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In this paper we make it mathematically rigorous the formulation of the following
quantum Schrödinger–Langevin nonlinear operator for the wavefunction

AQSL = ih̄∂t + h̄2

2m
�x − λ

(
Sψ − 〈Sψ 〉) − Θh̄[nψ, Jψ ]

in bounded domains via its mild interpretation. The a priori ambiguity caused by the
presence of the multi-valued potential λSψ , proportional to the argument of the complex-
valued wavefunction

ψ = |ψ |exp

{
i

h̄
Sψ

}
,

is circumvented by subtracting its positional expectation value,

〈Sψ 〉(t) :=
∫
Ω

Sψ(t, x)nψ(t, x)dx,

as motivated in the original derivation (Kostin, 1972 [45]). The problem to be solved in
order to find Sψ is mostly deduced from the modulus-argument decomposition of ψ and
dealt with much like in Guerrero et al. (2010) [37]. Here h̄ is the (reduced) Planck constant,
m is the particle mass, λ is a friction coefficient, nψ = |ψ |2 is the local probability density,
Jψ = h̄

m Im(ψ∇xψ) denotes the electric current density, and Θh̄ is a general operator
(eventually nonlinear) that only depends upon the macroscopic observables nψ and Jψ .
In this framework, we show local well-posedness of the initial-boundary value problem
associated with the Schrödinger–Langevin operator AQSL in bounded domains. In particular,
all of our results apply to the analysis of the well-known Kostin equation derived in Kostin
(1972) [45] and of the Schrödinger–Langevin equation with Poisson coupling and enthalpy
dependence (Jüngel et al., 2002 [41]).

© 2011 Elsevier Inc. All rights reserved.

1. Introduction, setting of the problem and main result

Dissipative theories are nowadays at the basis of current multidisciplinary research in quantum-mechanical motion at all
levels of description (see [39] for a recent review). As a matter of fact, a great deal of nonlinear models of Schrödinger,
Wigner, Heisenberg, and hydrodynamic type have proliferated in the literature, each of them incorporating different
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quantum corrected mechanisms accounting for dissipative and/or diffusive behaviors such as quantum decoherence and en-
tanglement, anomalous diffusion, quantum Brownian motion or nonlinear frictional couplings, even the prevention of some
other genuinely quantum problems such as Bloch oscillations or Anderson localization [24]. Among these models we can
remark the quantum Fokker–Planck system [6,7,17,18,26,27,55], the viscous quantum hydrodynamic model [40,42,43], the
quantum Smoluchowski equation [3,4,54], the logarithmic Schrödinger equation [10,20–22,25,36–38,47,50,51], the Doebner–
Goldin family of nonlinear Schrödinger equations driven by diffusion currents [28,58], the modular Schrödinger equation
[8,31], and many other nonlinear modifications of the Schrödinger Hamiltonian (Caldirola–Kanai model, quantum potential
approach, etc.) [35,46,57].

The general physical background accommodating this sort of models is that of quantum open systems [23], consisting of
a quantum particle ensemble (the system) interacting dissipatively with a local thermal environment (the reservoir), which
in the simplest case can be thought of as an infinite set of harmonic oscillators in thermal equilibrium whose degrees
of freedom are linearly coupled to those of the system of interest [29]. Then, after taking partial trace with respect to the
reservoir degrees of freedom, a reduced description is obtained for the evolution of the particle ensemble under observation.

This is shown to be a suitable framework to analyze quantum Brownian motion. We are especially interested in the
quantum version of the well-known stochastic Langevin equation (in the wavefunction picture), which was first derived by
Kostin [45] as the following nonlinear (stochastic) Schrödinger model for the motion of a quantum particle immersed in a
heat bath:

i∂tψ =
(

−1

2
�x + V

)
ψ + λV Lψ + V Rψ, (1)

V L(ψ) = Sψ − 〈Sψ 〉 (2)

(in a unit system in which h̄ = m = 1 hereafter, and where quantum states are also normalized to unity: ‖ψ‖2
L2(Ω)

=∫
Ω

nψ dx = 1), where ψ = ψ(t, x) is the complex-valued wavefunction, λ is the friction parameter (that sets the strength
of the coupling between the system and the reservoir), V = V (t, x) is an external potential, V R = V R(t) is a random time-
dependent potential that represents the fluctuational interaction of the quantum system with the surrounding environment,
and where V L = V L(ψ(t, x)) is the nonlinear frictional term, which is proportional to Sψ − 〈Sψ 〉. Here, Sψ denotes any of
the infinitely many argument functions associated with ψ satisfying

ψ(t, x) = ∣∣ψ(t, x)
∣∣eiSψ(t,x), (3)

and 〈Sψ 〉(t) := ∫
Ω

Sψ(t, x)nψ(t, x)dx describes the quantum expectation value of Sψ , where nψ = |ψ |2 stands for the local
position density. Notice that Nelson’s “stochastic quantization” [52] can be applied to obtain Eqs. (1)–(2) except for the
action of V R (see [56,61]), which provides a frame in which fluctuations might be neglected as well as gives rise to a
deterministic Schrödinger–Langevin type equation which constitutes the main objective of our work.

On the other hand, various linear models related to quantum Brownian motion are also well known from previous
literature. Some of them are based on non-stochastic equations (stemming from a master equation approach), as those
dealt with in [16,26,27], while others are founded on quantum stochastic equations. Particularly, the generalized (linear)
Schrödinger–Langevin picture introduced by van Kampen in [60],

i∂tψ = {
H − iλ

(
U + iF (t)

)}
ψ, (4)

where H denotes the system Hamiltonian, λ the coupling parameter, U is a linear Hermitian operator representing dissipa-
tion, and where F (t) is a zero-mean random operator accounting for fluctuating contributions, has been dealt with from
a stochastic viewpoint in [13–15] (see also references therein), where the authors showed that in an adequate approach
it is possible to go beyond the Markovian description under a completely positive evolution determined by a quantum
dynamical semigroup. Among these models we can highlight for their mathematical relevance (in the sense that positiv-
ity and/or complete positivity is preserved along the evolution for the density matrix operator) those pertaining to the
Kossakowski–Lindblad class [44,49,34,1,30,9,33].

It should be also observed that the analysis of Eqs. (1)–(2) cannot be compared to that of Eq. (4) because of the deep
differences underlying these two Langevin approaches for the wavefunction. Indeed, van Kampen’s scheme is stochastic in
essence, whereas Kostin’s equation is interpreted in a deterministic manner. Besides, the expectation values associated with
the latter satisfy the classical frictional equations, a feature that is not guaranteed to be fulfilled by the former. Therefore,
Eqs. (1)–(2) are shown to describe random fluctuations, dissipation, and probability preservation in an independent way.
On the contrary, U and F (t) in Eq. (4) are typically constrained by the fluctuation–dissipation theorem (see for instance
[13] and [60]). Anyhow, the nonlinear character exhibited by Eqs. (1)–(2) (which sets the most important separation with
respect to other approaches) requires, at variance with Eq. (4), the specific use of genuine mathematical tools (nonlinear
Sobolev estimates, fixed-point arguments based on the concept of mild solution, elliptic regularization, trace properties on
the boundary, etc.) for the treatment of nonlinear potential operators, say Sψ .



J.L. López, J. Montejo-Gámez / J. Math. Anal. Appl. 383 (2011) 365–378 367
Our equation of interest in this paper has the general structure AQSL[ψ] = 0 or, in other words,

i∂tψ =
(

−1

2
�x + V

)
ψ + λV Lψ + Θ[nψ, Jψ ]ψ, (5)

V L(ψ) = Sψ − 〈Sψ 〉, (6)

where Θ stands for an arbitrary self-consistent interaction (Poissonian or thermodynamical, for example) depending upon
the wavefunction through its associated observables, say the probability and current densities given by nψ = |ψ |2 and
Jψ = Im(ψ∇xψ), respectively.

The expectation value of Sψ , that in principle does not contain any physical information, is typically removed from V L

by means of the following gauge transformation

ψ �→ ψeiν(t), ν(t) = −
t∫

0

e−λ(t−τ )〈Sψ 〉(τ )dτ .

This is the way in which the simplest form of Kostin’s equation, given by

i∂tψ =
(

−1

2
�x + V

)
ψ + λSψψ, (7)

comes up and turns out to dissipate energy from the system to the thermal bath [46].
The main difficulty in writing Eq. (7) is of course the ambiguity induced by the multi-valued nature of the function Sψ ,

that is, associated with each wavefunction ψ there exist infinitely many functions Sψ that fulfill the polar decomposition
ψ = |ψ |eiSψ . Thus, even taking into account the well-known fact that quantum mechanics is invariant by changes of global
phase (i.e. no matter the chosen Sψ be, the physics of the system remains unaltered), the questions that immediately arise
are:

What is the mathematical sense of Eq. (7)?
How its analysis can be made rigorous?
What is the appropriate functional setting in order that all quantities are well defined?

In [41], the authors overcome this ambiguity by imposing the existence of an argument function S0 associated with the
initial datum ψ0, and solving the following boundary value problem at any time:

�x Sψ = ∇x ·
{

Im

(∇xψ

ψ

)}
in Ω, (8)

Sψ(t) = S B in ∂Ω. (9)

This system stems from the Madelung decomposition (3), when assumed that S B := S0|∂Ω . Under this interpretation of
the argument Sψ , Eq. (7) is shown to have a unique solution ‘separated from zero’. Nonetheless, this criterion still proves
somehow unsatisfactory given that Eq. (7) turns S0-dependent, in the sense that the equation is obviously changed with the
initial datum. For example, take S ′

0 = S0 + 2kπ , with arbitrary k ∈ Z, instead of S0, so that S ′
B = S ′

0|∂Ω �= S B . In a nutshell,
a particular choice of the initial argument S0 produces an alteration in the definition of the nonlinear term in Eq. (7).

On the other hand, along with the difficulties in the rigorous treatment of Eq. (7) already discussed, another inconve-
nience makes this model inappropriate from a physical viewpoint. It does consist in the fact that Eq. (7) is not invariant by
constant (and global) changes of phase, i.e. if ψ is a solution of Eq. (7), there does not exist 0 �= ν ∈ R such that φ = eiνψ

is also a solution, given that Sφ = Sψ + ν �= Sψ .
This paper aims to elucidate all of these issues. In particular, it is desirable to find a model that, on one hand, keeps

the same observable behavior than (7), but on the other hand removes the inconsistencies concerning the nonlinear poten-
tial Sψ . To this aim, we may take advantage of the following simple property: Given a wavefunction ψ such that both S and
S ′ satisfy the Madelung relation (3), then S − 〈S〉 = S ′ − 〈S ′〉 and the mapping ψ �→ V L(ψ) is now univoquely determined.
Furthermore, the formulation (5) (with V L instead of just Sψ ) does enjoy the invariance by change of (constant and global)
phase since V L(ψ) = V L(ψeiν) for all ν ∈ R.

Some authors have already analyzed different aspects of the (nonlinear) Schrödinger–Langevin equation, mainly from a
formal point of view in the perspective of PDEs. We remark [12], in which the global existence of Gaussian solutions in the
harmonic oscillator framework was established for the particular case of Kostin’s equation, as well as the absence of L2 soli-
tary waves in the free-particle regime; [48], where the semiclassical limit of the Kostin–Poisson system is performed in the
whole space; and [59], where the stability of stationary solutions was studied. Also, in [5] and [41] the Schrödinger–Langevin
equation is dealt with as an auxiliary problem in analyzing the well-posedness of the associated quantum hydrodynamic
system. In spite of that, there still remains an important lack of mathematical sense in the very core of the formulation of
the problem, that is intended to be clarified throughout this paper.
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Our main theorem here is the following.

Theorem 1.1. Let δ > 0, Ω ⊂ R
d (with 1 � d � 3), ψ0 and ψB satisfying assumptions (H1)–(H4). Then, there exist T =

T (δ,Ω,ψ0,ψB ,Θ) > 0 and a unique strong solution in [0, T ] to Eq. (5) subject to the initial-boundary conditions ψ(t = 0) = ψ0
and ψ |∂Ω = ψB .

We structure the paper as follows: Section 2 is devoted to the presentation of the problem and the introduction of the
appropriate function spaces in which it can be tackled successfully, as well as the main a priori estimates. In Section 3 we
demonstrate our main result (cf. Theorem 1.1), which shows that the initial-boundary value problem associated with the
Schrödinger–Langevin operator AQSL is locally well-posed in bounded domains without the need of any prescription of the
initial argument function. Finally, Section 4 is concerned with the application of this theory to the Schrödinger–Langevin
equation with enthalpy and Poisson coupling.

2. Functional framework and a priori estimates

We open this section by introducing some notational conventions that will be useful in the sequel. Let Ω be a ‘sufficiently
smooth’ (to be specified below) bounded domain, H a subset of L2(Ω) and δ a positive constant, and denote by

Hδ = {
ϕ ∈ H: |ϕ| > δ a.e. x ∈ Ω

}
the space of functions belonging to H that are separated a minimum distance δ from zero. Given T > 0, we also denote

X T = C
([0, T ], H2(Ω)

) ∩ C1([0, T ], L2(Ω)
)

and

X T
δ = {

ϕ ∈ X T : |ϕ| > δ a.e. x ∈ Ω, ∀0 � t � T
}
,

where Hk(Ω) stands for the usual Sobolev space W k,2(Ω).
If a pure quantum state ψ is assumed to be decomposable in Madelung’s modulus-argument form, that is to say ψ =

|ψ |exp{i Sψ }, then the identity

∇x V L = Im

(∇xψ

ψ

)
(10)

formally holds for the gradient velocity field u = ∇x V L = ∇x Sψ , which allows for a clear connection between the fluid and
the Schrödinger–Madelung descriptions of quantum mechanics. The solvability of Eq. (10) obviously requires the irrotation-
ality of the field, that can be deduced from Schwartz’s lemma if Ω is assumed to be simply connected. This hypothesis on
the domain is of crucial importance for our purposes, since otherwise one is oblied to admit jump discontinuities of Sψ .
Under this assumption, the existence of a unique (up to an additive constant) solution V L to Eq. (10) for any given ψ ∈ H2

δ

satisfying some additional regularity can be claimed [37]. Thus, a family of countably many functions Sk
ψ ∈ H2(Ω), k ∈ Z,

exists such that the decomposition (3) is fulfilled along with the identity

Sk
ψ − Sl

ψ = 2π(k − l), k, l ∈ Z. (11)

Furthermore, for any fixed μ ∈ R, the mapping ψ �→ Sψ is continuous from H2
δ to the subset Sμ = {S ∈ H2(Ω):

∫
Ω

S dx = μ}.
Indeed, it is this property that makes it possible to find a continuous-in-time argument for any given ψ ∈ X T

δ solving a gen-
eral Schrödinger-like equation. As a matter of fact, the main result in [37] establishes that for any strong solution ψ in
[0, T ] to the Schrödinger equation

i∂tψ = −1

2
�xψ + Θ[n, J ]ψ, (12)

with Θ : (H2
δ2 (Ω)) × (H1(Ω))3 → L2(Ω) being any continuous mapping, there exists a family of arguments {Sk

ψ }k∈Z ⊂ X T

fulfilling Eqs. (3) and (11) a.e. Ω , for all t ∈ [0, T ]. This is possible in accordance with the evolution law satisfied by Sψ ,
stemming from Eq. (12), which can be described in terms of the only observables nψ and Jψ . The required assumptions
here are (see [37], where the hypotheses (H1)–(H3) were already justified as key ingredients of our analysis)

(H1) Ω ⊂ R
d is a simply-connected, C2 bounded domain.

(H2) ψ0 ∈ H2(Ω), ψB ∈ H3/2(∂Ω), and ψ0 = ψB in ∂Ω .
(H3) There exists δ > 0 such that

ess-inf
{∣∣ψ0(x)

∣∣: x ∈ Ω
}

> δ, ess-inf
{∣∣ψB(x)

∣∣: x ∈ ∂Ω
}

> δ.

(H4) The operator Θ : H2
δ → H2(Ω) is locally Lipschitz continuous and there exists ΘB ∈ H3/2(∂Ω) such that Θ(ψ)|∂Ω = ΘB

when ψ |∂Ω = ψB .
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Note that the Rellich–Kondrachov compactness theorem (see for instance [11]), along with the regularity properties of ψ0
and ψB , permit to consider the condition ψ0 = ψB stated in (H2) not only in the usual sense, ψ0 − ψB ∈ H1

0(Ω), but also as
a pointwise identity in ∂Ω .

The following two results were proved in [37]. We include them here for the sake of self-consistency, as they will play a
relevant role in our subsequent study. In the sequel, the dependence of the norms upon the domain Ω will be also removed
for clarity.

Lemma 2.1. Let Ω ⊂ R
d be a simply connected, Lipschitz-continuous bounded domain and 0 � k ∈ Z. Then the following assertions

hold.

(i) For all complex functions ψ ∈ Hk(Ω) such that

∇ψ

ψ
∈ (

Hk−1(Ω)
)d

,
(∇ ⊗ ∇)ψ

ψ
,
∇ψ

ψ
⊗ ∇ψ

ψ
∈ (

Hk−2(Ω)
)d2

,

there exists a unique (up to an additive constant) function S ∈ Hk(Ω) that solves Eq. (10). Besides, given μ ∈ R there exists a
unique S ∈ Hk(Ω) solution to Eq. (10) such that

∫
Ω

S dx = μ, and also a unique βμ ∈ [0,2π) such that the family

Sl := S + βμ + 2π l, l ∈ Z, (13)

satisfies (3)–(11).
(ii) Under the hypotheses of statement (i), there exists C > 0 such that

‖Sψ − Sφ‖Hk � C

∥∥∥∥Im

(∇ψ

ψ

)
− Im

(∇φ

φ

)∥∥∥∥
Hk−1

for all Sψ , Sφ solutions to Eq. (10) (associated with ψ and φ , respectively) satisfying
∫
Ω

Sψ dx = ∫
Ω

Sφ dx.

Lemma 2.2. Let Ω ⊂ R
d be a C1 bounded domain, δ > 0 and ψ ∈ H2

δ . Then, for n = |ψ |2 and J = Im(ψ∇ψ), the following identity
holds

ψ∇ψ = 1

2
∇xn + i J . (14)

As a consequence,
√

n ∈ H2
δ , n ∈ H2

δ2 , J ,∇n/n, J/n ∈ (H1(Ω))d, and the mappings

ψ �→ √
n,n, J ,

∇n

n
,

J

n

are locally Lipschitz continuous from H2
δ onto the corresponding functional space in each case.

We start by establishing some technical issues concerning the derivation of a priori estimates. An appropriate combination
of Lemmata 2.1 and 2.2 leads to establish the existence of a well-defined and Lipschitz continuous operator that yields the
correct frictional term in the Schrödinger–Langevin picture.

Lemma 2.3. Let Ω ⊂ R
d (with 1 � d � 3) be a simply-connected, Lipschitz-continuous bounded domain. Let also δ and T be positive

constants. Then, there exists a mapping V L : H2
δ → H2(Ω) such that the following properties hold true:

(i) For all ψ ∈ H2
δ , V L(ψ) is a solution to Eq. (10) coupled with (6).

(ii) For all M > 0, there exists C = C(δ,Ω, M) > 0 such that∥∥V L(ψ) − V L(φ)
∥∥

H2 � C‖ψ − φ‖H2 ,∥∥V L(ψ) − V L(φ)
∥∥

L2 � C‖ψ − φ‖L2 ,

for all ψ,φ ∈ H2
δ satisfying ‖ψ‖H2 ,‖φ‖H2 � M.

Besides, if Sψ ∈ H2(Ω) is any argument of ψ , then V L(ψ) = Sψ − 〈Sψ 〉. In particular, it is fulfilled that V L(ψ) = V L(eiνψ) for all
ν ∈ R.

Proof. Lemma 2.2 claims that ∇xψ/ψ ∈ H1(Ω) for any ψ ∈ H2
δ , so that Lemma 2.1 can be applied with μ = 0 and k = 2 to

get a unique Sψ ∈ H2(Ω) such that

∇x Sψ = Im

(∇xψ

ψ

)
with

∫
Sψ(x)dx = 0.
Ω
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We can now define

V L(ψ)(x) := Sψ(x) − 〈Sψ 〉 a.e. x ∈ Ω,

in such a way that V L(ψ) ∈ H2(Ω) and satisfies (i).
To prove (ii), let M > 0 and denote

M S = sup
{‖Sψ‖H2 : ψ ∈ H2, ‖ψ‖H2 � M

}
< ∞.

Also denote by K (Ω, M) the maximum among the constants stemming (i) from the Sobolev embedding H2(Ω) ↪→ L∞(Ω),
(ii) from Lemma 2.1 (with k = 0,2), and (iii) from Lemma 2.2 (applied to Im(∇xψ/ψ) = Jψ/nψ ). Then, for all ψ,φ ∈ H2

δ

with ‖ψ‖H2 ,‖ϕ‖H2 � M , we can estimate

∣∣〈Sψ 〉 − 〈Sφ〉∣∣ �
∫
Ω

∣∣∣∣ψ(x)
∣∣2

Sψ(x) − ∣∣φ(x)
∣∣2

Sφ(x)
∣∣dx

�
∫
Ω

{∣∣ψ(x)
∣∣2∣∣Sψ(x) − Sφ(x)

∣∣ + ∣∣∣∣ψ(x)
∣∣2 − ∣∣φ(x)

∣∣2∣∣∣∣Sφ(x)
∣∣}dx

� ‖ψ‖2
L∞‖Sψ − Sφ‖L2 + (‖ψ‖L∞ + ‖φ‖L∞

)‖ψ − φ‖L2‖Sφ‖L∞

� C‖ψ − φ‖L2 ,

for which we used Lemmata 2.1 and 2.2 Hence, we easily find∥∥V L(ψ) − V L(φ)
∥∥ � ‖Sψ − Sφ‖ + ∣∣〈Sψ 〉 − 〈Sφ〉∣∣, (15)

‖ · ‖ standing for ‖ · ‖H2 or ‖ · ‖L2 indistinctively. In addition, if Sψ ∈ H2(Ω) is an argument of ψ , it is enough to differentiate
the Madelung identity ψ = |ψ |eiSψ and take imaginary parts to get ∇x Sψ = Im(∇xψ/ψ). Thus, if considering σ := Sψ −
〈Sψ 〉 − V L(ψ) it is clear that ∇xσ = 0 and 〈σ 〉 = 0. Consequently we deduce σ ≡ 0, or equivalently V L(ψ) = Sψ − 〈Sψ 〉. In
particular, for any ν ∈ R we notice that Sψ + ν is an argument of ψeiν , and that

V L
(
ψeiν) = Sψ + ν − 〈Sψ 〉 − 〈ν〉 = Sψ − 〈Sψ 〉 = V L(ψ).

This ends the proof. �
Once the problem (5)–(6) is known to be well defined, the proof of our main result (cf. Theorem 1.1 above) is reached

by means of a standard fixed point argument at the level of mild solutions, although our treatment of V L actually does
allow for strong solutions as will be seen later. In connecting both mild and strong pictures of our problem, we shall use
a well-known property of nonhomogeneous Schrödinger equations that is stated below for the sake of completeness (the
interested reader can find the proof in [19]).

Lemma 2.4. Let X be a Hilbert space, A a self-adjoint and negative definite operator defined in D, and T > 0. Then, for any f ∈
C([0, T ], X) and g ∈ X there exists a unique solution of the problem

ψ ∈ C
([0, T ], X

) ∩ C1([0, T ], D′),
i∂tψ + Aψ + f = 0,

ψ(0) = g,

where D′ holds for the dual space of D and A denotes the extension of A to X. Besides, ψ ∈ C([0, T ], X) is a solution to this problem
if and only if the following integral equation

ψ(t) = ei At g + i

t∫
0

ei A(t−τ ) f (τ )dτ

is satisfied for all t ∈ [0, T ], where ei At is the group of isometries associated with the infinitesimal generator i A. Also, if g ∈ D and
f ∈ W 1,1((0, T ), X) or f ∈ L1((0, T ), D), then ψ ∈ C([0, T ], D) ∩ C1([0, T ], X).

In our setting we shall consider X = L2(Ω) and D = H2(Ω) ∩ H1
0(Ω) the domain of the elliptic operator A = i

2 �x ,
which generates the uniparametric group of operators {e(i/2)�xt}t∈R in virtue of Stone’s theorem (see for instance [53]). It is
noticeable the fact that e(i/2)�xt defines for all t ∈ R an isometry in L2(Ω) and in D, but not in H2(Ω). Indeed, this oblies
us to deal with the terms of the equation restricted to the boundary. The first drawback in this analysis arises from the fact
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that we have no a priori information available on the behavior of V L at ∂Ω , so that the H2-norm preservation property of
e(i/2)�xt cannot be exploited any more. It is therefore required an estimate in H2(Ω) for the elements of the group. To this
aim we will make essential use of the following result, of paramount importance in the analysis of elliptic PDEs. We include
here the guidelines of the proof for the sake of consistency.

Lemma 2.5 (Elliptic regularization). Let Ω ⊂ R
d be a C2 bounded domain and f ∈ L2(Ω). Then, the following assertions hold true.

(i) There exists a unique weak solution u ∈ H1
0(Ω) of −�u + u = f in Ω . Furthermore, u ∈ H2(Ω) and there exists a positive

constant C = C(Ω) such that ‖u‖H2 � C‖ f ‖L2 .
(ii) There exists a unique strong solution u ∈ H2(Ω) ∩ H1

0(Ω) of −�u = f in Ω and a positive constant C = C(Ω) such that
‖u‖H2 � C‖ f ‖L2 .

Proof. The proof of (i) can be found in [11] (Theorems IX. 21 and IX. 25). To prove (ii), we first note the existence of a
unique weak solution u ∈ H1

0(Ω) of −�u = f in virtue of the Lax–Milgram theorem. It is then clear that u particularly
solves −�u + u = f + u weakly, so that ‖u‖H2 � C‖ f + u‖L2 according to part (i) of the lemma. Using now Poincaré’s
inequality we find that ‖u‖H2 � C(‖ f ‖L2 + ‖∇u‖L2 ). Finally, multiplying −�u = f by u, integrating by parts and applying
the Cauchy–Schwarz inequality yields ‖∇u‖2

L2 � C‖ f ‖L2‖∇u‖L2 . This ends the proof. �
We are now in conditions to estimate the (nontrivial) action of the group of Schrödinger operators {e(i/2)�xt}t∈R in

H2(Ω).

Proposition 2.1. Let Ω ⊂ R
d be a C2 bounded domain. Then, there exists a positive constant C depending only upon Ω such that∥∥e(i/2)�xt g

∥∥
H2 � C‖g‖H2 ,

for all g ∈ H2(Ω).

Proof. After selection of a continuous representative of g in Ω , we may obtain a unique harmonic function g̃B ∈ C2(Ω) ∩
C(Ω) such that g̃B − g ∈ D (see [32]). Then, Lemma 2.5(ii) can be applied with f = �x g to find

‖g̃B‖H2 � K‖g‖H2 . (16)

Define now

ψ(t) := g̃B + φ(t), with φ(t) = e(i/2)�xt g − g̃B , ∀t ∈ R. (17)

It is clear that e(i/2)�xt is isometric on D for all t ∈ R, so that according to (16) we can write

‖ψ‖H2 � C‖g‖H2 , ∀t ∈ R. (18)

To conclude, it suffices to observe that ψ = u, where u(t) := e(i/2)�xt g for all t ∈ R. To this aim we notice that u is the
unique solution to the following problem⎧⎪⎪⎨

⎪⎪⎩
u ∈ C

([0, T ], L2(Ω)
) ∩ C1([0, T ], D′),

i∂t u + 1

2
�xu = 0,

u(0) = g,

(19)

where �x denotes the extension of the Laplace operator to L2(Ω). In the same spirit, making use of (17) we may also claim
that φ is the unique solution to⎧⎪⎪⎨

⎪⎪⎩
φ ∈ C

([0, T ], D
) ∩ C1([0, T ], L2(Ω)

)
,

i∂tφ + 1

2
�xφ = 0,

φ(0) = g − g̃B .

Hence, ψ ∈ C([0, T ], D) ∩ C1([0, T ], L2(Ω)) ⊂ C([0, T ], L2(Ω)) ∩ C1([0, T ], D′) solves

i∂tψ + 1

2
�xψ = i∂tψ(g̃B + φ) + 1

2
�x(g̃B + φ) = 1

2
�x g̃B = 0.

Finally, as ψ(0) = g and the solution to problem (19) is unique, we are led to ψ = u. Now, the inequality (18) allows to
conclude the proof. �
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3. Well-posedness of the Schrödinger–Langevin system: Existence of a unique local-in-time strong solution

This section is mainly devoted to the proof of Theorem 1.1. First of all, in virtue of the Rellich–Kondrachov compactness
theorem we can select a continuous representative of ψB = ψ0|∂Ω , so that there exists a unique function ψ̃B ∈ C2(Ω)∩C(Ω)

that is harmonic in Ω and equals ψB in ∂Ω . Similarly, thanks to the assumption (H4) we obtain Θ̃B ∈ C2(Ω) ∩ C(Ω), the
unique harmonic extension to Ω of ΘB , and define

Z(t) = ψ̃B + e
i
2 �xt(ψ0 − ψ̃B) − i

t∫
0

e
i
2 �x(t−τ )Θ̃B ψ̃B dτ , ∀t ∈ R.

As the mapping t �→ Θ̃B ψ̃B is constant, thus belonging to W 1,1(R, L2(Ω)), Lemma 2.4 can be applied to find that Z is the
unique solution to the following linear Schrödinger problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z ∈ C
(
R, H2(Ω)

) ∩ C1(
R, L2(Ω)

)
,

i∂t Z + 1

2
�x Z + Θ̃Bψ̃B = 0,

Z(0) = ψ0,

Z(t)|∂Ω = ψB , t ∈ R.

(20)

Given r, T > 0, Z(t) now allows to define the following set

Yr,T = {
ψ ∈ C

([0, T ], H2(Ω)
)
: ‖ψ − Z‖H2 � r, ψ(t)|∂Ω = ψ̃B , ∀t ∈ [0, T ]},

which enjoys the following properties.

Lemma 3.6. Under the assumptions of Theorem 1.1 and for every r, T > 0, Yr,T is a complete metric space (with respect to the norm
‖ · ‖L∞([0,T ],H2)). Furthermore, there exist positive constants r� , T � and C (depending upon δ, Ω , ψ0 , ψB ) such that

(i) ‖Z‖L∞([0,T ],H2) � C,

(ii) Yr,T ⊂ C([0, T ], H2
δ ),

for any arbitrary 0 < r < r� and 0 < T < T � .

Proof. We first observe that Yr,T ⊂ Br(Z), where

Br(Z) = {
ψ ∈ C

([0, T ], H2(Ω)
)
: ‖ψ − Z‖L∞([0,T ],H2) � r

}
is a closed subset of a Banach space, thus complete. This reduces the problem to checking that Yr,T is closed in Br(Z). To this
aim, consider the operator G : C([0, T ], H2(Ω)) → C([0, T ], H2(Ω)) defined as G(ψ)(t) := ψ(t) − ψ̃B , which is continuous
and allows to rewrite Yr,T as

Yr,T = Br(Z) ∩ G−1(C
([0, T ], D

))
.

Since D is closed in H2(Ω), Yr,T is straightforwardly noticed to be closed, thus complete with respect to the norm
‖ · ‖L∞([0,T ],H2) .

Consider now

m0 = ess-inf
{∣∣ψ0(x)

∣∣: x ∈ Ω
}
,

mB = ess-inf
{∣∣ψB(x)

∣∣: x ∈ ∂Ω
}
,

m = min{m0,mB}.
Since m > δ, there exists ε = ε(δ,Ω,ψ0,ψB) > 0 such that ε < m − δ. Also define r� = ε/(2K1), K1 denoting the Sobolev
constant stemming from the embedding H2(Ω) ↪→ L∞(Ω), and use the continuity of Z with respect to time to guarantee
the existence of T � = T �(δ,Ω,ψ0,ψB) > 0 fulfilling∥∥Z(t) − ψ0

∥∥
H2 � r�, ∀0 � t < T �. (21)

Then we can define C = r� + ‖ψ0‖H2 such that (i) holds.
To show (ii), it suffices to verify that∥∥ψ(t) − ψ0

∥∥
H2 �

∥∥ψ(t) − Z(t)
∥∥

H2 + ‖Z(t) − ψ0‖H2 < 2r� = ε
K1
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for all t ∈ [0, T ]. Hence, |ψ0(x) −ψ(t, x)| � |ψ0(x)−ψ(t, x)| < ε a.e. x ∈ Ω according to ‖ψ −ψ0‖L∞([0,T ],H2) � ε/K1 and the
Sobolev embedding H2(Ω) ↪→ L∞(Ω). As a consequence, we finally deduce∣∣ψ(t, x)

∣∣ >
∣∣ψ0(x)

∣∣ − ε > m0 − m + δ � δ.

This concludes the proof. �
We close this section with the

Proof of Theorem 1.1. Take r�, T �, C > 0 the constants shed by Lemma 3.6 and fix 0 < r < r� . For M := r + 2C > 0, we
have that ‖ψ‖L∞([0,T ],H2) � M for all ψ ∈ Yr,T . Lemma 2.3 and the assumption (H4) yield K V L (M), KΘ(M) > 0 the Lipschitz
constants for V L and Θ , respectively. Also, define

MV L = sup
{∥∥V L(ψ)

∥∥
H2 : ‖ψ‖H2 � M

}
,

MΘ = sup
{∥∥Θ(ψ)

∥∥
H2 : ‖ψ‖H2 � M

}
.

Furthermore, we shall denote K = K (Ω) various positive constants. Let then

T1 = min{r,1/2}
K M{λK MV L + MΘ(1 + K 3)} ,

T2 = 1

2K {λ(MV L + K V L M) + MΘ + KΘ M} ,

and choose T = min{T �, T1, T2}. We first construct a solution in [0, T ] to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i∂tψ =
(

−1

2
�x + V

)
ψ + λV Lψ + Θ[nψ, Jψ ]ψ,

ψ(0) = ψ0, ψ(t)|∂Ω = ψB ,

∇x V L = Im(∇xψ/ψ),

〈V L〉 = 0,

as the limit of a sequence of elements of Yr,T . To this purpose we define

ψ0 := Z , ψk+1 := Z + ΓV L

(
ψk) + ΓΘ

(
ψk), 0 � k ∈ Z, (22)

where

ΓV L (ψ)(t) := −iλ

t∫
0

e
i
2 �x(t−τ )V L(ψ)(τ )ψ(τ )dτ , (23)

ΓΘ(ψ)(t) := −i

t∫
0

e
i
2 �x(t−τ )Θ(ψ)(τ )ψ(τ )dτ , (24)

for any ψ ∈ Yr,T . Our objective consists in proving that the sequence {ψk} defined in (22) converges in Yr,T . We split the
proof into two steps.

Step 1. For all 0 � k ∈ Z, ψk ∈ Yr,T and there exists L > 0 (independent of k) such that∥∥V L
(
ψk(t)

)
ψk(t) − V L

(
ψk(s)

)
ψk(s)

∥∥
L2 � L|t − s|, ∀t, s ∈ [0, T ]. (25)

Define

L := K (MV L + K V L M)Lψ, Lψ := M

(
1

2
+ K

(
K 2MΘ + λMV L + MΘ

))
,

and follow an inductive procedure. First of all we notice that ψ0 = Z ∈ Yr,T according to (20). Besides, it can be also deduced
that ψ0 ∈ X T

δ is a strong solution of

i∂tψ
0 = −1

�xψ
0 + Θ̃Bψ̃B .
2
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Thus, by estimating the harmonic extensions as in (16), we find∥∥∂tψ
0
∥∥

L2 � 1

2

∥∥�xψ
0
∥∥

L2 + K‖Θ̃B‖H2‖ψ̃B‖H2 � Lψ

uniformly in time, which entails that t �→ ψ0(t) is Lipschitz continuous (with Lipschitz constant Lψ ). This along with
Lemma 2.3 leads to∥∥V L

(
ψ0(t)

)
ψ0(t) − V L

(
ψ0(s)

)
ψ0(s)

∥∥
L2 � K (MV L + K V L M)Lψ |t − s| (26)

for all t, s ∈ [0, T ], which ends the first step of the proof for ψ0. Let now k ∈ N and assume that ψk ∈ Yr,T and satisfies (25),
so that the mapping t �→ V L(ψ

k(t))ψk(t) is Lipschitz continuous and thus belongs to W 1,1([0, T ], L2(Ω)). In addition, (H4)
informs that Θ(ψk)ψk − Θ̃B ψ̃B ∈ C([0, T ], D). Then, an application of Lemma 2.4 reveals that Γ k = ΓV L (ψ

k) + ΓΘ(ψk) is
the unique solution to the following problem⎧⎪⎪⎨

⎪⎪⎩
Γ k ∈ C

([0, T ], D
) ∩ C1([0, T ], L2(Ω)

)
,

i∂tΓ
k + 1

2
�xΓ

k = (
Θ

(
ψk)ψk − Θ̃Bψ̃B

) + λV L
(
ψk)ψk,

Γ k(0) = 0,

thus ψk+1(t)|∂Ω = ψ0(t)|∂Ω = ψB or, equivalently, ψk+1(t)−ψB ∈ D for all t ∈ [0, T ]. We then use Proposition 2.1 to deduce

∥∥ΓV L

(
ψk(t)

)∥∥
H2 � λ

t∫
0

∥∥e(i/2)�x(t−τ )V L
(
ψk(τ )

)
ψk(τ )

∥∥
H2 dτ

� λK 2MMV L t (27)

for all t ∈ [0, T ]. On the other hand, we also have

∥∥ΓΘ

(
ψk(t)

)∥∥
H2 �

t∫
0

∥∥Θ
(
ψk(τ )

)
ψk(τ ) − Θ̃B ψ̃B

∥∥
H2 dτ

� K MMΘ

(
1 + K 3)t. (28)

Then, we can write∥∥ψk+1 − Z
∥∥

L∞([0,T ],H2)
� K M

{
λK MV L + MΘ

(
1 + K 3)}T � r,

which leads to ψk+1 ∈ Yr,T . To show that (25) is fulfilled, it is enough to realize that ψk+1 ∈ X T
δ solves the following

Schrödinger equation

i∂tψ
k+1 + 1

2
�xψ

k+1 = Θ
(
ψk)ψk + λV L

(
ψk)ψk,

so that the following estimate∥∥∂tψ
k+1(t)

∥∥
L2 � M

2
+ K M(λMV L + MΘ) � Lψ, ∀t ∈ [0, T ]

holds. Finally, reasoning as in (26) we arrive at∥∥V L
(
ψk(t)

)
ψk(t) − V L

(
ψk(s)

)
ψk(s)

∥∥
L2 � K (MV L + K V L M)Lψ |t − s| (29)

for all t, s ∈ [0, T ], which ends the first step of the proof after application of the induction principle.

Step 2. The family {ψk} defined in (22)–(24) is a Cauchy sequence in Yr,T (with respect to the norm ‖ · ‖L∞([0,T ],H2)).

To this purpose, it suffices to show that∥∥ψk+1 − ψk
∥∥

L∞([0,T ],H2)
� 1

2k+1
, ∀0 � k ∈ Z. (30)

We argue as in the previous step by following an inductive scheme. For k = 0 we proceed as in (27)–(28) to get that
‖ψ1 − ψ0‖L∞([0,T ],H2) � 1

2 . In addition, if ψ,φ ∈ Yr,T we can use Proposition 2.1 to estimate

∥∥ΓV L

(
ψ(t)

) − ΓV L

(
φ(t)

)∥∥
H2 � λK 2(MV L + K V L M)

t∫ ∥∥ψ(τ ) − φ(τ )
∥∥

H2 dτ . (31)
0
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In the same spirit, (H4) entails

∥∥ΓΘ

(
ψ(t)

) − ΓΘ

(
φ(t)

)∥∥
H2 � λK (MΘ + KΘ M)

t∫
0

∥∥ψ(τ ) − φ(τ )
∥∥

H2 dτ . (32)

Therefore, for any k ∈ N we have∥∥ψk+1 − ψk
∥∥

L∞([0,T ],H2)
� K

{
λK (MV L + K V L M) + MΘ + KΘ M

}∥∥ψk − ψk−1
∥∥

L∞([0,T ],H2)
,

which leads us straightforwardly to (31). This concludes this part of the proof.
Now it is clear that {ψk} converges towards some ψ ∈ Yr,T . Hence, in virtue of the estimates (31) and (32) we may go

to the limit in (22) and deduce that

ψ = Z + ΓV L (ψ) + ΓΘ(ψ).

If in addition ψ ′ ∈ Yr,T enjoys the same property, then

∥∥ψ(t) − ψ ′(t)
∥∥

H2 � 2T2

t∫
0

∥∥ψ(τ ) − φ(τ )
∥∥

H2 dτ , ∀t ∈ [0, T ].

Gronwall’s lemma now implies ψ = ψ ′ , and thus the existence of a unique fixed point of the operator ψ �→ Z + ΓV L (ψ) +
ΓΘ(ψ). To conclude the proof we define Θ := Θ(ψ) and V L := V L(ψ) and observe that (H4) implies Θ ∈ C([0, T ], H2(Ω))

and that V L ∈ C([0, T ], H2(Ω)) solves Eq. (10) subject to (6), in virtue of Lemma 2.3. To conclude, it is clear that ψ ∈
Yr,T ⊂ C([0, T ], H2

δ ) satisfies the initial and boundary conditions, and that V L(ψ)ψ ∈ W 1,1([0, T ], L2(Ω)) after taking limits
in (25). Moreover, from the boundary datum ψ(t)|∂Ω = ψB and the assumption (H4) it is deduced that Θ(ψ)ψ − Θ̃B ψ̃B ∈
C([0, T ], D). Finally, from Lemma 2.4 we obtain that ψ ∈ X T

δ solves Eq. (5) pointwise. Now we are done with the proof. �
Remark 1. The shape of the generic potential Θ in Eq. (5) is ruled by the assumption (H4), stated like that in order to select
some physical self-interaction potentials in a simple way. For instance, the Hartree electrostatic potential fits (H4) as will be
analyzed throughout the next section. This led us to deal with Θ in a very different way that with V L , mainly because the
former is well known at ∂Ω while the latter not. On the contrary, V L is proved to be Lipschitz continuous in L2(Ω). It is a
simple matter to verify that after replacement of (H4) by

(H4′) The operator Θ : H2
δ → H2(Ω) is locally Lipschitz continuous with respect to ‖ · ‖H2 and ‖ · ‖L2 ,

Theorem 1.1 remains valid and its proof is even rather simplified, as Θ and V L can be now treated in the same fashion.

Remark 2. Theorem 3.3 in [37] can be applied to our situation to find an argument Sψ ∈ X T of the wavefunction ψ , which
entails V L = Sψ − 〈Sψ 〉 ∈ X T .

Remark 3. The generalization of the results presented here to arbitrary dimension exhibits two main drawbacks. The first
one concerns regularity, as Theorem 1.1 strongly depends on the Sobolev embedding H2(Ω) ↪→ L∞(Ω) (only valid if 1 �
d � 3). Indeed, in higher dimensions one should work in Hs(Ω) with s > d/2, which means an appropriate modification
of Proposition 2.1 as well as of the assumptions on Θ . The second one stems from Lemma 2.1 (cf. [37]), which holds true
thanks to the existence of scalar potentials associated with an irrotational field f (see [2]). In this case, the conditions
∂x j fk = ∂xk f j for all j �= k would solve the problem.

Remark 4. The problem of extending our results to the whole space relies on an adequate extension to R
d of Lemmata 2.1

and 2.2 The main difficulty here consists in guaranteeing that the condition ∇xψ/ψ ∈ Hk(Rd) still holds along the time
evolution, at least locally. A detailed analysis of the action of the Schrödinger group on wavefunctions fulfilling this property
might shed some light on this problem, that is postponed to future work.

4. An application: The Schrödinger–Poisson system with enthalpy dependence

In this section we deal with the following Schrödinger–Langevin–Poisson system for semiconductors

i∂tψ = −1

2
�xψ + λV Lψ + (

V + h(nψ)
)
ψ, (33)

λ2
D�x V = nψ − C, (34)

V |∂Ω = V B , (35)
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subject to the initial and boundary conditions ψ(0) = ψ0, ψ(t)|∂Ω = ψB . Here, λD > 0 and C = C(x) denote the scaled Debye
length and the doping concentration profile of the device respectively, while the enthalpy h(s) satisfies

sh′(s) = p′(s), h(1) = 0, (36)

where the pressure function p(s) is typically assumed to depend (smoothly) only on the particle density, in such a manner
that the profiles p(nψ) = T0nβ

ψ , with β � 1, are contemplated. Particularly, the choice β = 1 accounts for the isothermal
case at the hydrodynamical description while β > 1 gives rise to the isentropic regime, T0 standing for the temperature of
the system.

Lemma 4.7. Let Ω ⊂ R
d be a C2 bounded domain, C ∈ L2(Ω) and V B ∈ H3/2(∂Ω). Then, there exists V : H2(Ω) → H2(Ω) locally

Lipschitz continuous and such that, for all ψ ∈ H2(Ω), V (ψ) is the unique solution to the elliptic problem (34)–(35).

Proof. As in the previous section, we first select a continuous representative of V B defined in ∂Ω and take Ṽ B ∈
C2(Ω) ∩ C(Ω) the harmonic extension of V B to Ω . Define now V (ψ) := Ṽ B + uψ , where uψ ∈ D is the unique solu-
tion to �xuψ = − 1

λ2
D
(nψ − C) ∈ L2(Ω) as given by Lemma 2.5(ii). Then, it is a simple matter to conclude that V (ψ) solves

the elliptic problem (34)–(35). Furthermore, again according to Lemma 2.5(ii) with f = fψ − fφ along with Lemma 2.1, it is
straightforwardly concluded that

∥∥V (ψ) − V (φ)
∥∥

H2 � C

λ2
D

‖ψ − φ‖H2

for all ψ,φ ∈ H2(Ω) satisfying ‖ψ‖H2 ,‖φ‖H2 � M . This ends the proof. �
In proving Theorem 4.2 below, we shall make use of the following

Lemma 4.8. Let Ω ⊂ R
d be a C2 bounded domain, δ > 0 and p ∈ C2,1([δ,∞[). Then, U : H2

δ → H2(Ω) defined by U (ψ)(x) :=
h(nψ(x)) a.e. Ω , with h : [δ,∞[→ R as in (36), is a locally Lipschitz continuous operator.

Proof. Define

h(s) :=
s∫

1

p′(r)
r

dr, ∀s > δ.

Then, according to the regularity of p and the fundamental theorem of calculus it is clear that h ∈ C2,1([δ,∞[) and satisfies
(36). Then, we have∥∥U (ψ) − U (φ)

∥∥
L2 � Kh‖nψ − nφ‖L2 � C‖ψ − φ‖H2 .

Also, using the chain rule in Sobolev spaces we find ∇xU (ψ) = h′(nψ)∇xnψ ∈ L2(Ω), so that U ∈ H1(Ω). In addition,∥∥∇xU (ψ) − ∇xU (φ)
∥∥

L2 �
∥∥h′(nψ)

∥∥
L∞‖∇xnψ − ∇xnφ‖L2 + ∥∥h′(nψ) − h′(nφ)

∥∥
L∞‖∇xnφ‖L2

� (Mh + Mn Kh)‖nψ − nφ‖H1 � C‖ψ − φ‖H2 .

Finally, for the second order derivatives we get

∇x ⊗ ∇xU (ψ) = h′′(nψ)∇xnψ ⊗ ∇xnψ + h′(nψ)∇ ⊗ ∇xnψ ∈ L2(Ω)

and the following estimate holds:∥∥�xU (ψ) − �xU (φ)
∥∥

L2 �
∥∥h′′(nψ)

∥∥
L∞

(‖∇xnψ‖L4 + ‖∇xnφ‖L4

)‖∇xnψ − ∇xnφ‖L4

+ ∥∥h′′(nψ) − h′′(nφ)
∥∥

L∞‖∇xnφ‖2
L4

+ ∥∥h′(nψ)
∥∥

L∞‖�xnψ − �xnφ‖L2

+ ∥∥h′(nψ) − h′(nφ)
∥∥

L∞‖�xnφ‖L2

� C‖ψ − φ‖H2 ,

where C > 0 denotes various positive constants. Now we are done with the proof. �
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We can finally prove our main result in this section.

Theorem 4.2. Let Ω ⊂ R
d (with 1 � d � 3), λ,λD > 0, C ∈ L2(Ω), p ∈ C2,1([δ,∞[), V B ∈ H3/2(∂Ω), and assume that the hy-

potheses (H1)–(H3) are fulfilled. Then, there exist T > 0 and a unique local strong solution (ψ, V L, V ) of (33)–(35), subject to the
initial-boundary conditions

ψ(0) = ψ0, ψ(t)|∂Ω = ψB ,

and to Eq. (10) with 〈V L〉 = 0 for the determination of the Langevin potential, that satisfies

ψ ∈ X T
δ , V L, V ∈ C

([0, T ], H2(Ω)
)
.

Proof. The hypotheses of the theorem clearly imply those of Lemmata 4.7 and 4.8. Given ψ ∈ H2(Ω), if we define Θ(ψ) =
V (ψ) + U (ψ) and

ΘB = V B + h(nB), nB = |ψB |2,
it is a simple matter to check that (H4) is straightforwardly fulfilled. Indeed, Θ inherits the local Lipschitz continuity from
V and U , and

Θ(ψ)|∂Ω = V (ψ)|∂Ω + U (ψ)|∂Ω = V B + h(nψ |∂Ω) = ΘB

for any ψ ∈ H2(Ω) satisfying ψ |∂Ω = ψB , for which we used the regularity of h and nψ . Applying now Theorem 1.1 yields
T > 0 and a unique triplet (ψ,Θ, V L) such that

(a) V L ∈ C([0, T ], H2(Ω)) solves Eq. (10) subject to the constraint 〈V L〉 = 0, and
(b) ψ ∈ X T

δ solves Eq. (5) subject to the initial-boundary data ψ(0) = ψ0, ψ(t)|∂Ω = ψB , with Θ(ψ) = V (ψ) + U (ψ) ∈
C([0, T ], H2(Ω)).

Finally, Lemmata 4.7 and 4.8 imply that V := V (ψ) ∈ C([0, T ], H2(Ω)) solves (34)–(35), hence (ψ, V , V L) is the unique
solution to our problem. This concludes the proof. �
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