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Abstract

In this paper, we find an orthogonal basis for fiaex Sp, x Sc-invariant vectors in the irreducible
representations(*:#:¥) of the symmetric group. The basis chosen is part of a Gel'fand basis (or
adapted basis) coming from the chain of subgroipsy+ > S+ X Se¢ > Sq X Sp x Se. This is
a generalization and a completion of the work of Dunkl [Pacific J. Math. 92 (1981) 57-71], who
considered ths,, x S, x Sc-invariant vectors irsY —*-%)
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1. Introduction

Let G be a finite group and a subgroup ofG. The pair (G, K) is said to be a
(finite) Gel'fand pair [2] if the permutation representation®®bn the homogeneous space
G/K decomposes without multiplicity, or equivalently, if the convolution algebra of bi-
K -invariant functions defined o is commutative. Many examples of finite Gel'fand
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pairs, whereG is a Weyl group or a Chevalley group over a finite field, were studied by
P. Delsarte, C. Dunkl and D. Stanton; see the surveys [7,15] or the book [11]. The most
studied pair wagSy, Sv—m X Sn), whereS;, denotes the symmetric group énletters:

see for example the papers [1,4-6,15], and [3] for a probabilistic application. In [7] Dunkl
suggested to study the nonGel'fand p@y, S, x Sp x S.), whereN =a + b+ c. In [8]
Dunkl constructed a basis for the spacespfx S, x S.-invariant vectors in the irreducible
representations ofy canonically associated to partitions@fin two parts. In the present
we determine a basis for the spaceSpfx S, x S, -invariant vectors in the irreducible
representations associated to partitionsvofn three parts. This completes the work of
Dunkl: no other irreducible representation contains nontri§jak S, x S.-invariant vec-
tors.

Let A7) the irreducible representations associated to the partitiof, ) of N.

To reach our goal, we will use the following fact: ¥f is an irreducible representation of
Sa+b X S¢, then the dimension of the spaceSfx S, x S.-invariant vectors irV is < 1 and
ifitis =1 andV appears ir§@#7) | ¢ . thenthe multiplicity ofV in such restriction

is equal to 1. For every suchta, we will write a nontrivialS, x S, x S.-invariant vector

in v c s@A7): therefore, the set of all these vectors will form the desired orthogonal
basis.

The plan of this paper is the following. In Section 2, we recall some basic properties
of Hahn polynomials; all our invariant vectors will be expressed by mean of this family
of orthogonal polynomials. In Section 3, we introduce a set of “Radon transfo#ms”
(compare with [2,16]) on the “flag manifoldsS / (S, X Sa, X - -+ X Sg,,), Whereag +
az+---+a, = N, and some “Laplace operators”, for which we give the spectral analysis.
We also recall the fundamental characterization of the irreducible representations of the
symmetric group as the intersections of the kernels of a set of Radon transforms; such
characterization is due to James [10]; see also [13]. In Section 4, the results of the preceding
section are interpreted in terms of induced representations. In Section 5, we compute a
basis for the space dfy_,, x S,,-invariant functions defined ofiy /(S, x S, x S.). In
Section 6, we study the effect of the operatdrson the vectors of this basis. In Section 7,
we will write an explicit S,4+5» x S.-equivariant isomorphism from a subspace of right
Sa+b—p—y % Sg x S, -invariant functions orf,, onto the space aof.-invariant vectors
in §A.¥) Using the results of the preceding sections, we will findShex Sj,-invariant
vectors in these spaces, obtaining a basis,of S, x S.-invariant vectors ir§®-#.¥), The
main result of the paper is stated in Theorem 7.9

In the present paper, we use several facts from the representation theory of the sym-
metric group. Most of these facts might be deduced from our computatiokisiofariant
vectors, in particular from the discussions of our finite difference equations, but this would
require longer proof and case by case arguments. Conversely, we will use the representation
theory of the symmetric group to shorten many of the proofs of this paper. In other words,
if we know that for some values of the parameters an irreducible representation does not
contain nontrivialK -invariant vectors then we can avoid the discussion of the finite dif-
ference equation that determines such vectors (but the discussion of the finite difference
equation would give us the same results of the representation theory).

The present paper is strictly connected with [12], where we solved a problem in [2]
on a diffusion model or$,,,,,/(S;, X -+ x S,;). The results in this paper should be a first
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step towards the harmonic analysis of more complicated diffusion models. The harmonic
analysis of invariant functions, in particular on the symmetric group, may also be applied
to some statistical problems of Diaconis; see [14].

2. Hahn polynomials

Following [5] and [8], we introduce a family of renormalized Hahn polynomials. For
m,a, b, c, x nonnegative integers satisfying:< a + b,m < min{a, b,c,a + b — ¢} and
maxXc — b, 0} < x < min{a, c}, we define:

En(a,b,c,x)
min{m,x}

= > v (’;’) (b—m+1)j(=x)j(@—m+ L jx—mj.

Jj=max{0,x—c+m}

The following is a list of some of their properties ([5] and [8]).
Finite difference equations:

(c—x)En(a,b,c—1,x)+xEyn(a,b,c—1,x—1)=(c—m)Ey(a,b,c,x), (1)
(a—x)E,(a,b,c+1L,x+1D)+x+b—c)Eyu(a,b,c+1,x)

=@+b—-—c—m)E,(a,b,c,x), 2)
(c—x)la—x)Ey(a,b,c,x+1D)+x(x+b—c)Ey(a,b,c,x — 1)
= [(c—x)(a —x)+x(x+b—c)—m(a +b+1—m)]Em(a,b,c,x). 3)

Symmetry relations:

Em(avb’ C,x):(—l)mEm(b,a,C,c—x), (4)
En(,b,c,x)=Ey,(c,a+b—c,a,x). (5)

From the transformation formula (3.8 in [SEITL”J;&%_L‘_H” )Y Em(a, bc,x) =
(“=™)En(a, b,d, y) and (5) it follows that '

mmZ{ajy} N4 YE, @ bexy= (" E, (d.a+b—d.c.y)
X a—x m ’ ’ ’ - a—m m ’ ’ sy'

x=max0,a—d+y) (6)
Particular values:

Em(ma ba C5x) = Em(cam +b - C,m,x)
=(=D"""m!b—c+Dy(c—m~+ D)y (7)
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3. Representation theory of the symmetric group and Radon transforms

Let N be a positive integer. A composition 8f is an ordered sequence of nonnegative
integersa = (a1, az, ...,ay) such thatay + az + --- 4+ a;, = N. A partition A of N is a
compositionr = (A1, A2, ..., Ap) Of N such thathy > A2 > --- > A, > 1. We recall that
there exists a canonical one to one correspondence between the set of all partifibns of
and the set of all irreducible representations of the symmetric gsqu{9,10,16]. If 1
is a partition of N, the irreducible representation canonically associated isodenoted
by $*. The homogeneous spagk, = SN/ (Say X Sap X -+ x Sg,) Will be identified with
the set of all “flags”(A1, A2, ..., Ay) such that fori = 1,...,h, A; is ana;-subset of
{1,2,...,N}andA;NA; =@fori# j(soA1UAU---UA,={12,...,N}). We will
denote byM* the permutation module of all complex valued functions definef2gnThe
spaceM® will be endowed with the natural scalar prody¢t, f2) = Zwega f1(®) fo(w)
for f1, fo € M*. The Dirac function at a pointAi, Ao, ..., Ay) € 2, will be denoted
simply by (A1, Ap, ..., Ap); that is,M? will be identified with the set of all linear formal
combinations of points af2,. Now we define the “Radon transform4’; and the operators
Ajj. If (A1, Ag, ..., Ap) isaflag,|A | > 0 andi # j then we set

dij(A1 Az ... Ap)= > (An.... A Ufx). .. Aj\ (x) ... Ap).

xEAj

That is, if (A1, A2, ..., Ap) € R2(ay.ap.....a,) then thed;;-image of (A1, Ao, ..., Ap) is
the characteristic function of all theB1, B, ..., Br) € $2(ay,a.....a;+1,.... aj—L,....ay) such

yeues

If (A1, Aa, ..., Ap)isaflag,i # j and|A;|, |A;| > O then we set

Aij(A1, Az, ..., Ap) = Z (Az, .., (AN DY U)o (AN ) U)o Ap).
XEAj
YEA;
Thus theA;;-image of(A1, A2, ..., Ap) € 2(ay,a,
allthe (By, Bz, ..., Bp) € $2(ay.a,

.....

.....

the following lemma, we collect some basic properties of the operafpand A;;. We
recall that the Pochhammer symbal); is defined by(a)o = 1 and(a); = a(a + 1) x
a+2---(a+i—Dfori=123,....

Lemma 3.1. Suppose that, j, k are three distinct numbers and thgtbelongs toM<.
Then

(1) dijdjif =aif + Aij 5

(2) if 1< g <a;thend;;(d;)? f = (dj)id;j f +qlai —a;j —q+D(d;)T7Lf;

@)if 1< p<qg<a andd;f =0then(d;;)’d;)f=(q—p+Dpla —a; —
g+1),d;)H)I7Pf,



F. Scarabotti / Advances in Applied Mathematics 35 (2005) 71-96 75

(4) dljdkj de]dl] anddkjdki = dkidkj;
(5) (dij)¥djk = qdix(di))? ™ + dji(dij)?.

Proof. (1) If (A1, A2, ..., Ap) € £2, then

dijdji(A1, Ag, ..., Ap)
=dij Y (Ar.... A\ ). Aj UL Ap)
YEA;
=a;(A1, Ao, ..., Ap)
+ )Y (AL (AN D) Ul (A U )\ fxL A)
XEAijAi

=a;i(A1, A2, ..., Ap) + Aij(A1, A2, ..., Ap).

(2) Forg = 1 the identity may be obtained subtractihgd;; f = a; f + A;; f from (1),
the general case follows by induction gn
(3) The case = 1 is a consequence of (2); the general case follows again by induction.
(4) These identities are obvious.
(B) If (A1, Ag, ..., Ap) € £2, then

dijdjr (A1, Az, ..., Ap)

=d;; Z(Al,...,AjU{x},...,Ak\{x},...,Ah)

XEAk
= Z(Al,...,AiU{x},...,Ak\{x},...,Ah)
XEAL
Y0 (A AU (A U\ )L A\ X)L Ay)
XEA yEA;

=dix (A1, A2, ..., Ap) +djrd;j (A1, Az, ..., Ap).
The casey > 1 follows by induction. O

In the following corollary, we begin to investigate the case of a three parts composition
(a,b,c).

Corollary 3.2.

(1) If 0< h < min{a,b} then (d21)?~" is injective from M(@tb=hh.0) A Kerd;, to
M(a,b,c)-

(2) (dop)b~I[M@tb=hhc) n Kerdys] is an eigenspace ofi1» and the corresponding
eigenvalue isab —h(a+b—h+1);
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min{a,b}
(3) M(a,b,c) — @ (d21)b_h [M(a-‘rb—h,h,c‘) ) Kerdlz]
h=0
is a decomposition af/ @29 into invariant mutually orthogonal subspages
(4) if p>=max{l,b—a+ 1} then

min{a,b}
M@EO A Ker(dip)? = P @) MmO NKerdyy).
h=min{0,b— p+1}

Proof. (1) is a consequence of Lemma 3.1(3)pit= ¢ = b — h then ||(d2)? " f||2 =
(f, (d12" " (d20" ™" ) = (b — W)@ — h + Dl f1I>.
(2) is a consequence of Lemma 3.1(1) and (2) & M@ 0=1.) anddy f = 0 then

A12(d20)" ™" f = d12do1(do))” " f — a(do)’ ™" f =[ab — h(a +b —h+1)](d20)" " f.

Moreover, in the interval & & < min{a, b}, the functionh — [ab — h(a + b — h + 1)]
is decreasing. Therefore we have obtained {mih} + 1 distinct eigenvalues and the
eigenspaces are orthogonal.

For the moment, suppose that0b < a. The orthogonal decompositialf (*-4:¢) =
(dorM @ tL0=1.0y gy (M (@b.9) N Kerdy ) is an immediate consequence of the fact thais
the adjoint ofdy». Iterating this decomposition, one obtain easily (3). (4) is a consequence
of (1), (3) and of Lemma 3.1(3). Finally, the cake- a follows from the isomorphism
M(a,b,c) — M(b,a,c)_ O

The case = 0, that corresponds o= 0 in Theorem 2.8 of [4]d12 andd>1 correspond
to 4 andd* in [4,5,8]), gives the well-known decomposition &f-?) into its irreducible
constituents:

min{a,b}
MY = P (o)’ "M@ N Kerdsy). (8)
h=0

Now M(@+b=h.h) N Kerdy, is the irreducible representation o, denoted by
§latb=h.h) Indeed, all the representations of the symmetric group may be characterized as
intersections of kernels of the operatafs.1 (and this is one of the main ingredients in
our computations of invariant vectors):

Theorem 3.3.1f . = (A1, A2, ..., ) is @ partition of N thenS* = M* N ("' Kerd; ;i 11).

This was proved by James in [10], in the context of a characteristic free approach to
the representation theory of the symmetric grodip (1 corresponds ta); 4, ,—1 in [10,
p. 67]. See also [16]. An elementary proof, in the case of ordinary representations, may be
found in [13].
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4. A classof induced representations and harmonic analysis of the operators A;;

We begin this section recalling the definition of induced representation [9]G Lzt a
finite group,K C G a subgroupy a representation a andW an K -invariant subspace
of V. Suppose thaf is a system of representatives for the set of left co§et&, that is
G = J,cs s K with disjoint union. We say that is induced byW if we have the following
direct sum decomposition’ = @),.ssW. The standard notation i = Ind% W. Now
we introduce a notation: iX is a finite set and: and A are respectively a composition
and a partition of X|, then M“(X) and $*(X) will denote the usual spacég® and S*
constructed using the space of complex valued functions definexi. df (a, b, ¢) is a
three parts composition of a fixed positive integerthen the homogeneous spaeg, .
may be seen as the set of all pairs, B) such thatA and B are respectively an-subset
and ab-subsetoff1,2,..., N} andA N B =¢. It follows that

M@= MO X). (9)

XC{1,2,....N}
X |=a+b

This decomposition tells us that the representatioon M%< is induced from
the representations “? @ S© of S,,;, x S.. Moreover, the decomposition (9) is stable
under the action off12: if X is ana + b-subset of{1, 2, ..., N} then thed;s-image of
M@D) (X is contained inV “+1.b=D (X). This proves that if: > b then

M@ nKerdiz= @ S“PX). (10)

Xc{1,2,..,N}
IX|=a+b

This decomposition proves the case- 0 in the following proposition; the cage> 0
may be proved similarly.

Proposition 4.1. In the permutation module

Mab.o) — Ind§a+h+z: [M(a,b) ® S(c)]

a+b X Se

the subspacéds1)? [ M (@+b—h-1.c) 0 Kerdy,] corresponds to

Sﬂ b+ — .
Indg e [SHPmM @ 5], 0<h <minja, b).

In the following theorem we state two particular cases respectively of the Young's Rule
and of the Littlewood—Richardson Rule [10,16].

Theorem 4.2. Let («, 8, y) and (a, b, ¢) be respectively a partition and a composition
of N. We allow the caseg =0andg =y =0.
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(1) The irreducible representatiors@#7) is contained in the permutation module
M@P) if and only ifa > maxa, b, ¢} and y < min{a, b, ¢} and its multiplicity is
equal tom g ) =minfe —a, 0 —b,a —c,a — B, —y,a—y,b—y,c—y}+1
Moreover,

M@bo) @m(a,ﬁ,y)s(a’ﬂ’y)‘

(2) Leta > b. The multiplicity ofS@-A:7) in Indgzii;"s([s(“’b) ® §©7is equal tol if y <

b < B < a < a, otherwise is zero. In particulamdgzi’;*;sc[S(”*b) ® $©] decomposes
without multiplicity.

In the following theorem, we state a particular case of a result proved in [12,13].

Theorem 4.3. Let («, 8, ¥) and (a, b, ¢) be respectively a partition and a composition of
N and suppose that the conditions(it) of Theoren4.2 are satisfied. Then thg®#.7)-
isotypic component d#f @2:9) is an eigenspace af 12+ A13+ Az and the corresponding
eigenvalue is

1
E[a2+ﬂ2+y2—2ﬂ—4y —az—bz—cz].

Let V the direct sum of alls‘®-A¥)-isotypic subspaces dif ->-<) with y = 0. Corol-
lary 3.2 and Theorem 4.3 yield a characterization of a decompositidéhinfo mutually
orthogonal irreducible subrepresentations. See [5, Theorem 2.3], for the ed3e

Corollary 4.4. Suppose thay € V,0< h < min{a,b} andh <k <a+b—h <N —k.
Then f belongs to the subrepresentation(d@y)?—"[ M @+b="h.¢) 0 Kerd,,] isomorphic
to SV=5K if and only if A1pf =[ab — h(a +b —h + 1)) f and[A13+ Azl f = [c(a +
b—h)y—(k—hN—-k—h+1)]f.

Proof. The only if part is a consequence of Corollary 3.2(2) and of Theorem 4.3. Note that
this part is true not only fol but also for the whol@/ %<, Now we prove the if part. As
noted during its proof, the decomposition in Corollary 3.2(3) gives{mib} + 1 distinct
eigenvalues ofA12. That is, the eigenvalues determine the subspaces in the decomposition.
Again, this point is true for the wholé/?-)_ Finally, for a fixedh, the functionk —
[cta+b—h)— (k—h)(N —k—h+ 1)]is decreasing for & k < (N + 1)/2. Thus the
eigenvalues ofA13+ A3 separate the subrepresentation¥ in (do1)? " [ M @+b=h1.0)
Kerdy2]. This fact is true because we have restricteifto O

5. An orthogonal basisfor the Sy_,, x Sy,-invariant functionsin the permutation
module M @5-¢)

We introduce some notations. §? is a finite set,L(£2) will denote the space of all
complex valued functions defined &h. If 21 and$2; are two finite sets angl € L(£2;),
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i = 1,2, then produci&1£2) (w1, w2) = &1(w1)é2(w2), defined for(wy, w2) € 21 x 22,
corresponds to the tensor prodget’ &> € L($21) ® L($22) = L(£21 x £22).

If X is a finite set and:, v are two integers satisfying the conditions<Q«, 0 < v
andu + v < |X|, then we will denote by, ,(X) the function inp(XI—u—vuv) (x) —
L(82(x)—u—v,u,v)(X)) Which is constant and identically equal to 1.YfZ are two dis-
joint subsets of{1,2,..., N} such that|Y| =m, |Z| = N — m, and the integers, y
satisfy the conditions & x < b, 0<y<¢e,m—a<x+y<m N=a+b+c,
then the (tensor) produet, ,(Y)o,—x —y(Z) is the characteristic function of the set
{(A,B,C) € 2upoy(Y UZ): [BNY|=x and|C N Y| =y} = Lumx—yry ) X
-Q(a—m—i-x+y,b—x,c—y)(z)-

Clearly, if Sy_n x S, is the stabilizer of the painY, Z) then the functions
0,y (Y)0p_x c—y(Z) form a basis for th&y_,, x S,,-invariant functions i (@-2:¢) (they
are the characteristic functions of the orbits).

A more symmetric, but also more cumbersome, notatioa fgn(Y)o,—» —,(Z) would
make easy to write general formulas for the actiod;pfand A;; ono, ,(Y)op—yx,c—y(Z).
In what follows, apart for an example at the beginning of the proof of the next lemma, we
will leave to the reader the elementary task to derive such identities when they are used
(we will give only the identities or their immediate consequences; their proofs are based
on the repeated application of the fact that the numbersiibsets of a finite sé? is equal

to ().

Definition 5.1. For O<Km < N, 0< k< minfa+b,a+c,b+c, N —m,m} and max0,
k—c}<h<min{k,a + b —k,a, b} we define

min{c,m—h}
W(a,b,c,m, k,h)= > Ex—p(c,a+b—2h,m—h,y)
y=max{0,m—a—b-+h}
min{b,m—y}
x Y Exb,a,m—y,x)05,(Y)0hr ey (2).

x=max{0,m—y—a}
In the following lemma, we collect some properties of the functiénis, b, ¢, m, k, h).

Lemmab.2.

(l) Alz"l/(a9 b7 c,m, k7 h) = [ab - h(a + b - h + l)]lI/(a5 b5 c,m, k9 h)1

(2) [A13+ Ax3l¥(a,b,c,m,k,h) =[c(a+b—h)— (k—h)(N —k —h+ D]¥(a,b,
c,m,k,h);

(3) (e W a,bocm k) = ()W @+ b= tt,com kb,

@) if £:M@h) - py®.a.0 s the natural isomorphisng(A, B, C) = (B, A, C) then
EW(a,b,c,m, k,h)=(=D"W (b, a,c,m, k, h);

(5) i (d1D)' W (a.b.com k)= ()W (ta+b—t.c.m k. h.

Proof. First note that
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A12(0x,y (V)0 c—y(Z))
= [x(m —x=y+Ob-—x)a—m+x+ y)]ax,y(Y)Ub—x,c—y(Z)
+x+Da@—m+x+y+ 1)0x+1,y(Y)Ub—x—l,c—)*(z)
+b—-—x+DHm—-—x—-y+ 1)(7x—1,y(Y)Ub—x+l,c—y(z)~ (11)
For instance, giveA’, B', C) € 2.y SUchthatB’NY|=x+1and|C'NY|=y

the number of A, B, C) € 2.y SuchthatBNY|=x,|CNY|=y,|BNB|=b-1
andC = C’ is equal to

|[B'NY] |[A"NZ|
<|BﬂY|)<|AﬂZ|)
x+1\/fa-m+x+y+1
()

. ):(x+1)(a—m+x+y+1).

From (11) it follows that the coefficient of, ,(Y)op— c—y(Z) in A1p¥ (a, b, c,m, k, h)
is equal to

{[xtm=x—y)+B—x)@—m+x+y)]|Exb,a,m—y,x)
+x(a—m+x+y)Ey(b,a,m—y,x —1)
+ (b —x)(m—x—Y)Epb,a,m—y,x+D}Er_p(c,a+b—2h,m—h,y).

Applying (3) to the expression in curly braces, it becomes
[ab—h(a+b—h+D]Ey(b.a,m — y,x)Ex—p(c,a+b—2h,m —h,y — 1),

and this proves (1).
Analogously, it is easy to check that the coefficienbof, (Z)op—x c—y(Y) in [A13 +
A23l¥(a,b,c,m,k,h)is equal to

[y(m —x = y)+ (= y)a—m+x+y) +xy+b-x)(c—y)]
x Ep(b,a,m —y,x)Ex_p(c,a+b—2h,m—h,y)
+ (= )[xEpb,a,m—y—1x—=1) 4+ (m—x—y)Ey(b,a,m—y—1x)]
X Ex—_p(c,a+b—2h,m—h,y+1)
+y[(b—x)Ex(ba,m —y+Lx+1D)+@—m+x+y)Eyb,a,m—y+1x)]
X Ex—p(c,a+b—2h,m—h,y—1).

Applying Egs. (1) and (2) to the last two expressions in square brackets, it becomes
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{ym—x =+ C—N@a—m+x+y)+xy+b-x(-y)]
X Ex_p(c,a+b—2h,m—h,y)
+(c—y)m—y—hErp(c,a+b—2h,m—h,y+1)
+y(a+b—m—h+y)Ek_h(c,a+b—2h,m—h,y—l)}Eh(b,a,m—y,x).

An application of (3) to the expression in curly brackets changes it into
[c@a+b—h)—(k—h)(N—k—h+1)]
X Ep(b,a,m —y,x)Er_p(c,a+b—2h,m—h,y),

and this proves (2).
To prove (3), first note that

(t—b)! (le)t_mb*y(Y)Ub—x,c—y(Z)

min{m—y,t—b+x}

) 2 (JZ‘) <2:i>Gz’y(y)ol‘z’c—y(z)-
}

z=max{x,t—a—b+m—y

Therefore, the coefficient af, ,(Y)or—. c—(Z) in 25 (d20)' "W (a, b, ¢, m, k, h) is
equal to

min{b,z}

Z t—z -
Z (x)<b_x>Eh(ba‘lam_yvx)Ek—h(C,ll+b—2h,m—h,y),

x=max{0,z—z+b}

an application of (6) changes it in(gj’l)Eh(t, a+b—t,m—y,2)Ex_p(c,a+b—2h,
m — h, y) and this establishes (3).

(4) follows from the symmetry relation (4) applied &, (b, a,m — y, x).

Finally, (5) is a consequence of (3) and (4) (cleatlyé = £d»1); equivalently, it may
be deduced from (3) in this lemma and Lemma 3.1(3).

Remark 5.3. Two applications of the orthogonality relations for the Hahn polynomials
[5, p. 631] yield the following expression for the normwfa, b, c, m, k, h):

-1
||‘1’(a,b,c,m,k,h)||2=<"+b) (a+b) a+b—h+1

b h a+b—2h+1
(N —m)!\m!
(N —m —h)!(m — h)!
-1
N—2n\(N—-2n\"N-h—k+1
X( ¢ )(k—h> Noaka1 VTR D
Xm—k+Di_plc—k+h+Di_p@a+b—h—k+Li_y.

x(b—h+Dpa—h+1Dy
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Theorem 5.4.

(1) The space ofSy_,, x S,-invariant vectors in the subrepresentation @b1)?~" x
[M@+b=h.1.c) A Kerdy,] isomorphic toS™™ %X is spanned by (a, b, ¢, m, k, h).

(2) The set{¥(a,b,c,m,k,h): 0 <k <minfa + b,a + ¢,b + ¢, N — m,m} and
max0, k —c} <h < min{k,a+b —k, a, b} is an orthogonal basis for th&y_,,, x S,-
invariant functions inM @-2-¢)

Proof. From the Young’s Rule and Frobenius reciprocity, it follows that the dimension
of the space ofy_,, x S,,-invariant vectors in an irreducible representatigifi?v) c
M @b is < 1 and is equal to one if and only jf = 0 anda > maxN — m, m}. There-
fore (1) is a consequence of Lemma 5.2(1),(2) and of Corollary 4.4.

If we denote by(SN kL)), the subrepresentation afx1)?~"[M@+0=1.0) N Kerdy,]
isomorphic toS™N %% then from Corollary 3.2(3), Proposition 4.1 and Theorem 4.2 it
follows that

min{a+b,a+c,b+c,N—m,m} min{k,a+b—k,a,b}

® D (s,

k=0 max0,k—c}

is an orthogonal decomposition of the direct sum of all the irreducible subrepresentations of
M @b-9) containing nontriviaSy _,, x S,,-invariant vectors. Therefore (2) is a consequence
of (1). O

Remark 5.5. The Sy, x S — Sq x Sp x Sc-invariant functions? (a, b, ¢, m, k, h) might
be obtained from the, x S, x S. — Sy_m x Sp-invariant functions in [8] by mean of
the transformatiorg — g~1. Another way to derive the intertwining functions in [8], and
therefore the function¥ (a, b, ¢, m, k, h), will be sketched in Remark 7.6.

6. Theaction of d13 and dy3 on ¥ (a, b, c,m, k, h)

In this section, we compute the action df3 and d»3 on the invariant vectors
Y (a,b,c,m,k, h). We begin with a particular case.

Lemma 6.1. dis¥(a +b — h,h,c,m,k,h)=(@a@a+b—-—h—k+D¥@+b—h+1,
h,c— 1 m,k,h).

Proof. The conditionb = h yields two simplifications. First, from the identitijod13 =
d13d1» (see Lemma 3.1(4)) it follows that thiz-image of M @+b=h1.¢) \ Kerdy, is con-
tained inM (@ tb—h+Lh.c=D N Kerd,,. Sincedss is an intertwining operator, thé s-image
of the subrepresentation of (“+="".¢) A Kerd;, isomorphic toS™V =% s (contained
in) the subrepresentation af ¢ +b=+Lh.c=1) A Kerdy, isomorphic tas™” %X Therefore
di3¥(a+b—h,h,c,m,k,h)is amultiple of¥(a+b—h+1,h,c—1,m,k, h). More-
over, in the casé = h we may apply (7) to the coefficients, (h,a +b —h,m — y, x) in
Ya+b—nh,h,c,m,k,h).
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The coefficient 0byy (Y)0h—x c—1-y(Z) iNd13¥(a + b —h, h,c,m, k, h) is equal to:

(m—x—y)Ep(h,a+b—h,m—y—1x)Ex_p(c,a+b—2h,m—h,y+1)
+@+b—h—m+x+y+DE,(h,a+b—h,m—y,x)
X Ex_p(c,a+b—2h,m—h,y). (12)

Applying (7) to transform the coefficients, (h,a+b—h,m —y —1, x) andE, (h,a +
b—h,m —y,x) into a multiple ofEj(h,a+b—h+1,m—y, x), (12) becomes:

Ep(h,a+b—h+1m—y x)[(m—h—y)Ep(c,a+b—2h,m—h,y+1)
+(a—|—b—m—h+y+1)Ek_h(c,a+b—2h,m—h,y)]. (13)

The symmetry relation (5) changes (2) into — x)E,;(a + 1,b — L c,x + 1) +
(x+b—c)En(a+1,b—1,¢,x)=((b—m)E,(a,b, c, x). Applying this to the expression
in square brackets, (13) becomes:

(a+b—h—k+VDE,(h,a+b—h+1m—y,x)Ex_p(c—1,a+b—2h+1,m—h,y)
and this proves the lemma.c

Lemma 6.2. There exists a constan{a, b, ¢, m, k, h), that satisfies the identity(a, b, c,
m,k,h)=Ma-+b—h,h,c,m, k,h)for b > h, such that

b—k—h+1
di3¥ (@, b, c.m. k. h) = (a —h+1)a:+b_2h ++1 W(a+1,b,c—1mk h)

—Aa,b,e,m k., W@+ 1, b,c—1,m,k,h+1),
a+b—k—h+1
dos¥(a,b,c,m,k,h)=0bB—-—h+1 Y@ab+1lc—1,m,k,h
3% (a,b,c,m )={( +)a+b—2h+1 (a,b+1,c m )

+Ala,b,c,m, k, )W (a,b+1,c—1, mk, h+1).

Proof. From (d12)2d23 = 2d13d12 + d23(d12)? (Setg = 2 in Lemma 3.1(5)) it follows that
thedosz-image of M@ +0—1:h.¢) 0 Kerdy, is contained in

M(a+b—h,h+l,c—l) m Ker(dlz)z

— [M(a+b7h,h+l,cfl) N Kerdlz] @ [le(M(a+bfh+l,h,cfl) N Kerdlz)]

(see Corollary 3.2(4) for this decomposition). Thus thg-image of the subspace of
M@tb=h.1.0) isomorphic to SV %K s contained in direct sum of the subspaces of
M@tb=hh+le=1) N Kerdy, anddoq[ M @Hb—h+1h.c=1) N Kerdy,] isomorphic tos Y —%-4)

It follows thatdysW¥(a + b — h, h,c,m,k,h) is a linear combination o' (a + b — h,
h+lLc—1mk,h+L)and¥(@+b—h,h+1,c—1,m,k,h)



84 F. Scarabotti / Advances in Applied Mathematics 35 (2005) 71-96

d3¥(a+b—h,h,c,m,k,h)
=Ma+b—hh,c,m,k,W)¥(@a+b—h,h+1lc—1mk h+1)
+ua+b—hh,ec,mk,MHW@+b—h,h+1,c—1,m,k,h). (14)
The constanu(a + b — h, h, c,m, k, h) can be derived easily: if we apply to both the

left-hand and the right-hand side of (14) the operaterand use the identity12do3 =
d13+ dozd12 (Lemma 3.1) in the left member, we obtain:

dis¥(a+b—h,h,c,m, k, h)
=ul@+b—"h,h,c,m k,h)dioW(a+b—h,h+1,c—1,m,k,h). (15)
But from Lemmas 5.2(3) and 3.1(3) it follows thak,W(a + b — h,h + 1,
c—1m,k,h)=dipdr¥@+b—h+1hc—1Lmkh=(@+b—2h+D¥(a+
b—h+21h,c—1m,k,h)(indeed¥(a+b—h+1h,c—1,m,k, h) € Kerdip). Apply-
ing this to (15) and using Lemma 6.1 we obtain:
(@+b—h—k+D¥@+b—h+1 h,c—1,m,k,h)
=(@a+b-2h+Du@+b—hh,c,mk,NHW@a+b—h+1hc—1m k, h)

thus

a+b—h—k+1

b—h.h.c.m k.h)= .
wla+ cm ko)==

To get the formula foels¥ (a, b, ¢, m, k, h), apply to both the left-hand and the right-
hand side of (14) the operatg;}T), (d21)?~" and use Lemma 5.2(3) (we recall thiai and
do3 commute). The formula fod13¥ (a, b, ¢, m, k, h) follows easily from Lemma 5.2(4).

Indeeddi3é =&doz. O
Now we compute a particular value bfa, b, c, m, k, h).
Lemma6.3. A(N —k,h,k —h,m,k,h) =k — h.

Proof. First note thatlos¥ (N —k, h, k — h, m, k, h) is a multiple of¥ (N —k,h + 1,k —
h—1m,k,h+1), becaus& (N —k,h+1 k—h—1,m,k, h) does not exist; th8y_,, x
Sy -invariant vectord (a, b, ¢, m, k, h) exists only ifc > k — h; this corresponds to the
conditiona < « in (2), Theorem 4.2. The coefficient of ,(Y)on11—x k—n—1—y(Z) in
dos¥ (N —k,h,k —h,m,k, h) is equal to:

xEp_ptk—h,N—h—k,m—h,y+1DEy(h,N—k,m—y—1x—1)
+h—x+1VDE_ptk—h,N—h—k,m—h,y)Ep(h, N—k,m—y,x). (16)
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Now we can transform all the coefficients (...) in (16) using (7). By simple calculations,
one can prove that (16) is equal to:

k—nEr—p-1k—h—1LN—k—h—1m—-—h—1Ly)Ep1(h+1, N —k,m—y,x),
thusdosW (N —k,h,k—h,m,k,h) = (k—h)¥ (N —k,h+Lk—h—1m,k,h+1). O
Theorem 6.4. The functionsV (a, b, ¢, m, k, h) satisfy the following identities

a+b—k—h+1

dia¥(a,b,c,m,k,h)=@—h+1 v 1L,b,ce—1m,k h
13%(a,b,c,m )=1(a + )a+b—2h+l (a+ c m )
(k—h)(N —k—h+1)
— v 1,b,c—1,m,k,h+1),
a—|—b—2h—|—1 (a+ ] aC ama + )
a+b—k—h+1
do3¥(a,b,c,m,k,h)=(b—-h+1 Y(a,b+1l,c—1m,k, h
23¥(a,b,c,m ) =( +)a+b—2h+1 (a,b+1,c m )
(k—h)(N -k —h+1)

Y@ab+1lc—1,mk,h+1).

a+b—-2h+1

Proof. From Lemma 3.1(4), we know that;3 and do3 commute; if we equate the
coefficients of W(a + 1,b + 1,¢ — 2,m,k,h + 1) in di3d»3¥(a,b,c,m,k,h) and
dozd13¥ (a, b, c,m, k, h), computed by using Lemma 6.2, we obtain (we recall that
rMa,b,c,m,k,h)y =A(a+b—h,h,c,m, k,h)):

a+b—-2h+2
A b—hh,c,mk,h) = ——— A b—h+1hc—1m,k,h). (17
(a + Jh,e,m ) R T (a + + c m ) a7

By ¢ — k + h applications of (17) we obtain:

Nek—h+1
Ma+b—hhcomk b=~ TS5 N — ko hok—h.m. k. h):
@+ com. ke h) = o m. k. h)

and we may finish with Lemma 6.3.0

Remark 6.5. Clearly, for some values of the parameters, the identities of Theorem 6.4
degenerate into identities containing a unique term on the right-hand side: it happens when
one of the functiong on the right-hand side does not exist; for example, see Lemmas 6.1
or6.3.

7. An orthogonal basisfor the spaceof S, x Sp x S.-invariant vectorsin the
irreducible representations S®8-7)

Fix three disjoint subsetd, B and C and defineS, x S, x S. and S,4» x S. as the
stabilizer respectively ofA, B, C) and(A U B, C). If («, B, v) is a three part partition of
N =a+ b + ¢, then Theorem 3.3 ensures us tl§&t7) = M©@B8-¥) N Kerdis N Kerdas
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is the irreducible representation canonically associate@ @, y). It is not hard to see
that the characteristic functions of the orbits%f x S, x S, on 2 g,,) are given by
the productso,, (A)oyy (B)og—u—x,y—v—y(C), Whereo is defined as at the beginning of
Section 5.

Thus theS, x S, x S.-invariant vectors ins“#¥) might be computed by solving the
following system:

18
d23 Zx,y,u,v fx, y,u, U)ny(A)UMU(B)U,B—u—x,y—v—y(C) =0 (18)

{ d12Y" s X, 9,1, 0)01y (A)0uy (B)Op—u—x.y—v—y (C) =0,
where both the sums are over the det= {(x,y,u,v): x,y,u,v > 0,x + y < qa,
utv<bx+u<<pB,yt+tv<y,x+y+u+v=p+y—-c} The system (18) may be
easily translated into the following system of finite difference equations for the coefficients
f(x,y,u,v):

a—x—yfx+Lyu,v)+b—-—u—v)f(x,y,u+1,v)
+@—a—b+x+y+ut+v+1)f(x,y,uv)=0, (19)

xf(x—laY‘i‘l,u,U)‘i‘uf(x,y,M_1,U+l)+(,3_x_u‘i‘l)f(x,y,lfi,v):(l

First of all, we want to sketch how elementary solutions of (19) may be found using
the techniques in [8, p. 60]. Indeed, both the equations are of the same type of (2.1) in [8]
when restricted, respectively, to a plape= constant,y = constant and to a plane+
y = constantu + v = constant. Therefore we may use (2.2) in [8]: if we apply it to the
second equation in (19), we get an expression of the véluey, u, v) in terms of the
values onthe seb; = {(x +y —k,k,u+v—y +k,y —k): max{y —u —v,y} <k <
min{x + y, y — v}}; then we may apply again (2.2) of [8], now to the first equation in (19),
obtaining an expression of the values on a poir@inn terms of the value on the sBy =
{(h,k,B—h,y—k): max{p+y—b—k,x+y—k}<h<minfa—k,B+y —u—v—k}}.
Finally, on D2 the second equation in (19), written fo-u =g+ 1landy +v=y — 1,
yields the following recurrence relation:

(=h)y -«

hk,B—hy—k)=— L
S B Yy —k) Bri-m,

=fth+k—y,y,B+y—h—k,0).

After some elementary calculations (and setting 4 + k) the final result is:

min{a,8+y —u—v}

f(xvy’uﬂv)z Z f(.]_y’y’ﬂ+y_J70)f](x’y’u7v) (20)

Jj=max{+y—b,x+y}

where

. _(BH+y—x—y—u-—v
fj(xvyvuav)_< ]—x—y )
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y x+y—a)jx—yU+v—D)pty—u—v—j
(XY +uU+v—P—¥)y—yu (=€) pox—y—u—pty (1P
min{xﬂy)/*v} <

<D

k=maxy,y —u—v}

y—y— U) (=) k—y (=) y k= (j — ¥ + Dy
k—y B+1+k—j)yys(=Dr*

The representation formula (20) tells us thétis determined by its values on the
setD3={(j —y.v.B+vy —j.0: max0,f +y — b} < j <minfa, f +y}} =D N
{x +u =8,y =y,v=0}. Under the assumption > 8 > maxa, b}, that corresponds
to the condition ¢ > r’ in [8, p. 60], the multiplicitym, g, in Theorem 4.3 is equal to
a — ¢ + 1 and coincides with the cardinality d3. This means that now the functions
{fj: B+ v —b < j<a) form a basis for the solutions of (19) (and note also that now
the sum in (20) is always over ald3). However, as in [8], our main result will be a solu-
tion of (19) by mean of ideas from representation theory. We will study the restriction of
S@B.Y) to S,,5 x S.. For every subrepresentation of the fofti 2%k @ 5 we will
write a nontrivialS, x S, x S.-invariant vector belonging to it. In this way we will obtain
an orthogonal basis for the solution that has a nice group theoretical interpretation.

To start our computations, first observe that the orbit$,qf, x Sc on 2 g,,) are given
by the subsets

Iy = {(A/, B/, C/) S -Q(a,ﬁ,y): }B/ N(AU B)| =u,

C'N(AUB)| =v}

= -Q(a+b—u—v,u,v)(A ) B) X Q(c—ﬂ—y+u+v,ﬂ—u,y—v)(c)

forO<u<pB,0<v<yandB+y —c<u-+v<a+b, and that the spack(r},,) of all
complex valued functions defined @r), may be written as a tensor product:

L(Fuv) — M(aerfufv,u,v) (A U B) ® M(cfﬁfy+u+v,/37u,y7v) (C)

Therefore, the restriction a# #¥) to the subgroug,; x S. may be decomposed as
follows:
MPD | (Sarp % Se)
— @ M(a+b—u—v,u,v) (AUB)® M c—B=yFutv,f—uy—v) (©).

O<u<B, 0<vsy
B+y—c<Lutv<a+b

Clearly, the tensor produgy @+b—u=vw.v)(A y B) @ Mc—P-r+utv.f-uy=v)(C) js
spanned by the products.,gg—u,,—v, Where

Puv € MUV AU B and gy, —y € MTPTYTURVETIY Y (0,

Therefore the direct sum of all the subrepresentatiorg 6f%) | (S, x S.) of the form
§latb=kk) @ §(°) is contained in:



88 F. Scarabotti / Advances in Applied Mathematics 35 (2005) 71-96

@ [M(a+h—tt—v,u,v) (AUB)® S(C)]

O0<u<B, 0y
B+y—c<utv<a+b

= @ {puvoﬂfu,yfv(c): Puv € M(lH_b_u_v’u’v)(A U B)} (21)

0<u<B, 0<vy
B+y—c<utv<a+b

which is the sum of all the subrepresentationsM-#v) | (S,4; x S.) that are trivial
on S.. (An irreducible subrepresentation 7 | (S,45 x S.) contains nontrivials, x
S, x Se-invariant vectors if and only if it is of the forn§@ /%K & §() and 0< k <
min{a, b}.)

In what follows, we suppose that the conditions imposed by the Young's Rule (The-
orem 4.2), namely mdx, b, ¢} < « and y < min{a, b, ¢}, are verified. By Frobenius
reciprocity, S*-#-¥) contains nontrivialS, x S, x S.-invariant vectors if and only if these
conditions are satisfied. From Theorem 3.3 and (21) it follows that the subrepresentations
of S@BY) | (S,.p x S.) that are trivial onS. may be characterized by solving the system:

Y B
di2 Zv:O Zu=max{0,,3+yfcfv} PuvOp—u,y—v(C) =0,

, P (22)
da3 ZU=0 Zu=max{0,,3+yfcfv} PuvOg—u,y—v(C) =0

where the vectorp,,, € M@*+b—u=v.u.v)(A U B) are unknown (the conditions anandv
come from the conditions in (21) simplified by the Young's Rules « andv <y = 8 <
a+b—v).

To solve (22), first note thaﬁlZ(puv‘Iﬂ—u,y—v) = (d12Puv)gB—u,y—v+ Puv(d12q8—u,y—v)
(verify this identity on the product of two Dirac functions). It follows that

dlZ(pquﬁ—u,y—v(C)) = (dlzpuv)gﬁ—u,y—v(c)
+c—B—y +u+v+1)puv0ﬂ—u—1,y—v(c)- (23)

Therefore, the first equation in (22) may be studied for every fixée., it is equivalent
to

B
d1a > PuvOp—uy—(C)=0 (24)
u=max{0,+y —c—v}

forO<v <y.
Lemma 7.1. For 0 < v < y the solutions o0f24) are given by

1

Z—(dIZ)ﬂ_MPﬂv» M=max{0,,3+)’—6—v}’--w/3’ (25)
(V —C—= v)ﬁ—u

Puv
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wherepg, belongs taM @+0-v=F.A:v) (A U B) and satisfies the condition
(d2) T g, =0 (26)
(which is trivial whernv > 8 + y — ¢).

Proof. Setm =max0, 8+ y — ¢ — v}. We have to examine two casesuif= 0 then from
(23) it follows that (24) may be written as:

B -1
Y (@d12Pi)0p—uy—o(O) + Y punlc = B—y +u+v+1Dopu-1,-(C) =0
u=1 u=0

thus it is equivalent to the recurrence relation
dlZpuv + (C - :3 —ytu+ U)pu—l,v =0 (27)

foru=1,2,...,8.(27)is solved by (25). In this case, every, in M@+r=F=v-A)(AUB)
gives rise to a solution of (24) (i.e., (26) is trivial).

Analogously, it is easy to show that if @m = 8 + y — ¢ — v then (24) is equiva-
lent to the recurrence relation (27) for=8+y —c—v +1,..., 8, together with the
supplementary conditiodi2pgy,—c—v,v = 0 Which, by (25), is satisfied if and only if
(d12)T " pg, =0. O

For the second equation in (22), observe that

d23(puv0'ﬁ—u,y—v(c)) = (d23puv)f7/3—u,y—v(c) +B—u+ 1)Puv0f3—u+l,y—v—l(c)'

Thus such equation may be restricted to the ‘straight lime$' v = &, for k a constant
satisfying the conditions mé®, 8 + y — ¢} <k < B + y. This gives:

min{k, 8}

dp3 Z pu,k—ugﬂ—u,y—k+u(c) =0. (28)
u=max0,k—y}

(To obtain the condition md®, k — y} < u < min{k, 8}, compute the intersection of
thelineu +v=kwithu=0,u=8,v=0,v=y,accordingto Xk <y,y <k por
B <k < B+ y.) Equation (28) is only slightly different from (24); we give its solution in
the following lemma ((24) and (28) would have been the same equation if, before writing
(22), we had not imposed the conditions of the Young’s Rule).

Lemma7.2. On the straight lineg + v =k, max{y, 8+ y —c} <k < 8+ v, the solutions
of (28)are given by

1
(k — IB - y)u—k-H/

Puk—u = (@29)" " pi_yy, uw=k—vy,...,mink, B} (29)
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wherepy_, ., belongs ta @+>=kk=v.¥) (A U B) and satisfies the condition
(d23)ﬁ+y_k+lpk—y,y =0 (30)

which is trivial in the cases < k < 8. If k < y, then on the line: + v = k Eq. (28) has
only the trivial solution.

Proof. We have to examine three cases.
(1) If k <y then

k k=1

dZSZ Puk—u0B—u,y+u—k (€)= Z[(ﬂ - u)pu—',—l,k—u—l + d23pu,k—tt]gﬂ—u,y—k+u )
u=0 u=0

+ (B + D pokop+1,y—i-1(C),

thus (28) is satisfied if and only if

1
Pu+lk—u—1= — — ud23pu,k—u (31)

B

foru=0,1,...,k—1andpg =0.

(2) If y <k < Bthen (28) is equivalentto (31) far=k — y, ...,k — 1.

(3) If B <k then (28) is equivalent to (31) far=k — y, ..., 8 — 1, together with the
conditiondaapg r—p = 0.

Then it is easy to complete the proof of the lemma (note that the condlitjpoa: 0 in
case (1) forcep, r—, = O for all values olv). O

Corollary 7.3. The solutions of22) are identically zero outside the domain
D={(u,v): 0<v<yandmaxy —v,B+y —c—v}<u<B} (32)

Proof. These conditions omandv come from the conditions in (22) together with-v =
k >y fromLemma7.2. O

Lemma7.4. If pg, € M@tb=F=v:£.¥) (A U B) N Kerdas then the condition

1

d>2)" ~V(d B+y—u—v ’ ’ D. (33
(”+U_ﬁ_V)V—v(—C)ﬁ+y_u_v( 23)" " (d12) ppy, (u,v)eD, (33)

Puv =

is equivalent to

Puv (d12)P 7" (d13) " ppy, (W ,v)ED (34)

B (_C)Berfufv

(D is the domain of Corollary.3).
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Proof. Indeed, from Lemma 3.1(5) it follows that ifo3pg, = 0 thendza(d12)? pg, =
—q(dlz)qfldlgp,g,,. Using this identity repeatedly, one can change (33) into (34) and
viceversa. O

Theorem 7.5. The solutions of the systef@?2) are given by(33) (or equivalently by(34))
for pg, € M@+b=F=v.B:¥)(A U B) satisfying the system

(d12)pg, =0,

35
dz3pgy, =0. (35)
Proof. If {p,,: (u,v) € D} is a solution of (22) then (33) is a consequence of (25) and
(29), while the conditions in (35) follow from (26) and (30).
Conversely, suppose thgi,,: (1, v) € D} satisfies (33) and (35) (and thus (34)). Then,
as in the proof of Lemma 7.4, we hawgs(d12)! pg, = —q(dlg)qfldlgp,g,,. By repeatedly
using this identity, we obtain that

(d23)f T py, = (d23)? ™" (d1)P " gy

(_C)ﬂ—u

_ DB —w)!

(=C)p—u (d13)P "da3pp, =0

(d13 andd»3 commute), thus (30) is verified. Analogously

_ 1 _ _
(d) TV pg, = o (d) T (d1) "V ppy
Y—v

(d13)” " Hd1) TV dspg,

C (—Oy—
-1

- (—C)va(c +v—y+2)

3 (—1r-v

T (e v—y +2),y

(d13)” 7V tdog(d1) TV P pg,,

(d23)” "V (d12)“ T pp, =0

(d13 commutes withdi2 and with d»3). Thus the (26) is verified. Moreover, (33) and
(34) ensure us that,, verifies (25) and (29). Thereforg,,: (u,v) € D} is a solution
of (22). O

Remark 7.6. Theorem 7.5 says that the map

1
Py = Z

(u,v)eD U+v=B =)y (=) pty—u-v

x [(d23)" "V (d12)P T 7V ppy J0p—u,y—0(C)
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is an explicit S,4, x S. equivariant isomorphism fromy(@+b==v.B:¥)(A U B) N
Ker(d12)T1 N Kerdos onto thes, invariant vectors ir§ @A),

In the casey = 0, this isomorphism yields another method to reconstruct the basis of
Dunkl [8]. In this case we know explicitly the decomposition af“+>=8:8) (A U B) N
Ker(di2)¢*! into its irreducible constituents (from Corollary 3.2(4)) and $ex Sp-
invariant functions in these representations are well known. In theycase, theS, x Sj-
invariant functions are less tractable and we need two more lemmas to derive the main
result of this paper.

Lemma7.7.1f0<c+t—y+1< BandmaxXy, B+y —c} <k <min{B,a+b—B,a,b}
then M (@tb=B=1.8.0(A U B) N Ker(di2)“H'~7*1 N Kerdos contains a subrepresentation
isomorphic toS@*t2=%k) and in this subrepresentation thg x S,-invariant vectors are
given by the multiples of

min{k,a+b—B—t}
Z St kW (a+b—B—t, B, t,a k, h)
h=k—t
where
— 1)kt b—t—2h+D)k—h+21),_ b—h—k+2),_
19(t,k,h)=( ) (a+ + 1)( +Dpspi(a+ + 2 kbt

@tb—1—h—k+Djgr (B—h+ Djgar
(36)

Proof. From Theorem 5.4 we know that ifQk < minfa+b—t,a+b— 8,8 +1t,a,b}
then an orthogonal basis for tisg x Sj-invariant vectors in the@+2=%5_isotypic sub-
space ofM @ tb=1=B.B.D (A U B) N Ker(d12)*t1H =7 is given by the functiong’ (a + b —
B—t,B,t,a,k, h)for

maxk —t,8+y —c—t}<h<minfk,a+b—k—t,a+b—1t— B, B} (37)

The conditiong + y — ¢ — t < h comes from Corollary 3.2(4) and eliminates> 0
(because +1 — y +1 < B). Now we impose the conditions of the Littlewood—Richardson
Rule 4.2:y <k < B <a+ b — k < «. By Frobenius reciprocity§@#) s, ., x S. con-
tains a subrepresentation isomorphicsté*>—*% & $© if and only if these conditions
are satisfied. We use them (in particufan- y — ¢ < k < ) to simplify (37), which be-
comes:ik —t < h < minfk,a + b — B — t}. Therefore, under these conditions, to prove
that M (@+b=P=1.8.0 (AU B) NKer(d12)°t~7t1 N Kerdos contains a subrepresentation iso-
morphic tos@ =%k (computing in this subrepresentation a nontriiglx Sy-invariant
vector) it suffices to solve the equation:

min{k,a+b—B—t}
do3 > S (@a+b—B—t, B.t,a,k,h)=0 (38)
h=k—t

where® (h) are unknown coefficients. Theorem 6.4 yields:
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min{k,a+b—p—t}
do3 > W @+b—B—t,B,t,a,k, h)
h=k—t

min{k,a+b—p—t}
b—t—h—k+1 —h+1
_ Z 9 (h) (a+ +1)(B +1

- a+b—t—-2h+1

h=k—t+1
xWa+tb—B—t,B+1t—1ak h)

min{k,a+b—B—t}—1
k—h@a+b—h—k+1
T Z l?(h)( )(a )

a+b—t—2h+1

h=k—t
xWa+b—B—t,+1t—1akh+1) (39)

(see also Remark 6.5). Equating to zero the coefficien¢&f + b — 8 —¢,8 + 1,
t —1,a,k, h) in the right-hand side of (39), we obtain the following recurrence relation
for the coefficients) (h):

(a+b—t—h—k+1)(B-h+1 k—h+Da+b—h—k+2)
Y (h Y(h—-1
(k) a+b—t—-2h+1 +( ) a+b—t—2h+3

)

h=k—t+1,...,min{k,a+b— B —1t}, and this recurrence relation is solved by (36)1

Lemma7.8. Let?d (v, k, h) be asin Lemm&.7. Then

min{k,a+b—p—v}
diz Y .k h¥@a+b—B—v. B.v.a.kh)
h=k—v
(a+b+v—2k+1v
B B—k+v
min{k,a+b—pB—v+1}
X > Sw—Lk h¥@+b—B—v+1B8v—1ak h).
h=k—v+1

Proof. From the first formula of Theorem 6.4, it follows that the coefficien¥af: 4+ b —
B—v+1 p.v—1a k hyindisY TP gk nyw@+b—B—v, B.v.a k. h)
is equal to

(a+b—-v—B—h+Da+b—v—h—k+1)
a+b—v—-2h+1
k—h+D@+b—-—h—-k+2)
a a+b—v—2h+3

U (v, k, h)

U (v, k,h—1),

and this, using the explicit formula fo# (v, k, h), may be easily transformed into

_Wﬁ(v —L1Lkh. O
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Theorem 7.9. If o > maX{a,b,c}, y < min{a,b,c} and max{y,B + vy —c} <k <
min{a, b,a + b — B, B}, then theS, x S5 x S.-invariant vectors in the subrepresentation
of S@A1) S, x S, isomorphic tos@ =%k & ) are given by the multiples of

y B min{k,u,a+b—v—pB}
Z Z (=D (@+b—h—k+2)j gty (k—h+D)j_j 4, (a+b—v—2h+1)
=0

(c—B—y+h+v+Dpiy_pn_v(@+b—v—h—k+D)} 10
u=k—v h=k—v

x Eg_pla+b—2h—v,c—y+v,p—h,u—nh)
x¥@+b—u—v,u,v,a,k h)og_y,_(C).

Proof. From Theorem 7.5 and Lemma 7.7 it follows that if in (33) or in (34) we set

min{k,a+b—B—y}

pey= Y. O@khWa+b—B—y.B.y.a.kh (40)
h=k—y

then we solve the system (22) obtaining a nontriialx S, x S.-invariant vector in the
subrepresentation of*#) | S,.), x S, isomorphic toS“*t=%k & S© If pg, is given
by (40), then Lemmas 7.8 and 5.2(5) yield

Puv (d12)? " (d13)” ™"

B (_C)ﬂ+y7u7v

min{k,a+b—B—y}

x Y vk WWa+b—B—y,B.y.akh
h=k—y

D" a+b+v—2k+2)y (v + 1),
a (B—k+v+1)y—o(=C)pty—u—v

min{k,a+b—B—v,u}

X > O, k,h)a+b—B—v—h+1gy,
h=k—v
xW(a+b—u—v,u,v,a,k,h) (42)

for u 4+ v > k, andp,, =0 foru + v < k. Then the theorem follows from (7) and (36); in
the final formula we have omitted the facter1)X /(B —k +y)!. O

In the following corollary, we want to restate Theorem 7.9 in the form of a result on four
variables orthogonal polynomials. First of all we perform in (19) the change of variables
x—>x,y—y,u—u—xandv — v — y; because of the hierarchy between the variables,
our solutions are naturally expressed as linear combinations of the characteristic functions
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of the orbits parametrized in this wayx, (A)oy—x v—y(B)og—u,,—v(C). After this change
of variables, (19) becomes:
a—x—)fx+Lyu+Lvy+G-—u—-v+x+y) fx,y,u+1v)
+a@—a—-b+u+v+1)f(x,y,u,v)=0,
xfx—=Ly+Lu—Lv+D+@w—x)fx,y,u—Lv+1
+(/3_u+1)f(-x7ysuvv)zo

(42)

where f is defined onD = {(x, y,u,v): 0<x<u<B,0<y<v<y,x+y<a,B+
y—c<u+v<b+x+y}

Corollary 7.10. Suppose thatr > maxa, b, ¢} and y < min{a, b, c¢}. For max{y, 8 +
y —c} <k<<min{a,b,a + b — B, B} define the polynomia (x, y, u, v) by setting

Gr(x,y,u,v)

- min{k,u,a+b—v2—fi,y—v+b,a—y} (_1)]2_1)((1 b h—kt 2)h—k+y k—h+ 1)h—k+y

(c=B—v+h+v+Dgryi

h=k—v
a+b—v—2h+1
X atb—v—h—k~+Drrre
X Ep_p(v,a+b—v—2h,a—h,y)Ey(u,a+b—u—v,a—y,x)

Eg_pa+b—2h—v,c—y+v,B—h,u—h)

forO<v<y,k—v<u<B,0<y<vandmax0,u+v—>b—y} <x <minfu,a — y},
and ¢y (x, v, u, v) = 0 for the other valuesx, y, u, v) € D.

Then the setgr: maXy,B+y —c} <k <min{a,b,a + b — B, B}} is a basis for the
solutions of the syste(d2). This basis is orthogonal with respect to the weight

(a—x—ay,x,y) (b—u—v+x-|l—7y,u—x,v—y) (C—ﬂ—}/-l-u-:v,ﬂ—u,)/—v)'

Proof. It follows immediately from the explicit formula for th& functions in Defini-
tion 5.1. The weight is equal 4, (A)0y—x vy (B)0g—u,—y(C)[|2. O

We think that it is impossible to get a simpler expression for the polynomials in Corol-
lary 7.10: the sum over, that comes from Lemma 7.7, is a linear combination of indepen-
dent vectors. The fact is that the vectors of our basis depend on the single paraineter
are made up of vectors that depend on the two parametérs-or the same reason, the
norm of the polynomials in Corollary 7.10 (i.e., the norm of the vectors in Theorem 7.9)
can be easily computed by mean of the formula in Remark 5.3 and of the orthogonality
relations for the Hahn polynomials, but the final result is a very cumbersome double sum
expression that seems not easy to simplify.

We end the paper showing how our polynomials specialize to Dunkl’s two variables
Hahn polynomials whery = 0. Under such condition, we also have= y = 0 and
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h =k and the polynomial in Corollary 7.10 becomes a multipleEgt ;. (a + b — 2k, c,
B—k,u—k)Er(u,a+b—u,a,x);applying the symmetry relations (4), (5) and perform-
ing the change of variables— x, u — x + u, one obtains easily the polynomials in [8,
(3.12)(ii)].
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