,A2, . . . ,Ah); that is,Ma will be identified with the set of all linear forma
combinations of points ofΩa . Now we define the “Radon transforms”dij and the operator
∆ij . If (A1,A2, . . . ,Ah) is a flag,|Aj | > 0 andi �= j then we set

dij (A1,A2, . . . ,Ah) =
∑
x∈Aj

(
A1, . . . ,Ai ∪ {x}, . . . ,Aj \ {x}, . . . ,Ah

)
.

That is, if (A1,A2, . . . ,Ah) ∈ Ω(a1,a2,...,ah) then thedij -image of(A1,A2, . . . ,Ah) is
the characteristic function of all the(B1,B2, . . . ,Bh) ∈ Ω(a1,a2,...,ai+1,...,aj −1,...,ah) such
that:Bj ⊂ Aj , Ai ⊂ Bi andBk = Ak for k �= i, j . Clearly,dij intertwines the permutatio
modulesM(a1,a2,...,ah) andM(a1,a2,...,ai+1,...,aj −1,...,ah) anddij is the adjoint ofdji .

If (A1,A2, . . . ,Ah) is a flag,i �= j and|Ai |, |Aj | > 0 then we set

∆ij (A1,A2, . . . ,Ah) =
∑
x∈Aj

y∈Ai

(
A1, . . . ,

(
Ai \ {y}) ∪ {x}, . . . , (Aj \ {x}) ∪ {y}, . . . ,Ah

)
.

Thus the∆ij -image of(A1,A2, . . . ,Ah) ∈ Ω(a1,a2,...,ah) is the characteristic function o
all the (B1,B2, . . . ,Bh) ∈ Ω(a1,a2,...,ah) such that:|Ai ∩ Bi | = ai − 1, |Aj ∩ Bj | = aj − 1
andBk = Ak for k �= i, j . ∆ij intertwinesM(a1,a2,...,ah) with itself and is selfadjoint. In
the following lemma, we collect some basic properties of the operatorsdij and∆ij . We
recall that the Pochhammer symbol(a)i is defined by(a)0 = 1 and(a)i = a(a + 1)×
(a + 2) · · · (a + i − 1) for i = 1,2,3, . . . .

Lemma 3.1. Suppose thati, j, k are three distinct numbers and thatf belongs toMa .
Then:

(1) dij djif = aif + ∆ijf ;
(2) if 1� q � ai thendij (dji)

qf = (dji)
qdij f + q(ai − aj − q + 1)(dji)

q−1f ;
(3) if 1 � p � q � ai and dij f = 0 then (dij )

p(dji)
qf = (q − p + 1)p(ai − aj −
q + 1)p(dji)
q−pf ;
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(4) dij dkj = dkj dij anddkj dki = dkidkj ;
(5) (dij )

qdjk = qdik(dij )
q−1 + djk(dij )

q .

Proof. (1) If (A1,A2, . . . ,Ah) ∈ Ωa then

dij dji(A1,A2, . . . ,Ah)

= dij

∑
y∈Ai

(
A1, . . . ,Ai \ {y}, . . . ,Aj ∪ {y}, . . . ,Ah

)
= ai(A1,A2, . . . ,Ah)

+
∑
x∈Aj

∑
y∈Ai

(
A1, . . . ,

(
Ai \ {y}) ∪ {x}, . . . , (Aj ∪ {y}) \ {x}, . . . ,Ah

)

= ai(A1,A2, . . . ,Ah) + ∆ij (A1,A2, . . . ,Ah).

(2) Forq = 1 the identity may be obtained subtractingdjidij f = ajf +∆ijf from (1);
the general case follows by induction onq.

(3) The casep = 1 is a consequence of (2); the general case follows again by indu
(4) These identities are obvious.
(5) If (A1,A2, . . . ,Ah) ∈ Ωa then

dij djk(A1,A2, . . . ,Ah)

= dij

∑
x∈Ak

(
A1, . . . ,Aj ∪ {x}, . . . ,Ak \ {x}, . . . ,Ah

)

=
∑
x∈Ak

(
A1, . . . ,Ai ∪ {x}, . . . ,Ak \ {x}, . . . ,Ah

)

+
∑
x∈Ak

∑
y∈Aj

(
A1, . . . ,Ai ∪ {y}, . . . , (Aj ∪ {x}) \ {y}, . . . ,Ak \ {x}, . . . ,Ah

)

= dik(A1,A2, . . . ,Ah) + djkdij (A1,A2, . . . ,Ah).

The caseq > 1 follows by induction. �
In the following corollary, we begin to investigate the case of a three parts compo

(a, b, c).

Corollary 3.2.

(1) If 0 � h � min{a, b} then (d21)
b−h is injective fromM(a+b−h,h,c) ∩ Kerd12 to

M(a,b,c);
(2) (d21)

b−h[M(a+b−h,h,c) ∩ Kerd12] is an eigenspace of∆12 and the corresponding

eigenvalue is: ab − h(a + b − h + 1);
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(3) M(a,b,c) =
min{a,b}⊕

h=0

(d21)
b−h

[
M(a+b−h,h,c) ∩ Kerd12

]
is a decomposition ofM(a,b,c) into invariant mutually orthogonal subspaces;

(4) if p � max{1, b − a + 1} then

M(a,b,c) ∩ Ker(d12)
p =

min{a,b}⊕
h=min{0,b−p+1}

(d21)
b−h

[
M(a+b−h,h,c) ∩ Kerd12

]
.

Proof. (1) is a consequence of Lemma 3.1(3): ifp = q = b − h then‖(d21)
b−hf ‖2 =

〈f, (d12)
b−h(d21)

b−hf 〉 = (b − h)!(a − h + 1)b−h‖f ‖2.
(2) is a consequence of Lemma 3.1(1) and (2): iff ∈ M(a+b−h,h,c) andd12f = 0 then

∆12(d21)
b−hf = d12d21(d21)

b−hf − a(d21)
b−hf = [

ab − h(a + b − h + 1)
]
(d21)

b−hf.

Moreover, in the interval 0� h � min{a, b}, the functionh → [ab − h(a + b − h + 1)]
is decreasing. Therefore we have obtained min{a, b} + 1 distinct eigenvalues and th
eigenspaces are orthogonal.

For the moment, suppose that 0� b � a. The orthogonal decompositionM(a,b,c) =
(d21M

(a+1,b−1,c))⊕(M(a,b,c) ∩Kerd12) is an immediate consequence of the fact thatd21 is
the adjoint ofd12. Iterating this decomposition, one obtain easily (3). (4) is a consequ
of (1), (3) and of Lemma 3.1(3). Finally, the caseb > a follows from the isomorphism
M(a,b,c) = M(b,a,c). �

The casec = 0, that corresponds tol = 0 in Theorem 2.8 of [4] (d12 andd21 correspond
to d andd∗ in [4,5,8]), gives the well-known decomposition ofM(a,b) into its irreducible
constituents:

M(a,b) =
min{a,b}⊕

h=0

(d21)
b−h

[
M(a+b−h,h) ∩ Kerd12

]
. (8)

Now M(a+b−h,h) ∩ Kerd12 is the irreducible representation ofSa+b denoted by
S(a+b−h,h). Indeed, all the representations of the symmetric group may be characteri
intersections of kernels of the operatorsdi,i+1 (and this is one of the main ingredients
our computations of invariant vectors):

Theorem 3.3. If λ = (λ1, λ2, . . . , λh) is a partition ofN thenSλ = Mλ∩(
⋂h−1

i=1 Kerdi,i+1).

This was proved by James in [10], in the context of a characteristic free approa
the representation theory of the symmetric group (di,i+1 corresponds toψi,ai+1−1 in [10,
p. 67]. See also [16]. An elementary proof, in the case of ordinary representations, m

found in [13].
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4. A class of induced representations and harmonic analysis of the operators ∆ij

We begin this section recalling the definition of induced representation [9]. LetG be a
finite group,K ⊂ G a subgroup,V a representation ofG andW anK-invariant subspac
of V . Suppose thatS is a system of representatives for the set of left cosetsG/K , that is
G = ⋃

s∈S sK with disjoint union. We say thatV is induced byW if we have the following
direct sum decomposition:V = ⊕

s∈S sW . The standard notation isV = IndG
K W . Now

we introduce a notation: ifX is a finite set anda andλ are respectively a compositio
and a partition of|X|, thenMa(X) andSλ(X) will denote the usual spacesMa andSλ

constructed using the space of complex valued functions defined onX. If (a, b, c) is a
three parts composition of a fixed positive integerN , then the homogeneous spaceΩ(a,b,c)

may be seen as the set of all pairs(A,B) such thatA andB are respectively ana-subset
and ab-subset of{1,2, . . . ,N} andA ∩ B = ∅. It follows that

M(a,b,c) =
⊕

X⊆{1,2,...,N}
|X|=a+b

M(a,b)(X). (9)

This decomposition tells us that the representation ofSN on M(a,b,c) is induced from
the representationM(a,b) ⊗ S(c) of Sa+b × Sc. Moreover, the decomposition (9) is stab
under the action ofd12: if X is ana + b-subset of{1,2, . . . ,N} then thed12-image of
M(a,b)(X) is contained inM(a+1,b−1)(X). This proves that ifa � b then

M(a,b,c) ∩ Kerd12 =
⊕

X⊆{1,2,...,N}
|X|=a+b

S(a,b)(X). (10)

This decomposition proves the caseh = 0 in the following proposition; the caseh > 0
may be proved similarly.

Proposition 4.1. In the permutation module

M(a,b,c) = IndSa+b+c

Sa+b×Sc

[
M(a,b) ⊗ S(c)

]
the subspace(d21)

b−h[M(a+b−h,h,c) ∩ Kerd12] corresponds to

IndSa+b+c

Sa+b×Sc

[
S(a+b−h,h) ⊗ S(c)

]
, 0� h � min{a, b}.

In the following theorem we state two particular cases respectively of the Young’s
and of the Littlewood–Richardson Rule [10,16].

Theorem 4.2. Let (α,β, γ ) and (a, b, c) be respectively a partition and a compositi

of N . We allow the casesγ = 0 andβ = γ = 0.
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(1) The irreducible representationS(α,β,γ ) is contained in the permutation modu
M(a,b,c) if and only if α � max{a, b, c} and γ � min{a, b, c} and its multiplicity is
equal tom(α,β,γ ) = min{α − a,α − b,α − c,α − β,β − γ, a − γ, b − γ, c − γ } + 1.
Moreover,

M(a,b,c) =
⊕

m(α,β,γ )S
(α,β,γ ).

(2) Let a � b. The multiplicity ofS(α,β,γ ) in IndSa+b+c

Sa+b×Sc
[S(a,b) ⊗ S(c)] is equal to1 if γ �

b � β � a � α, otherwise is zero. In particular,IndSa+b+c

Sa+b×Sc
[S(a,b) ⊗ S(c)] decompose

without multiplicity.

In the following theorem, we state a particular case of a result proved in [12,13].

Theorem 4.3. Let (α,β, γ ) and (a, b, c) be respectively a partition and a composition
N and suppose that the conditions in(1) of Theorem4.2 are satisfied. Then theS(α,β,γ )-
isotypic component ofM(a,b,c) is an eigenspace of∆12+∆13+∆23 and the corresponding
eigenvalue is

1

2

[
α2 + β2 + γ 2 − 2β − 4γ − a2 − b2 − c2].

Let V the direct sum of allS(α,β,γ )-isotypic subspaces ofM(a,b,c) with γ = 0. Corol-
lary 3.2 and Theorem 4.3 yield a characterization of a decomposition ofV into mutually
orthogonal irreducible subrepresentations. See [5, Theorem 2.3], for the casec = 0.

Corollary 4.4. Suppose thatf ∈ V , 0 � h � min{a, b} andh � k � a + b − h � N − k.
Thenf belongs to the subrepresentation of(d21)

b−h[M(a+b−h,h,c) ∩ Kerd12] isomorphic
to S(N−k,k) if and only if∆12f = [ab − h(a + b − h + 1)]f and [∆13 + ∆23]f = [c(a +
b − h) − (k − h)(N − k − h + 1)]f .

Proof. The only if part is a consequence of Corollary 3.2(2) and of Theorem 4.3. Not
this part is true not only forV but also for the wholeM(a,b,c). Now we prove the if part. As
noted during its proof, the decomposition in Corollary 3.2(3) gives min{a, b} + 1 distinct
eigenvalues of∆12. That is, the eigenvalues determine the subspaces in the decompo
Again, this point is true for the wholeM(a,b,c). Finally, for a fixedh, the functionk →
[c(a + b − h) − (k − h)(N − k − h + 1)] is decreasing for 0� k � (N + 1)/2. Thus the
eigenvalues of∆13+ ∆23 separate the subrepresentations inV ∩ (d21)

b−h[M(a+b−h,h,c) ∩
Kerd12]. This fact is true because we have restricted toV . �

5. An orthogonal basis for the SN−m × Sm-invariant functions in the permutation
module M(a,b,c)

We introduce some notations. IfΩ is a finite set,L(Ω) will denote the space of a

complex valued functions defined onΩ . If Ω1 andΩ2 are two finite sets andξi ∈ L(Ωi),
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i = 1,2, then product(ξ1ξ2)(ω1,ω2) = ξ1(ω1)ξ2(ω2), defined for(ω1,ω2) ∈ Ω1 × Ω2,
corresponds to the tensor productξ1 ⊗ ξ2 ∈ L(Ω1) ⊗ L(Ω2) = L(Ω1 × Ω2).

If X is a finite set andu,v are two integers satisfying the conditions 0� u, 0 � v

andu + v � |X|, then we will denote byσu,v(X) the function inM(|X|−u−v,u,v)(X) =
L(Ω(|X|−u−v,u,v)(X)) which is constant and identically equal to 1. IfY,Z are two dis-
joint subsets of{1,2, . . . ,N} such that|Y | = m, |Z| = N − m, and the integersx, y

satisfy the conditions 0� x � b, 0 � y � c, m − a � x + y � m, N = a + b + c,
then the (tensor) productσx,y(Y )σb−x,c−y(Z) is the characteristic function of the s
{(A,B,C) ∈ Ω(a,b,c)(Y ∪ Z): |B ∩ Y | = x and |C ∩ Y | = y} ≡ Ω(m−x−y,x,y)(Y ) ×
Ω(a−m+x+y,b−x,c−y)(Z).

Clearly, if SN−m × Sm is the stabilizer of the pair(Y,Z) then the functions
σx,y(Y )σb−x,c−y(Z) form a basis for theSN−m × Sm-invariant functions inM(a,b,c) (they
are the characteristic functions of the orbits).

A more symmetric, but also more cumbersome, notation forσx,y(Y )σb−x,c−y(Z) would
make easy to write general formulas for the action ofdij and∆ij onσx,y(Y )σb−x,c−y(Z).
In what follows, apart for an example at the beginning of the proof of the next lemm
will leave to the reader the elementary task to derive such identities when they ar
(we will give only the identities or their immediate consequences; their proofs are
on the repeated application of the fact that the number ofu-subsets of a finite setD is equal
to

(|D|
u

)
.

Definition 5.1. For 0� m � N , 0� k � min{a + b, a + c, b + c,N − m,m} and max{0,

k − c} � h � min{k, a + b − k, a, b} we define

Ψ (a, b, c,m, k,h) =
min{c,m−h}∑

y=max{0,m−a−b+h}
Ek−h(c, a + b − 2h,m − h,y)

×
min{b,m−y}∑

x=max{0,m−y−a}
Eh(b, a,m − y, x)σx,y(Y )σb−x,c−y(Z).

In the following lemma, we collect some properties of the functionsΨ (a, b, c,m, k,h).

Lemma 5.2.

(1) ∆12Ψ (a, b, c,m, k,h) = [ab − h(a + b − h + 1)]Ψ (a, b, c,m, k,h);

(2) [∆13 + ∆23]Ψ (a, b, c,m, k,h) = [c(a + b − h) − (k − h)(N − k − h + 1)]Ψ (a, b,

c,m, k,h);

(3) 1
(t−b)! (d21)

t−bΨ (a, b, c,m, k,h) = (
t−h
b−h

)
Ψ (a + b − t, t, c,m, k,h);

(4) if ξ :M(a,b,c) → M(b,a,c) is the natural isomorphismξ(A,B,C) = (B,A,C) then
ξΨ (a, b, c,m, k,h) = (−1)hΨ (b, a, c,m, k,h);

(5) 1
(t−a)! (d12)

t−aΨ (a, b, c,m, k,h) = (
t−h
a−h

)
Ψ (t, a + b − t, c,m, k,h).
Proof. First note that
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∆12
(
σx,y(Y )σb−x,c−y(Z)

)
= [

x(m − x − y) + (b − x)(a − m + x + y)
]
σx,y(Y )σb−x,c−y(Z)

+ (x + 1)(a − m + x + y + 1)σx+1,y(Y )σb−x−1,c−y(Z)

+ (b − x + 1)(m − x − y + 1)σx−1,y(Y )σb−x+1,c−y(Z). (11)

For instance, given(A′,B ′,C′) ∈ Ω(a,b,c) such that|B ′ ∩ Y | = x + 1 and|C′ ∩ Y | = y

the number of(A,B,C) ∈ Ω(a,b,c) such that|B ∩ Y | = x, |C ∩ Y | = y, |B ′ ∩ B| = b − 1
andC = C′ is equal to

( |B ′ ∩ Y |
|B ∩ Y |

)( |A′ ∩ Z|
|A ∩ Z|

)

=
(

x + 1

x

)(
a − m + x + y + 1

a − m + x + y

)
= (x + 1)(a − m + x + y + 1).

From (11) it follows that the coefficient ofσx,y(Y )σb−x,c−y(Z) in ∆12Ψ (a, b, c,m, k,h)

is equal to

{[
x(m − x − y) + (b − x)(a − m + x + y)

]
Eh(b, a,m − y, x)

+ x(a − m + x + y)Eh(b, a,m − y, x − 1)

+ (b − x)(m − x − y)Eh(b, a,m − y, x + 1)
}
Ek−h(c, a + b − 2h,m − h,y).

Applying (3) to the expression in curly braces, it becomes

[
ab − h(a + b − h + 1)

]
Eh(b, a,m − y, x)Ek−h(c, a + b − 2h,m − h,y − 1),

and this proves (1).
Analogously, it is easy to check that the coefficient ofσx,y(Z)σb−x,c−y(Y ) in [∆13 +

∆23]Ψ (a, b, c,m, k,h) is equal to

[
y(m − x − y) + (c − y)(a − m + x + y) + xy + (b − x)(c − y)

]
× Eh(b, a,m − y, x)Ek−h(c, a + b − 2h,m − h,y)

+ (c − y)
[
xEh(b, a,m − y − 1, x − 1) + (m − x − y)Eh(b, a,m − y − 1, x)

]
× Ek−h(c, a + b − 2h,m − h,y + 1)

+ y
[
(b − x)Eh(b, a,m − y + 1, x + 1) + (a − m + x + y)Eh(b, a,m − y + 1, x)

]
× Ek−h(c, a + b − 2h,m − h,y − 1).
Applying Eqs. (1) and (2) to the last two expressions in square brackets, it becomes
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{[
y(m − x − y) + (c − y)(a − m + x + y) + xy + (b − x)(c − y)

]
× Ek−h(c, a + b − 2h,m − h,y)

+ (c − y)(m − y − h)Ek−h(c, a + b − 2h,m − h,y + 1)

+ y(a + b − m − h + y)Ek−h(c, a + b − 2h,m − h,y − 1)
}
Eh(b, a,m − y, x).

An application of (3) to the expression in curly brackets changes it into

[
c(a + b − h) − (k − h)(N − k − h + 1)

]
× Eh(b, a,m − y, x)Ek−h(c, a + b − 2h,m − h,y),

and this proves (2).
To prove (3), first note that

1

(t − b)! (d21)
t−bσx,y(Y )σb−x,c−y(Z)

=
min{m−y,t−b+x}∑

z=max{x,t−a−b+m−y}

(
z

x

)(
t − z

b − x

)
σz,y(Y )σt−z,c−y(Z).

Therefore, the coefficient ofσz,y(Y )σt−z,c−y(Z) in 1
(t−b)! (d21)

t−bΨ (a, b, c,m, k,h) is
equal to

min{b,z}∑
x=max{0,z−t+b}

(
z

x

)(
t − z

b − x

)
Eh(b, a,m − y, x)Ek−h(c, a + b − 2h,m − h,y);

an application of (6) changes it into
(
t−h
b−h

)
Eh(t, a + b − t,m − y, z)Ek−h(c, a + b − 2h,

m − h,y) and this establishes (3).
(4) follows from the symmetry relation (4) applied toEh(b, a,m − y, x).
Finally, (5) is a consequence of (3) and (4) (clearlyd12ξ = ξd21); equivalently, it may

be deduced from (3) in this lemma and Lemma 3.1(3).�
Remark 5.3. Two applications of the orthogonality relations for the Hahn polynom
[5, p. 631] yield the following expression for the norm ofΨ (a, b, c,m, k,h):

∥∥Ψ (a, b, c,m, k,h)
∥∥2 =

(
a + b

b

)(
a + b

h

)−1
a + b − h + 1

a + b − 2h + 1

× (b − h + 1)h(a − h + 1)h
(N − m)!m!

(N − m − h)!(m − h)!

×
(

N − 2h

c

)(
N − 2h

k − h

)−1
N − h − k + 1

N − 2k + 1
(N − m − k + 1)k−h
× (m − k + 1)k−h(c − k + h + 1)k−h(a + b − h − k + 1)k−h.



82 F. Scarabotti / Advances in Applied Mathematics 35 (2005) 71–96

sion

2 it

ions of
nce

f
nd

s

Theorem 5.4.

(1) The space ofSN−m × Sm-invariant vectors in the subrepresentation of(d21)
b−h ×

[M(a+b−h,h,c) ∩ Kerd12] isomorphic toS(N−k,k) is spanned byΨ (a, b, c,m, k,h).
(2) The set {Ψ (a, b, c,m, k,h): 0 � k � min{a + b, a + c, b + c,N − m,m} and

max{0, k−c} � h � min{k, a +b−k, a, b} is an orthogonal basis for theSN−m ×Sm-
invariant functions inM(a,b,c).

Proof. From the Young’s Rule and Frobenius reciprocity, it follows that the dimen
of the space ofSN−m × Sm-invariant vectors in an irreducible representationS(α,β,γ ) ⊆
M(a,b,c) is � 1 and is equal to one if and only ifγ = 0 andα � max{N − m,m}. There-
fore (1) is a consequence of Lemma 5.2(1),(2) and of Corollary 4.4.

If we denote by(S(N−k,k))h the subrepresentation of(d21)
b−h[M(a+b−h,h,c) ∩ Kerd12]

isomorphic toS(N−k,k) then from Corollary 3.2(3), Proposition 4.1 and Theorem 4.
follows that

min{a+b,a+c,b+c,N−m,m}⊕
k=0

min{k,a+b−k,a,b}⊕
max{0,k−c}

(
S(N−k,k)

)
h

is an orthogonal decomposition of the direct sum of all the irreducible subrepresentat
M(a,b,c) containing nontrivialSN−m×Sm-invariant vectors. Therefore (2) is a conseque
of (1). �
Remark 5.5. TheSN−m ×Sm −Sa ×Sb ×Sc-invariant functionsΨ (a, b, c,m, k,h) might
be obtained from theSa × Sb × Sc − SN−m × Sm-invariant functions in [8] by mean o
the transformationg → g−1. Another way to derive the intertwining functions in [8], a
therefore the functionsΨ (a, b, c,m, k,h), will be sketched in Remark 7.6.

6. The action of d13 and d23 on Ψ (a,b, c,m,k,h)

In this section, we compute the action ofd13 and d23 on the invariant vector
Ψ (a, b, c,m, k,h). We begin with a particular case.

Lemma 6.1. d13Ψ (a + b − h,h, c,m, k,h) = (a + b − h − k + 1)Ψ (a + b − h + 1,

h, c − 1,m, k,h).

Proof. The conditionb = h yields two simplifications. First, from the identityd12d13 =
d13d12 (see Lemma 3.1(4)) it follows that thed13-image ofM(a+b−h,h,c) ∩ Kerd12 is con-
tained inM(a+b−h+1,h,c−1) ∩ Kerd12. Sinced13 is an intertwining operator, thed13-image
of the subrepresentation ofM(a+b−h,h,c) ∩ Kerd12 isomorphic toS(N−k,k) is (contained
in) the subrepresentation ofM(a+b−h+1,h,c−1) ∩Kerd12 isomorphic toS(N−k,k). Therefore
d13Ψ (a + b − h,h, c,m, k,h) is a multiple ofΨ (a + b − h + 1, h, c − 1,m, k,h). More-
over, in the caseb = h we may apply (7) to the coefficientsEh(h, a + b − h,m − y, x) in

Ψ (a + b − h,h, c,m, k,h).
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The coefficient ofσxy(Y )σh−x,c−1−y(Z) in d13Ψ (a + b − h,h, c,m, k,h) is equal to:

(m − x − y)Eh(h, a + b − h,m − y − 1, x)Ek−h(c, a + b − 2h,m − h,y + 1)

+ (a + b − h − m + x + y + 1)Eh(h, a + b − h,m − y, x)

× Ek−h(c, a + b − 2h,m − h,y). (12)

Applying (7) to transform the coefficientsEh(h, a +b−h,m−y −1, x) andEh(h, a +
b − h,m − y, x) into a multiple ofEh(h, a + b − h + 1,m − y, x), (12) becomes:

Eh(h, a + b − h + 1,m − y, x)
[
(m − h − y)Ek−h(c, a + b − 2h,m − h,y + 1)

+ (a + b − m − h + y + 1)Ek−h(c, a + b − 2h,m − h,y)
]
. (13)

The symmetry relation (5) changes (2) into(c − x)Em(a + 1, b − 1, c, x + 1) +
(x +b − c)Em(a +1, b −1, c, x) = (b −m)Em(a, b, c, x). Applying this to the expressio
in square brackets, (13) becomes:

(a + b − h − k + 1)Eh(h, a + b − h + 1,m − y, x)Ek−h(c − 1, a + b − 2h + 1,m − h,y)

and this proves the lemma.�
Lemma 6.2. There exists a constantλ(a, b, c,m, k,h), that satisfies the identityλ(a, b, c,

m, k,h) = λ(a + b − h,h, c,m, k,h) for b � h, such that:

d13Ψ (a, b, c,m, k,h) = (a − h + 1)
a + b − k − h + 1

a + b − 2h + 1
Ψ (a + 1, b, c − 1,m, k,h)

− λ(a, b, c,m, k,h)Ψ (a + 1, b, c − 1,m, k,h + 1),

d23Ψ (a, b, c,m, k,h) = (b − h + 1)
a + b − k − h + 1

a + b − 2h + 1
Ψ (a, b + 1, c − 1,m, k,h)

+ λ(a, b, c,m, k,h)Ψ (a, b + 1, c − 1,m, k,h + 1).

Proof. From(d12)
2d23 = 2d13d12 + d23(d12)

2 (setq = 2 in Lemma 3.1(5)) it follows tha
thed23-image ofM(a+b−h,h,c) ∩ Kerd12 is contained in

M(a+b−h,h+1,c−1) ∩ Ker(d12)
2

= [
M(a+b−h,h+1,c−1) ∩ Kerd12

] ⊕ [
d21

(
M(a+b−h+1,h,c−1) ∩ Kerd12

)]
(see Corollary 3.2(4) for this decomposition). Thus thed23-image of the subspace o
M(a+b−h,h,c) isomorphic toS(N−k,k) is contained in direct sum of the subspaces
M(a+b−h,h+1,c−1) ∩ Kerd12 andd21[M(a+b−h+1,h,c−1) ∩ Kerd12] isomorphic toS(N−k,k).
It follows that d23Ψ (a + b − h,h, c,m, k,h) is a linear combination ofΨ (a + b − h,
h + 1, c − 1,m, k,h + 1) andΨ (a + b − h,h + 1, c − 1,m, k,h)
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d23Ψ (a + b − h,h, c,m, k,h)

= λ(a + b − h,h, c,m, k,h)Ψ (a + b − h,h + 1, c − 1,m, k,h + 1)

+ µ(a + b − h,h, c,m, k,h)Ψ (a + b − h,h + 1, c − 1,m, k,h). (14)

The constantµ(a + b − h,h, c,m, k,h) can be derived easily: if we apply to both t
left-hand and the right-hand side of (14) the operatord12 and use the identityd12d23 =
d13 + d23d12 (Lemma 3.1) in the left member, we obtain:

d13Ψ (a + b − h,h, c,m, k,h)

= µ(a + b − h,h, c,m, k,h)d12Ψ (a + b − h,h + 1, c − 1,m, k,h). (15)

But from Lemmas 5.2(3) and 3.1(3) it follows thatd12Ψ (a + b − h,h + 1,

c − 1,m, k,h) = d12d21Ψ (a + b − h + 1, h, c − 1,m, k,h) = (a + b − 2h + 1)Ψ (a +
b − h+ 1, h, c − 1,m, k,h) (indeedΨ (a + b − h+ 1, h, c − 1,m, k,h) ∈ Kerd12). Apply-
ing this to (15) and using Lemma 6.1 we obtain:

(a + b − h − k + 1)Ψ (a + b − h + 1, h, c − 1,m, k,h)

= (a + b − 2h + 1)µ(a + b − h,h, c,m, k,h)Ψ (a + b − h + 1, h, c − 1,m, k,h)

thus

µ(a + b − h,h, c,m, k,h) = a + b − h − k + 1

a + b − 2h + 1
.

To get the formula ford23Ψ (a, b, c,m, k,h), apply to both the left-hand and the righ
hand side of (14) the operator1

(b−h)! (d21)
b−h and use Lemma 5.2(3) (we recall thatd21 and

d23 commute). The formula ford13Ψ (a, b, c,m, k,h) follows easily from Lemma 5.2(4)
Indeed,d13ξ = ξd23. �

Now we compute a particular value ofλ(a, b, c,m, k,h).

Lemma 6.3. λ(N − k,h, k − h,m,k,h) = k − h.

Proof. First note thatd23Ψ (N − k,h, k − h,m,k,h) is a multiple ofΨ (N − k,h + 1, k −
h−1,m, k,h+1), becauseΨ (N −k,h+1, k −h−1,m, k,h) does not exist; theSN−m ×
Sm-invariant vectorΨ (a, b, c,m, k,h) exists only if c � k − h; this corresponds to th
condition a � α in (2), Theorem 4.2. The coefficient ofσx,y(Y )σh+1−x,k−h−1−y(Z) in
d23Ψ (N − k,h, k − h,m,k,h) is equal to:

xEk−h(k − h,N − h − k,m − h,y + 1)Eh(h,N − k,m − y − 1, x − 1)
+ (h − x + 1)Ek−h(k − h,N − h − k,m − h,y)Eh(h,N − k,m − y, x). (16)
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Now we can transform all the coefficientsE...(. . .) in (16) using (7). By simple calculation
one can prove that (16) is equal to:

(k − h)Ek−h−1(k − h − 1,N − k − h − 1,m − h − 1, y)Eh+1(h + 1,N − k,m − y, x),

thusd23Ψ (N − k,h, k −h,m,k,h) = (k −h)Ψ (N − k,h+ 1, k −h− 1,m, k,h+ 1). �
Theorem 6.4. The functionsΨ (a, b, c,m, k,h) satisfy the following identities:

d13Ψ (a, b, c,m, k,h) = (a − h + 1)
a + b − k − h + 1

a + b − 2h + 1
Ψ (a + 1, b, c − 1,m, k,h)

− (k − h)(N − k − h + 1)

a + b − 2h + 1
Ψ (a + 1, b, c − 1,m, k,h + 1),

d23Ψ (a, b, c,m, k,h) = (b − h + 1)
a + b − k − h + 1

a + b − 2h + 1
Ψ (a, b + 1, c − 1,m, k,h)

+ (k − h)(N − k − h + 1)

a + b − 2h + 1
Ψ (a, b + 1, c − 1,m, k,h + 1).

Proof. From Lemma 3.1(4), we know thatd13 and d23 commute; if we equate th
coefficients of Ψ (a + 1, b + 1, c − 2,m, k,h + 1) in d13d23Ψ (a, b, c,m, k,h) and
d23d13Ψ (a, b, c,m, k,h), computed by using Lemma 6.2, we obtain (we recall
λ(a, b, c,m, k,h) = λ(a + b − h,h, c,m, k,h)):

λ(a + b − h,h, c,m, k,h) = a + b − 2h + 2

a + b − 2h + 1
λ(a + b − h + 1, h, c − 1,m, k,h). (17)

By c − k + h applications of (17) we obtain:

λ(a + b − h,h, c,m, k,h) = N − k − h + 1

a + b − 2h + 1
λ(N − k,h, k − h,m,k,h);

and we may finish with Lemma 6.3.�
Remark 6.5. Clearly, for some values of the parameters, the identities of Theorem
degenerate into identities containing a unique term on the right-hand side: it happen
one of the functionsΨ on the right-hand side does not exist; for example, see Lemma
or 6.3.

7. An orthogonal basis for the space of Sa × Sb × Sc-invariant vectors in the
irreducible representations S(α,β,γ )

Fix three disjoint subsetsA,B andC and defineSa × Sb × Sc andSa+b × Sc as the
stabilizer respectively of(A,B,C) and(A ∪ B,C). If (α,β, γ ) is a three part partition o

N = a + b + c, then Theorem 3.3 ensures us thatS(α,β,γ ) = M(α,β,γ ) ∩ Kerd12 ∩ Kerd23
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9),
is the irreducible representation canonically associated to(α,β, γ ). It is not hard to see
that the characteristic functions of the orbits ofSa × Sb × Sc on Ω(α,β,γ ) are given by
the products:σxy(A)σuv(B)σβ−u−x,γ−v−y(C), whereσ is defined as at the beginning
Section 5.

Thus theSa × Sb × Sc-invariant vectors inS(α,β,γ ) might be computed by solving th
following system:

{
d12

∑
x,y,u,v f (x, y,u, v)σxy(A)σuv(B)σβ−u−x,γ−v−y(C) = 0,

d23
∑

x,y,u,v f (x, y,u, v)σxy(A)σuv(B)σβ−u−x,γ−v−y(C) = 0
(18)

where both the sums are over the setD = {(x, y,u, v): x, y,u, v � 0, x + y � a,

u + v � b, x + u � β,y + v � γ, x + y + u + v � β + γ − c}. The system (18) may b
easily translated into the following system of finite difference equations for the coeffic
f (x, y,u, v):




(a − x − y)f (x + 1, y,u, v) + (b − u − v)f (x, y,u + 1, v)

+ (α − a − b + x + y + u + v + 1)f (x, y,u, v) = 0,

xf (x − 1, y + 1, u, v) + uf (x, y,u − 1, v + 1) + (β − x − u + 1)f (x, y,u, v) = 0.

(19)

First of all, we want to sketch how elementary solutions of (19) may be found u
the techniques in [8, p. 60]. Indeed, both the equations are of the same type of (2.1
when restricted, respectively, to a planey = constant,v = constant and to a planex +
y = constant,u + v = constant. Therefore we may use (2.2) in [8]: if we apply it to
second equation in (19), we get an expression of the valuef (x, y,u, v) in terms of the
values on the setD1 = {(x + y − k, k,u + v − γ + k, γ − k): max{γ − u − v, y} � k �
min{x + y, γ − v}}; then we may apply again (2.2) of [8], now to the first equation in (1
obtaining an expression of the values on a point inD1 in terms of the value on the setD2 =
{(h, k,β −h,γ −k): max{β +γ −b−k, x +y −k} � h � min{a−k,β +γ −u−v−k}}.
Finally, onD2 the second equation in (19), written forx + u = β + 1 andy + v = γ − 1,
yields the following recurrence relation:

f (h, k,β − h,γ − k) = (−h)γ−k

(β + 1− h)γ−k

= f (h + k − γ, γ,β + γ − h − k,0).

After some elementary calculations (and settingj = h + k) the final result is:

f (x, y,u, v) =
min{a,β+γ−u−v}∑

j=max{β+γ−b,x+y}
f (j − γ, γ,β + γ − j,0)fj (x, y,u, v) (20)

where

(
β + γ − x − y − u − v

)

fj (x, y,u, v) =

j − x − y
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× (x + y − a)j−x−y(u + v − b)β+γ−u−v−j

(x + y + u + v − β − γ )γ−y−v(−c)β−x−y−u−v+γ (−1)β−x

×
min{x+y,γ−v}∑

k=max{y,γ−u−v}

(
γ − y − v

k − y

)
(−x)k−y(−u)γ−k−v(j − γ + 1)γ−k

(β + 1+ k − j)γ−k(−1)γ−k
.

The representation formula (20) tells us thatf is determined by its values on th
set D3 = {(j − γ, γ,β + γ − j,0): max{0, β + γ − b} � j � min{a,β + γ }} ≡ D ∩
{x + u = β,y = γ, v = 0}. Under the assumptionc � β � max{a, b}, that correspond
to the condition ‘c � r ’ in [8, p. 60], the multiplicitymα,β,γ in Theorem 4.3 is equal t
α − c + 1 and coincides with the cardinality ofD3. This means that now the function
{fj : β + γ − b � j � a} form a basis for the solutions of (19) (and note also that n
the sum in (20) is always over allD3). However, as in [8], our main result will be a sol
tion of (19) by mean of ideas from representation theory. We will study the restricti
S(α,β,γ ) to Sa+b × Sc. For every subrepresentation of the formS(a+b−k,k) ⊗ S(c) we will
write a nontrivialSa × Sb × Sc-invariant vector belonging to it. In this way we will obta
an orthogonal basis for the solution that has a nice group theoretical interpretation.

To start our computations, first observe that the orbits ofSa+b ×Sc onΩ(α,β,γ ) are given
by the subsets

Γuv = {(
A′,B ′,C′) ∈ Ω(α,β,γ ):

∣∣B ′ ∩ (A ∪ B)
∣∣ = u,

∣∣C′ ∩ (A ∪ B)
∣∣ = v

}
= Ω(a+b−u−v,u,v)(A ∪ B) × Ω(c−β−γ+u+v,β−u,γ−v)(C)

for 0� u � β, 0� v � γ andβ + γ − c � u + v � a + b, and that the spaceL(Γuv) of all
complex valued functions defined onΓuv may be written as a tensor product:

L(Γuv) = M(a+b−u−v,u,v)(A ∪ B) ⊗ M(c−β−γ+u+v,β−u,γ−v)(C).

Therefore, the restriction ofM(α,β,γ ) to the subgroupSa+b ×Sc may be decomposed a
follows:

M(α,β,γ )↓(Sa+b × Sc)

=
⊕

0�u�β,0�v�γ
β+γ−c�u+v�a+b

M(a+b−u−v,u,v)(A ∪ B) ⊗ M(c−β−γ+u+v,β−u,γ−v)(C).

Clearly, the tensor productM(a+b−u−v,u,v)(A ∪ B) ⊗ M(c−β−γ+u+v,β−u,γ−v)(C) is
spanned by the productspuvqβ−u,γ−v , where

puv ∈ M(a+b−u−v,u,v)(A ∪ B) and qβ−u,γ−v ∈ M(c−β−γ+u+v,β−u,γ−v)(C).

Therefore the direct sum of all the subrepresentations ofM(α,β,γ )↓(Sa+b ×Sc) of the form

S(a+b−k,k) ⊗ S(c) is contained in:
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⊕
0�u�β,0�v�γ

β+γ−c�u+v�a+b

[
M(a+b−u−v,u,v)(A ∪ B) ⊗ S(c)

]

=
⊕

0�u�β,0�v�γ
β+γ−c�u+v�a+b

{
puvσβ−u,γ−v(C): puv ∈ M(a+b−u−v,u,v)(A ∪ B)

}
(21)

which is the sum of all the subrepresentations ofM(α,β,γ )↓(Sa+b × Sc) that are trivial
onSc. (An irreducible subrepresentation ofS(α,β,γ )↓(Sa+b × Sc) contains nontrivialSa ×
Sb × Sc-invariant vectors if and only if it is of the formS(a+b−k,k) ⊗ S(c) and 0� k �
min{a, b}.)

In what follows, we suppose that the conditions imposed by the Young’s Rule
orem 4.2), namely max{a, b, c} � α and γ � min{a, b, c}, are verified. By Frobeniu
reciprocity,S(α,β,γ ) contains nontrivialSa × Sb × Sc-invariant vectors if and only if thes
conditions are satisfied. From Theorem 3.3 and (21) it follows that the subrepresen
of S(α,β,γ )↓(Sa+b × Sc) that are trivial onSc may be characterized by solving the syste




d12
∑γ

v=0

∑β

u=max{0,β+γ−c−v} puvσβ−u,γ−v(C) = 0,

d23
∑γ

v=0

∑β

u=max{0,β+γ−c−v} puvσβ−u,γ−v(C) = 0
(22)

where the vectorspuv ∈ M(a+b−u−v,u,v)(A ∪ B) are unknown (the conditions onu andv

come from the conditions in (21) simplified by the Young’s Rule:c � α andv � γ ⇒ β �
a + b − v).

To solve (22), first note thatd12(puvqβ−u,γ−v) = (d12puv)qβ−u,γ−v +puv(d12qβ−u,γ−v)

(verify this identity on the product of two Dirac functions). It follows that

d12
(
puvσβ−u,γ−v(C)

) = (d12puv)σβ−u,γ−v(C)

+ (c − β − γ + u + v + 1)puvσβ−u−1,γ−v(C). (23)

Therefore, the first equation in (22) may be studied for every fixedv, i.e., it is equivalent
to

d12

β∑
u=max{0,β+γ−c−v}

puvσβ−u,γ−v(C) = 0 (24)

for 0� v � γ .

Lemma 7.1. For 0� v � γ the solutions of(24)are given by

1 β−u
puv =
(γ − c − v)β−u

(d12) pβv, u = max{0, β + γ − c − v}, . . . , β, (25)
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wherepβv belongs toM(a+b−v−β,β,v)(A ∪ B) and satisfies the condition:

(d12)
c+v−γ+1pβv = 0 (26)

(which is trivial whenv � β + γ − c).

Proof. Setm = max{0, β +γ − c−v}. We have to examine two cases. Ifm = 0 then from
(23) it follows that (24) may be written as:

β∑
u=1

(d12puv)σβ−u,γ−v(C) +
β−1∑
u=0

puv(c − β − γ + u + v + 1)σβ−u−1,γ−v(C) = 0

thus it is equivalent to the recurrence relation

d12puv + (c − β − γ + u + v)pu−1,v = 0 (27)

for u = 1,2, . . . , β. (27) is solved by (25). In this case, everypβv in M(a+b−β−v,β,v)(A∪B)

gives rise to a solution of (24) (i.e., (26) is trivial).
Analogously, it is easy to show that if 0< m = β + γ − c − v then (24) is equiva

lent to the recurrence relation (27) foru = β + γ − c − v + 1, . . . , β, together with the
supplementary conditiond12pβ+γ−c−v,v = 0 which, by (25), is satisfied if and only
(d12)

c+v−γ+1pβv = 0. �
For the second equation in (22), observe that

d23
(
puvσβ−u,γ−v(C)

) = (d23puv)σβ−u,γ−v(C) + (β − u + 1)puvσβ−u+1,γ−v−1(C).

Thus such equation may be restricted to the ‘straight lines’u + v = k, for k a constant
satisfying the conditions max{0, β + γ − c} � k � β + γ . This gives:

d23

min{k,β}∑
u=max{0,k−γ }

pu,k−uσβ−u,γ−k+u(C) = 0. (28)

(To obtain the condition max{0, k − γ } � u � min{k,β}, compute the intersection o
the lineu + v = k with u = 0, u = β, v = 0, v = γ , according to 0� k < γ , γ � k � β or
β < k � β + γ .) Equation (28) is only slightly different from (24); we give its solution
the following lemma ((24) and (28) would have been the same equation if, before w
(22), we had not imposed the conditions of the Young’s Rule).

Lemma 7.2. On the straight linesu+v = k, max{γ,β +γ − c} � k � β +γ , the solutions
of (28)are given by:

1 u−k+γ
pu,k−u =
(k − β − γ )u−k+γ

(d23) pk−γ,γ , u = k − γ, . . . ,min{k,β} (29)
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wherepk−γ,γ belongs toM(a+b−k,k−γ,γ )(A ∪ B) and satisfies the condition

(d23)
β+γ−k+1pk−γ,γ = 0 (30)

which is trivial in the caseγ � k � β. If k < γ , then on the lineu + v = k Eq. (28) has
only the trivial solution.

Proof. We have to examine three cases.
(1) If k < γ then

d23

k∑
u=0

pu,k−uσβ−u,γ+u−k(C) =
k−1∑
u=0

[
(β − u)pu+1,k−u−1 + d23pu,k−u

]
σβ−u,γ−k+u(C)

+ (β + 1)p0kσβ+1,γ−k−1(C),

thus (28) is satisfied if and only if

pu+1,k−u−1 = − 1

β − u
d23pu,k−u (31)

for u = 0,1, . . . , k − 1 andp0k = 0.
(2) If γ � k � β then (28) is equivalent to (31) foru = k − γ, . . . , k − 1.
(3) If β < k then (28) is equivalent to (31) foru = k − γ, . . . , β − 1, together with the

conditiond23pβ,k−β = 0.
Then it is easy to complete the proof of the lemma (note that the conditionp0k = 0 in

case (1) forcespu,k−u = 0 for all values ofu). �
Corollary 7.3. The solutions of(22)are identically zero outside the domain

D = {
(u, v): 0� v � γ and max{γ − v,β + γ − c − v} � u � β

}
. (32)

Proof. These conditions onu andv come from the conditions in (22) together withu+v =
k � γ from Lemma 7.2. �
Lemma 7.4. If pβγ ∈ M(a+b−β−γ,β,γ )(A ∪ B) ∩ Kerd23 then the condition

puv = 1

(u + v − β − γ )γ−v(−c)β+γ−u−v

(d23)
γ−v(d12)

β+γ−u−vpβγ , (u, v) ∈ D, (33)

is equivalent to:

puv = 1

(−c)β+γ−u−v

(d12)
β−u(d13)

γ−vpβγ , (u, v) ∈ D (34)
(D is the domain of Corollary7.3).
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Proof. Indeed, from Lemma 3.1(5) it follows that ifd23pβγ = 0 thend23(d12)
qpβγ =

−q(d12)
q−1d13pβγ . Using this identity repeatedly, one can change (33) into (34)

viceversa. �
Theorem 7.5. The solutions of the system(22) are given by(33) (or equivalently by(34))
for pβγ ∈ M(a+b−β−γ,β,γ )(A ∪ B) satisfying the system:

{
(d12)

c+1pβγ = 0,

d23pβγ = 0.
(35)

Proof. If {puv: (u, v) ∈ D} is a solution of (22) then (33) is a consequence of (25)
(29), while the conditions in (35) follow from (26) and (30).

Conversely, suppose that{puv: (u, v) ∈ D} satisfies (33) and (35) (and thus (34)). Th
as in the proof of Lemma 7.4, we haved23(d12)

qpβγ = −q(d12)
q−1d13pβγ . By repeatedly

using this identity, we obtain that

(d23)
β−u+1puγ = 1

(−c)β−u

(d23)
β−u+1(d12)

β−upβγ

= (−1)β−u(β − u)!
(−c)β−u

(d13)
β−ud23pβγ = 0

(d13 andd23 commute), thus (30) is verified. Analogously

(d12)
c+v−γ+1pβv = 1

(−c)γ−v

(d12)
c+v−γ+1(d13)

γ−vpβγ

= 1

(−c)γ−v

(d13)
γ−v−1(d12)

c+v−γ+1d13pβγ

= −1

(−c)γ−v(c + v − γ + 2)
(d13)

γ−v−1d23(d12)
c+v−γ+2pβγ

= · · · = (−1)γ−v

(−c)γ−v(c + v − γ + 2)γ−v

(d23)
γ−v(d12)

c+1pβγ = 0

(d13 commutes withd12 and with d23). Thus the (26) is verified. Moreover, (33) a
(34) ensure us thatpuv verifies (25) and (29). Therefore{puv: (u, v) ∈ D} is a solution
of (22). �
Remark 7.6. Theorem 7.5 says that the map

pβγ →
∑

(u,v)∈D

1

(u + v − β − γ )γ−v(−c)β+γ−u−v[ ]
× (d23)
γ−v(d12)

β+γ−u−vpβγ σβ−u,γ−v(C)
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is an explicit Sa+b × Sc equivariant isomorphism fromM(a+b−β−γ,β,γ )(A ∪ B) ∩
Ker(d12)

c+1 ∩ Kerd23 onto theSc invariant vectors inS(α,β,γ ).
In the caseγ = 0, this isomorphism yields another method to reconstruct the bas

Dunkl [8]. In this case we know explicitly the decomposition ofM(a+b−β,β)(A ∪ B) ∩
Ker(d12)

c+1 into its irreducible constituents (from Corollary 3.2(4)) and theSa × Sb-
invariant functions in these representations are well known. In the caseγ > 0, theSa ×Sb-
invariant functions are less tractable and we need two more lemmas to derive the
result of this paper.

Lemma 7.7. If 0� c+ t −γ +1� β andmax{γ,β +γ −c} � k � min{β,a +b−β,a, b}
thenM(a+b−β−t,β,t)(A ∪ B) ∩ Ker(d12)

c+t−γ+1 ∩ Kerd23 contains a subrepresentatio
isomorphic toS(a+b−k,k) and in this subrepresentation theSa × Sb-invariant vectors are
given by the multiples of:

min{k,a+b−β−t}∑
h=k−t

ϑ(t, k, h)Ψ (a + b − β − t, β, t, a, k,h)

where

ϑ(t, k,h) = (−1)h−k+t (a + b − t − 2h + 1)(k − h + 1)h−k+t (a + b − h − k + 2)h−k+t

(a + b − t − h − k + 1)h−k+t (β − h + 1)h−k+t

.

(36)

Proof. From Theorem 5.4 we know that if 0� k � min{a + b − t, a + b − β,β + t, a, b}
then an orthogonal basis for theSa × Sb-invariant vectors in theS(a+b−k,k)-isotypic sub-
space ofM(a+b−t−β,β,t)(A ∪ B) ∩ Ker(d12)

c+1+t−γ is given by the functionsΨ (a + b −
β − t, β, t, a, k,h) for

max{k − t, β + γ − c − t} � h � min{k, a + b − k − t, a + b − t − β,β}. (37)

The conditionβ + γ − c − t � h comes from Corollary 3.2(4) and eliminatesh � 0
(becausec + t −γ +1� β). Now we impose the conditions of the Littlewood–Richards
Rule 4.2:γ � k � β � a + b − k � α. By Frobenius reciprocity,S(α,β,γ )↓Sa+b × Sc con-
tains a subrepresentation isomorphic toS(a+b−k,k) ⊗ S(c) if and only if these conditions
are satisfied. We use them (in particularβ + γ − c � k � β) to simplify (37), which be-
comes:k − t � h � min{k, a + b − β − t}. Therefore, under these conditions, to pro
thatM(a+b−β−t,β,t)(A∪B)∩Ker(d12)

c+t−γ+1 ∩Kerd23 contains a subrepresentation is
morphic toS(a+b−k,k) (computing in this subrepresentation a nontrivialSa × Sb-invariant
vector) it suffices to solve the equation:

d23

min{k,a+b−β−t}∑
h=k−t

ϑ(h)Ψ (a + b − β − t, β, t, a, k,h) = 0 (38)
whereϑ(h) are unknown coefficients. Theorem 6.4 yields:
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d23

min{k,a+b−β−t}∑
h=k−t

ϑ(h)Ψ (a + b − β − t, β, t, a, k,h)

=
min{k,a+b−β−t}∑

h=k−t+1

ϑ(h)
(a + b − t − h − k + 1)(β − h + 1)

a + b − t − 2h + 1

× Ψ (a + b − β − t, β + 1, t − 1, a, k,h)

+
min{k,a+b−β−t}−1∑

h=k−t

ϑ(h)
(k − h)(a + b − h − k + 1)

a + b − t − 2h + 1

× Ψ (a + b − β − t, β + 1, t − 1, a, k,h + 1) (39)

(see also Remark 6.5). Equating to zero the coefficient ofΨ (a + b − β − t, β + 1,

t − 1, a, k,h) in the right-hand side of (39), we obtain the following recurrence rela
for the coefficientsϑ(h):

ϑ(h)
(a + b − t − h − k + 1)(β − h + 1)

a + b − t − 2h + 1
+ ϑ(h − 1)

(k − h + 1)(a + b − h − k + 2)

a + b − t − 2h + 3
,

h = k − t +1, . . . ,min{k, a +b−β − t}, and this recurrence relation is solved by (36).�
Lemma 7.8. Letϑ(v, k,h) be as in Lemma7.7. Then:

d13

min{k,a+b−β−v}∑
h=k−v

ϑ(v, k,h)Ψ (a + b − β − v,β, v, a, k,h)

= − (a + b + v − 2k + 1)v

β − k + v

×
min{k,a+b−β−v+1}∑

h=k−v+1

ϑ(v − 1, k, h)Ψ (a + b − β − v + 1, β, v − 1, a, k,h).

Proof. From the first formula of Theorem 6.4, it follows that the coefficient ofΨ (a + b −
β−v+1, β, v−1, a, k,h) in d13

∑min{k,a+b−β−v}
h=k−v ϑ(v, k,h)Ψ (a+b−β−v,β, v, a, k,h)

is equal to

(a + b − v − β − h + 1)(a + b − v − h − k + 1)

a + b − v − 2h + 1
ϑ(v, k,h)

− (k − h + 1)(a + b − h − k + 2)

a + b − v − 2h + 3
ϑ(v, k,h − 1),

and this, using the explicit formula forϑ(v, k,h), may be easily transformed in
(a+b+v−2k+1)v
−

β−k+v
ϑ(v − 1, k, h). �
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Theorem 7.9. If α � max{a, b, c}, γ � min{a, b, c} and max{γ,β + γ − c} � k �
min{a, b, a + b − β,β}, then theSa × Sb × Sc-invariant vectors in the subrepresentatio
of S(α,β,γ )↓Sa+b × Sc isomorphic toS(a+b−k,k) ⊗ S(c) are given by the multiples of:

γ∑
v=0

β∑
u=k−v

min{k,u,a+b−v−β}∑
h=k−v

(−1)h−v(a+b−h−k+2)h−k+γ (k−h+1)h−k+γ (a+b−v−2h+1)

(c−β−γ+h+v+1)β+γ−h−v(a+b−v−h−k+1)h−k+v

× Eβ−h(a + b − 2h − v, c − γ + v,β − h,u − h)

× Ψ (a + b − u − v,u, v, a, k,h)σβ−u,γ−v(C).

Proof. From Theorem 7.5 and Lemma 7.7 it follows that if in (33) or in (34) we set

pβγ =
min{k,a+b−β−γ }∑

h=k−γ

ϑ(γ, k,h)Ψ (a + b − β − γ,β, γ, a, k,h) (40)

then we solve the system (22) obtaining a nontrivialSa × Sb × Sc-invariant vector in the
subrepresentation ofS(α,β,γ )↓Sa+b × Sc isomorphic toS(a+b−k,k) ⊗ S(c). If pβγ is given
by (40), then Lemmas 7.8 and 5.2(5) yield

puv = 1

(−c)β+γ−u−v

(d12)
β−u(d13)

γ−v

×
min{k,a+b−β−γ }∑

h=k−γ

ϑ(γ, k,h)Ψ (a + b − β − γ,β, γ, a, k,h)

= (−1)γ−v(a + b + v − 2k + 2)γ−v(v + 1)γ−v

(β − k + v + 1)γ−v(−c)β+γ−u−v

×
min{k,a+b−β−v,u}∑

h=k−v

ϑ(v, k,h)(a + b − β − v − h + 1)β−u

× Ψ (a + b − u − v,u, v, a, k,h) (41)

for u + v � k, andpuv = 0 for u + v < k. Then the theorem follows from (7) and (36);
the final formula we have omitted the factor(−1)k/(β − k + γ )!. �

In the following corollary, we want to restate Theorem 7.9 in the form of a result on
variables orthogonal polynomials. First of all we perform in (19) the change of vari
x → x, y → y, u → u− x andv → v − y; because of the hierarchy between the variab

our solutions are naturally expressed as linear combinations of the characteristic functions
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of the orbits parametrized in this way:σxy(A)σu−x,v−y(B)σβ−u,γ−v(C). After this change
of variables, (19) becomes:




(a − x − y)f (x + 1, y,u + 1, v) + (b − u − v + x + y)f (x, y,u + 1, v)

+ (α − a − b + u + v + 1)f (x, y,u, v) = 0,

xf (x − 1, y + 1, u − 1, v + 1) + (u − x)f (x, y,u − 1, v + 1)

+ (β − u + 1)f (x, y,u, v) = 0

(42)

wheref is defined onD = {(x, y,u, v): 0 � x � u � β,0 � y � v � γ, x + y � a,β +
γ − c � u + v � b + x + y}.

Corollary 7.10. Suppose thatα � max{a, b, c} and γ � min{a, b, c}. For max{γ,β +
γ − c} � k � min{a, b, a + b − β,β} define the polynomialφk(x, y,u, v) by setting

φk(x, y,u, v)

=
min{k,u,a+b−v−β,y−v+b,a−y}∑

h=k−v

(−1)h−v(a + b − h − k + 2)h−k+γ (k − h + 1)h−k+γ

(c − β − γ + h + v + 1)β+γ−h−v

× a + b − v − 2h + 1

(a + b − v − h − k + 1)h−k+v

Eβ−h(a + b − 2h − v, c − γ + v,β − h,u − h)

× Ek−h(v, a + b − v − 2h,a − h,y)Eh(u, a + b − u − v, a − y, x)

for 0� v � γ , k − v � u � β, 0� y � v andmax{0, u + v − b − y} � x � min{u,a − y},
andφk(x, y,u, v) = 0 for the other values(x, y,u, v) ∈ D.

Then the set{φk: max{γ,β + γ − c} � k � min{a, b, a + b − β,β}} is a basis for the
solutions of the system(42). This basis is orthogonal with respect to the weight

(
a

a−x−y,x,y

)(
b

b−u−v+x+y,u−x,v−y

)(
c

c−β−γ+u+v,β−u,γ−v

)
.

Proof. It follows immediately from the explicit formula for theΨ functions in Defini-
tion 5.1. The weight is equal to‖σxy(A)σu−x,v−y(B)σβ−u,γ−v(C)‖2. �

We think that it is impossible to get a simpler expression for the polynomials in C
lary 7.10: the sum overh, that comes from Lemma 7.7, is a linear combination of indep
dent vectors. The fact is that the vectors of our basis depend on the single parametk but
are made up of vectors that depend on the two parametersh, k. For the same reason, th
norm of the polynomials in Corollary 7.10 (i.e., the norm of the vectors in Theorem
can be easily computed by mean of the formula in Remark 5.3 and of the orthogo
relations for the Hahn polynomials, but the final result is a very cumbersome doubl
expression that seems not easy to simplify.

We end the paper showing how our polynomials specialize to Dunkl’s two varia

Hahn polynomials whenγ = 0. Under such condition, we also havev = y = 0 and
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m-
8,

paper.
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Lecture

SIAM

diana
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ath. 22

, Amer.

7–71.
r, New

l. 682,

ppl.,

dv. in

t Lapla-

(2003)

empp
emic,
h = k and the polynomial in Corollary 7.10 becomes a multiple ofEβ−k(a + b − 2k, c,

β − k,u − k)Ek(u, a + b − u,a, x); applying the symmetry relations (4), (5) and perfor
ing the change of variablesx → x, u → x + u, one obtains easily the polynomials in [
(3.11)(ii)].
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