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Background: Bone metastases are common in women with breast cancer and often result in skeletal
related events (SREs). As the angiogenic factor vascular endothelial growth factor (VEGF) regulates os-
teoclast activity and is associated with more extensive bone metastases and SRE risk in metastatic breast
cancer, we hypothesized that blockade of VEGF signaling could be a therapeutic strategy for inhibiting
bone metastases progression and possibly prolonging overall (OS) or progression-free survival (PFS). The
Zamboney trial was a randomized placebo-controlled study designed to assess whether patients with
bone predominant metastatic breast cancer benefited from addition of the VEGF receptor (VEGFR) tar-
geting agent, vandetanib, to endocrine therapy with fulvestrant. As a companion study, evaluation of
biomarkers and their potential association with response to vandetanib or SRE risk was performed.
Methods: Baseline overnight fasted serum from enrolled patients was analyzed for levels of various
putative biomarkers including; VEGF-A, soluble (s)VEGFR2, sVEGFR3, transforming growth factor (TGF)-
β1 and activinA by ELISA. Spearman correlation coefficients and Wilcoxon rank sum tests were used to
investigate potential relationships between biomarker values and baseline clinical parameters. Prog-
nostic and predictive ability of each marker was investigated using Cox proportional hazards regression
with adjustments for treatment and baseline strata of serum CTx (o400 versus Z400 ng/L).
Results: Of 129 enrolled patients, serum was available for analysis in 101; 51 in vandetanib and 50 in
placebo arm. Mean age amongst consenting patients was 59.8 years. Clinical characteristics were not
significantly different between patients with or without serum biomarker data and serum markers were
similar for patients by treatment arm. Baseline sVEGFR2 was prognostic for OS (HR¼0.77, 95% CI¼0.61–
0.96, p¼0.020), and although a modest association was observed, it was not significant for PFS
(HR¼0.90, 95% CI¼0.80–1.01, p¼0.085) nor time to first SRE (HR¼0.82, 95% CI¼0.66–1.02, p¼0.079).
When interaction terms were evaluated, sVEGFR2 was not found to be predictive of response to van-
detanib, although a modest association remained with respect to PFS (interaction p¼0.085). No other
marker showed any significant prognostic or predictive ability with any measured outcome.
Conclusions: In this clinical trial, sVEGFR2 appeared prognostic for OS, hence validation of sVEGFR2
should be conducted. Moreover, the role of sVEGFR2 in breast cancer bone metastasis progression should
be elucidated.
& 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bone is the most common site of metastatic spread of breast
cancer, and bone metastases remain incurable [1,2]. Bone metas-
tases are also associated with significant pain, reduced quality of
life and skeletal related events (SREs), such as radiotherapy or
surgery to the bone, pathological fractures, spinal cord compres-
sion, or hypercalcaemia [3,4]. Bone metastases from breast cancer
are commonly treated with agents that block bone turnover, such
as bisphosphonates or the antibody to the Receptor Activator NF-
KB ligand (RANKL), denosumab [5–8]. However, despite statisti-
cally significant reductions in SREs with bone-targeted agents, the
absolute benefits are modest with no consistent progression free
survival (PFS) or overall survival (OS) benefit [5,9,10]. The ability to
identify new treatment combinations that prolong survival for
patients with bone metastatic breast cancer as well as to identify
novel biomarkers of absolute benefits from the use of both bone-
targeted therapies and novel anti-cancer agents would be ex-
ceedingly valuable.

In the context of breast cancer bone metastases, VEGF can act
as an osteolytic factor in the presence of RANKL, further promoting
osteoclast maturation and activation [11,12]. Increased VEGF ser-
um levels are associated with more extensive bone metastases and
reductions in serum VEGF levels in these patients have been
shown to correlate with response to bisphosphonates [13,14]. As
such, the Zamboney study was designed to assess whether pa-
tients with bone predominant metastatic breast cancer could
benefit from the addition of the targeted agent vandetanib to
standard endocrine therapy with fulvestrant. Vandetanib (aka
ZACTIMA or AZD6474) is a tyrosine kinase inhibitor predominantly
targeting the vascular endothelial growth factor receptor (VEGFR)-
2, the epidermal growth factor receptor (EGFR), and the REar-
ranged during Transfection (RET) kinase. The primary results are
reported elsewhere [15], but briefly, the addition of vandetanib to
fulvestrant was not shown to enhance PFS, OS or tumor response
as measured by circulating levels of urinary N-telopeptide (uNTx)
[15]. Interestingly, a statistically non-significant trend was ob-
served of a differential treatment effect based on baseline uNTx,
suggesting the possibility of a predictive effect. Specifically, no
difference in OS or PFS was observed between vandetanib and
placebo treated patients who had normal baseline NTx, however,
amongst patients with abnormal NTx (i.e. 465 nM BCE/mmol
Creatine), those who received vandetanib had improved PFS and
OS. A test for interaction was statistically significant (p¼0.028)
with PFS, but not for OS (p¼0.25). Hence, we performed additional
biomarker analyzes in order to investigate the possibility of
whether particular subgroups of patients derived greater benefit
from vandetanib.

To date, no biomarker analyses of response to VEGFR targeting
agents in breast cancer patients with bone predominant meta-
static disease has occurred. Although the bone turnover markers
serum c-telopeptide (sCTx), and urinary N-telopeptide (uNTx)
were measured at baseline, and uNTX measured every 8 weeks on
patients accrued to the Zamboney study, no statistically significant
association of these markers with response to vandetanib were
observed in the main Zamboney study. Circulating angiogenic
factors such as VEGF, bFGF, SDF-1α or soluble (s)VEGFR2 or
sVEGFR3 have been previously suggested to associate with re-
sponse following administration of the VEGF/VEGFR targeting
agents bevacizumab, sunitinib (SU11248), BAY 57-9352, vatalinib
(PTK787/ZK222584) and cediranib (AZD2171) [16–22]. Thus, we
measured markers of tumor angiogenesis previously suggested to
associate with response to VEGF-targeting drugs, namely VEGF,
sVEGFR2 or sVEGFR3, and additionally evaluated putative markers
of bone metastasis burden, namely transforming growth factor
(TGF)-β and its related family member activinA, at baseline in
patients enrolled in Zamboney to assess their prognostic or pre-
dictive abilities.
2. Materials and methods

2.1. Study population

Post-menopausal women with estrogen receptor (ER)/proges-
terone receptor (PR) positive breast cancer and radiologically
confirmed bone only or bone predominant metastases were eli-
gible for enrolment in Zamboney [15]. Eligible patients providing
signed informed consent were randomized 1:1 to receive vande-
tanib (100 mg/day) or placebo together with fulvestrant (500 mg
IM on days 1, 15, 29 and then every 28 days thereafter) following
stratification based on baseline fasting levels of serum CTx
(o400 ng/L, or Z400 ng/L) measured as described [15]. The pri-
mary outcome of the study was significant changes in uNTx levels
defined as Z30% reduction in uNTx levels (measured as described
[15]) from baseline to any point on study. Other outcomes mea-
sured included PFS, defined as the time from randomization until
disease progression (as defined by RECIST [23]) or death, OS, cal-
culated from the date of randomization to date of death by any
cause, and time to first on-study SRE. As part of the main study
consent, patients could also optionally consent to the collection of
urine and serum samples for future research. Use of these mate-
rials in the current study was approved by the Ottawa Health
Science Research Ethics Board.

2.2. Biochemical analysis

For the present analysis, serum obtained at baseline study
screening was obtained within 21 days of initiation of study drug.
Blood was drawn in the morning following an overnight fast and
samples were allowed to clot and subsequently centrifuged at 4°C
for 10 min at 3400 RPM. Serumwas frozen at �80 °C until analysis.
Alternative biomarkers were measured using specific enzyme
linked immunosorbant assay (ELISA) kits in baseline serum samples
for VEGF-A (Quantikine, R&D Systems, Minneapolis MN, detection
limit 9 pg/ml), sVEGFR2 (Quantikine, R&D Systems, Minneapolis
MN, detection limit 12 pg/ml), and TGF-β1 (Quantikine, R&D Sys-
tems, Minneapolis MN, detection limit 16 pg/ml.) For sVEGFR3 or
activinA, human antibody Duosets (R&D Systems, Minneapolis MN)
were used to generate sandwich ELISAs according to the manufac-
turer's directions. The capture antibodies were diluted in phosphate
buffered saline (PBS) and used to coat the wells of immunoplates
(Cat # 439454, Nalge Nunc International, Rochester NY) overnight
at room temperature. Coated plates were washed and blocked with
1% bovine serum albumin (BSA) in PBS prior to addition of serum
samples. Biotinylated detection antibodies and horse radish perox-
idase (HRP) conjugated streptavidin were subsequently added, and
HRP colorimetric substrate (1:1 mixture of H2O2 and tetra-
methylbenzidine) development was assessed by absorbance at
450 nm. The threshold of sensitivity for ELISAs performed in this
manner was 20 pg/ml for sVEGFR3 and 250 pg/ml for activinA. For
all ELISA analyses, each serum sample was assessed in duplicate,
and the concentration of each biomarker protein was determined
by comparison to internally generated standard curves using re-
combinant protein. When levels of measured proteins exceeded
that of the standard curve estimate, samples were appropriately
diluted until absorbance measures fell within those of the standard
curve to reliably estimate the concentration. Patients with levels
below the threshold of sensitivity of the assay were assigned a value
of 0 pg/ml for statistical analyses. Investigators performing the la-
boratory analyses were blinded to treatment arm, to the timing of
the serum sample, and clinical outcome.



Table 2
Between treatment comparison of baseline biomarker levels.

Vandetanib Placebo p-Value

Randomized 61 68
Correlative data 51 50
Mean (SD) VEGF-A pg/ml 365 (278) 308 (270) 0.21
Mean (SD) sVEGFR2 pg/ml 8080 (1837) 8111 (1632) 0.72
Mean (SD) sVEGFR3 pg/ml 32707 (18940) 32449 (14630) 0.82
Mean (SD) TGF-β1 pg/ml 18865 (6004) 18172 (5946) 0.87
Median (range) Activin-A pg/
ml

1288 (155–81626) 1351 (155–
70330)

0.93

Table 3
Association of biomarkers with clinical variables.

Variable VEGF-A sVEGFR2 sVEGFR3 TGF-β ActivinA

uNTx 0.16 �0.04 �0.13 0.09 0.01
sVEGFR2 0.04 – – – –

sVEGFR3 0.16 0.20 – – –

TGF-β 0.19 0.10 0.09 – –

ActivinA 0.20 0.08 0.06 0.13 –

Months from initial
diagnosis

0.09 �0.01 0.02 0.08 0.13

Number of SRE prior to
study entry

0.10 �0.15 0.09 �0.08 0.07

Number of SRE on study 0.05 �0.11 �0.01 �0.08 0.00
Age 0.13 �0.32 -0.12 0.28 �0.05
Weight �0.22 0.02 0.01 �0.06 0.14
BMI �0.40 0.24 0.11 �0.18 0.18
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2.3. Statistical analysis

Exploratory statistical analyses were used to compare baseline
demographic and disease characteristics between those eligible for
biomarker analysis versus ineligible using Fisher's exact tests, χ2

tests or Wilcoxon rank sum tests as appropriate. Similar analyses
were performed to compare baseline biomarker levels between
treatment arms amongst women who consented to the biomarker
sub-study. The Spearman correlation coefficient was used to
evaluate the relationship between biomarker values and selected
baseline clinical characteristics and other biomarkers. The con-
cordance correlation coefficient (CCC) was used to measure the
reproducibility of biomarker levels. The CCC is a measure which
not only measures the degree of association between values, but
also whether the measures lie on the line of unity. The prognostic
ability of each biomarker on PFS, OS and time-to-first SRE was
evaluated using Cox proportional hazards regression. Initially, all
biomarkers were assessed in univariable analysis, and then sec-
ondarily after adjusting for treatment arm and stratum (serum
CTx o400 ng/L versus Z400 ng/L). Lastly the predictive value of
each biomarker was evaluated by investigating the potential in-
teraction between each biomarker and treatment. As the esti-
mated hazards ratio of an interaction is difficult to interpret, only
the p-value is presented for simplicity. All tests were two-sided
and a p-value of 0.05 or less was considered statistically sig-
nificant, while a p-value of 0.1 to 0.05 was considered as trending
towards significance.
Time from initial diagnosis
to diagnosis of metastatic
disease

0.07 0.03 0.14 0.06 0.08

Time from diagnosis of
metastatic disease until
study enrollment

0.06 �0.17 �0.17 �0.05 0.06

Systolic blood pressure 0.09 0.01 0.00 0.10 0.19
Diastolic blood pressure 0.09 0.23 0.00 0.00 0.18
3. Results

3.1. Baseline characteristics

Of the 129 women enrolled in Zamboney, 101 had samples
available for analysis in the current study. Of these, 51 were in the
vandetanib and 50 were in the placebo arm (Table 1). Mean age of
consenting patients was 59.8 yrs. Median duration of prior bi-
sphosphonate use at the time of enrolment was 12.9 months for
Table 1
Baseline patient characteristics for those with versus without biomarker data.

Baseline characteristics

Eligibility and stratum
Treatment Vandetanib

Placebo
Measurable disease Absent

Present
Resistance to endocrine therapy Tamoxifen. or AI for metastatic

Tamoxifen or AI in adjuvant
Prior adjuvant endocrine thera

Serum CTx o400 ng/L
Z400 ng/L

Demographics
Months from initial diagnosis Median (range)
ECOG performance status 0

1
2

NYHA classification N (%) Class 1
Body-mass index Mean (SD)
Age Mean (SD)

Prior treatment
Prior radiation therapy N (%) Yes
Prior chemotherapy for metastatic disease N (%) Yes
39 patients (duration unknown for 2 patients), while the re-
maining patients had no prior bisphosphonate use. Four of 28
(14.3%) patients without biomarker data had NYHA Functional
ELISA data
(n¼101)

No ELISA Data
(n¼28)

p-Va-
lue

51 (50.5) 10 (35.7) 0.20
50 (49.5) 18 (64.3)
53 (52.5) 15 (53.6) 1.00
48 (47.5) 13 (46.4)

disease 74 (73.3) 21 (75.0) 0.98
15 (14.9) 4 (14.3)

py 12 (11.9) 3 (10.7)
64 (63.4) 18 (64.3) 1.00
37 (36.6) 10 (35.7)

96.3 (8.6–300.1) 81.9 (7.4–256.4) 0.53
53 (52.5) 16 (57.1) 0.91
44 (43.6) 10 (35.7)
4 (4.0) 2 (7.1)
1 (1.0) 4 (14.3) 0.008

26.8 (5.7) 27.4 (6.0) 0.65
59.8 (8.7) 58.4 (10.0) 0.66

84 (83.2) 25 (89.3) 0.56
15 (14.9) 8 (28.6) 0.10



Table 4
Results of prognostic ability of biomarkers on outcomes.

Biomarker Both treatment arms Placebo arm only

Hazard Ratio (95% CI) p-Value Hazard ratio (95% CI) p-Value

Progression-free survival
VEGF-A/100 units Univariable 0.99 (0.92–1.07) 0.81 0.97 (0.87–1.08) 0.60

0.98 (0.91–1.05) 0.55 0.96 (0.85–1.07) 0.43
– 0.74

sVEGF-R2/1000 units Univariable 0.91 (0.81–1.02) 0.11 0.81 (0.68–0.98) 0.027
Adjusted for treatment and stratum 0.90 (0.80–1.01) 0.085 0.79 (0.65–0.95) 0.014
Interaction with treatment – 0.085

sVEGF-R3/10,000 units Univariable 0.93 (0.82–1.07) 0.31 0.92 (0.75–1.13) 0.43
Adjusted for treatment and stratum 0.92 (0.80–1.06) 0.24 0.88 (0.71–1.08) 0.22
Interaction with treatment – 0.71

TGF-β1/10,000 units Univariable 1.00 (0.96–1.03) 0.87 1.01 (0.95–1.06) 0.82
Adjusted for treatment and stratum 0.99 (0.96–1.03) 0.69 0.99 (0.93–1.05) 0.68
Interaction with treatment – 0.78

Activin-A/1000 units Univariable 1.00 (0.99–1.02) 0.76 1.00 (0.98–1.03) 0.84
Adjusted for treatment and stratum 1.01 (0.99–1.02) 0.52 1.01 (0.99–1.03) 0.48
Interaction with treatment – 0.96

Overall survival
VEGF-A Univariable 1.04 (0.93–1.17) 0.45 0.99 (0.84–1.17) 0.95

Adjusted for treatment and stratum 1.03 (0.91–1.16) 0.68 0.99 (0.84–1.17) 0.92
Interaction with treatment – 0.72

sVEGF-R2 Univariable 0.80 (0.64–0.99) 0.044 0.75 (0.56–1.01) 0.060
Adjusted for treatment and stratum 0.77 (0.61–0.96) 0.020 0.72 (0.52–0.99) 0.043
Interaction with treatment – 0.24

sVEGF-R3 Univariable 0.98 (0.79–1.20) 0.81 1.07 (0.78–1.46) 0.69
Adjusted for treatment and stratum 0.95 (0.76–1.18) 0.62 1.00 (0.73–1.36) 0.97
Interaction with treatment – 0.64

TGF-β1 Univariable 0.99 (0.94–1.06) 0.86 1.01 (0.93–1.10) 0.86
Adjusted for treatment and stratum 0.97 (0.91–1.04) 0.43 0.98 (0.90–1.08) 0.72
Interaction with treatment – 0.60

Activin-A Univariable 0.98 (0.92–1.04) 0.44 0.98 (0.91–1.06) 0.59
Adjusted for treatment and stratum 0.98 (0.93–1.04) 0.57 0.99 (0.91–1.07) 0.71
Interaction with treatment – 0.93

Time to first skeletal event
VEGF-A Univariable 0.99 (0.86–1.13) 0.83 0.99 (0.83–1.17) 0.87

Adjusted for treatment and stratum 0.97 (0.85–1.12) 0.72 0.98 (0.81–1.20) 0.86
Interaction with treatment – 0.78

sVEGF-R2 Univariable 0.83 (0.67–1.04) 0.10 0.75 (0.55–1.03) 0.072
Adjusted for treatment and stratum 0.82 (0.66–1.02) 0.079 0.73 (0.52–1.01) 0.057
Interaction with treatment – 0.41

sVEGF-R3 Univariable 0.98 (0.78–1.22) 0.83 1.06 (0.75–1.50) 0.75
Adjusted for treatment and stratum 0.96 (0.76–1.23) 0.76 1.05 (0.73–1.51) 0.80
Interaction with treatment – 0.48

TGF-β1 Univariable 1.00 (0.94–1.08) 0.93 0.99 (0.90–1.09) 0.85
Adjusted for treatment and stratum 0.99 (0.92–1.06) 0.80 0.97 (0.87–1.07) 0.51
Interaction with treatment – 0.75

Activin-A Univariable 0.99 (0.96–1.03) 0.75 1.00 (0.95–1.04) 0.85
Adjusted for treatment and stratum 1.00 (0.96–1.04) 0.90 1.01 (0.96–1.05) 0.83
Interaction with treatment – 0.84
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Class 1 cardiac symptoms, compared with only 1 of 101 (1.0%)
patients with biomarker data, a difference which was statistically
significant (p-value¼0.008). No other statistically significant dif-
ferences were observed between those who consented and did not
consent to the sub-study.

3.2. Biomarker measurements

ELISA measurements for the first and second duplicate samples
were assessed for their accuracy in terms of reproducibility. For all
markers, the Spearman correlation coefficient and concordance
correlation coefficient were extremely high, exceeding 0.93 in all
cases (data not shown). This indicates that the samples are highly
reproducible, and one does not need to take samples in duplicate.
Hence, only the first sample measurement was used as the mea-
sure of the biomarker level. Baseline biomarker levels were similar
between patients on the vandetanib versus placebo arms with no
apparent significant differences (Table 2).
The association of the measured biomarkers with various
clinical parameters and with each other at baseline are presented
in Table 3. The Spearman r was r |0.40| for all measured com-
parisons, indicating a weak to no association between all bio-
markers with each other and clinical characteristics.

3.3. Prognostic and predictive ability of biomarkers

The results evaluating the prognostic ability of each marker on
PFS, OS and time to first SRE is presented in Table 4. Baseline
sVEGFR2 was borderline significant as a prognostic marker for PFS,
OS and time to first skeletal event. Adjusting for treatment and
stratum, patients with higher sVEGFR2 trended towards improved
PFS (HR¼0.90/1000 units, 95% CI¼0.80–1.01, p-value¼0.085),
improved time to first skeletal event (HR¼0.82, 95% CI¼0.66–
1.02, p-value¼0.079) and a statistically significantly improved OS
(HR¼0.77, 95% CI¼0.61–0.96, p-value¼0.020). Results were rela-
tively similar when looking only at the placebo patients. No



Fig. 1. Biomarker level associated with clinical outcome A) Progression Free Survival by sVEGFR2 Levels, B) Overall Survival by sVEGFR2 Levels, C) Progression Free Survival
by Treatment Arm and sVEGFR2 Levels and D) Overall Survival by Treatment Arm and sVEGFR2 Levels
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significant interaction effect was observed between sVEGFR2 and
treatment for any outcome. These results are presented in Fig. 1 for
OS and PFS outcomes based on plotting sVEGFR2 as quartiles. No
other biomarker evaluated (VEGF-A, sVEGFR3, TGF-β1 or Activin-
A) was significantly (p-value40.20 for all comparisons) associated
with any outcome (PFS, OS, or time to first SRE).
4. Discussion

The Zamboney study investigated the effect of fulvestrant in
combination with vandetanib or placebo in patients with bone
predominant metastatic breast cancer.

A subgroup of 101 of patients consented to participate in a
correlative marker sub-study, evaluating a number of angiogenic
(VEGF-A, sVEGFR2, and sVEGFR3) and bone turnover (TGF-β, ac-
tivinA) markers. In this subgroup of patients, higher baseline
sVEGFR2 was statistically significant as a prognostic marker of
improved OS, with trends towards significance as a prognostic
marker for improved PFS and time to first SRE. sVEGFR2 has been
shown to be prognostic in a number of other cancer types [24,25].
Our findings are similar to those recently reported from the
AVADO trial which randomized HER2-negative locally recurrent
and metastatic breast cancer patients to receive docetaxel with the
anti-angiogenic agent bevacizumab [26]. In this study, higher
plasma concentrations of sVEGFR2 were associated with better PFS
response (HR¼0.46, 95% C.I. (0.28–0.74), p¼0.03) in bevacizumab
treated patients compared to placebo; association of sVEGFR2
with OS was not reported. In contrast, low baseline sVEGFR2 levels
were associated with longer PFS for patients on cediranib in he-
patocellular carcinoma [24], and with greater benefit from cedir-
anib treatment in colorectal cancer patients [25]. Median bio-
marker levels used to determine associations in these studies are
similar to that used in our study (median sVEGFR2 of 5.9 ng/ml
[24] in the hepatocellular carcinoma study and 11.6 ng/ml in the
colorectal cancer study [25] compared to 8 ng/ml in our study).
However, as neither hepatocellular nor colorectal cancers com-
monly metastasize to bone while it is the predominant site of
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breast cancer metastases, it is perhaps not surprising that different
associations are observed and the role of sVEGFR2 in progression
of metastatic breast cancer remains unclear. It should also be no-
ted that vandetanib targets alternative kinases compared to ce-
diranib which primarily targets VEGFR1, 2 and 3, which may also
contribute to the different observations in sVEGFR2 associations.

The role of sVEGFR2 in specifically regulating bone metastases
is not well established. The VEGF ligand plays an important role in
establishment of a vascular bed in the bone in addition to pro-
moting survival and differentiation of resident bone cells [27]. Cell
surface expression of VEGFR2 has been shown to increase during
osteoclast differentiation from mononuclear precursor cells where
it is the predominant receptor mediating VEGF signaling in os-
teoclasts [28,29]. As one of the prime mediators of bone destruc-
tion in metastatic breast cancer, it is likely that patients with high
circulating sVEGFR2 may have reduced osteoclastogenic activity as
a result of binding and sequestration of VEGF ligand from cell
surface receptors on osteoclasts. As patients with increased os-
teolytic activity and bone turnover tend to have worse prognosis
[30], higher levels of sVEGFR2 may inhibit VEGF-induced osteo-
clastogenic activity and osteolysis and hence contribute to better
survival outcomes in bone metastatic breast cancer patients.

The finding that baseline VEGF in the Zamboney study was not
associated with clinical outcomes are in contrast to other pub-
lished studies. VEGF was previously shown to be associated with
better treatment outcomes in metastatic breast cancer patients
treated with bevacizumab [26,31]. This discrepancy may be due to
the fact that 100% of patients enrolled in Zamboney had bone
predominant metastases, while only �60–70% of patients enrolled
in the AVADO or AVEREL studies had metastases to bone. Alter-
natively, bevacizumab, which was used in the AVADO and AVERAL
studies, is an antibody based therapeutic that binds VEGF ligands
directly, while vandetanib is a receptor tyrosine kinase inhibitor
that targets the VEGFR2 receptor along with other kinases. Also, as
approximately 79% of Zamboney patients were either previously
or concurrently treated with bisphosphonates at the time of study
entry, this may further confound results, as bisphosphonate ad-
ministration can result in decreased VEGF levels in patients [32].
The majority of Zamboney patients were also previously treated
with either tamoxifen, which causes platelet release of VEGF, or
aromatase inhibitors which have no effect on VEGF release [33].
This could also confound the results for VEGF levels obtained in
serum at baseline study entry depending on whether patients
were given tamoxifen versus aromatase inhibitors. The lack of
association of the alternative measured bone biomarkers TGF-β or
activinA with clinical outcome is supported by our recent findings
in similar patient cohorts in other studies [34,35]. It is important
to note that many of the putative predictive and pharmacody-
namic markers used to assess response to anti-angiogenic thera-
pies are differentially affected by concurrent treatments, and as
such great care should be taken to consider these variables when
performing such biomarker measures.

The current sub-study is purely exploratory in nature and the
current biomarker hypotheses were not pre-specified, nor was the
study powered to detect significant differences in biomarkers or
their associations. As such these results should be considered hy-
pothesis generating. Our sample sizes are also relatively small, and
due to study design, we were limited to measuring circulating
biomarker levels at baseline. Further, over 20% of study patients
declined participation in the correlative sub-study. Many studies
have suggested that changes in biomarkers from baseline to on
treatment are more predictive of treatment response [36–39]. In
the current sub-study we were unable to interrogate this question,
however given the possible association of sVEGFR2 with clinical
outcome in bone metastatic breast cancer patients treated with an
anti-angiogenic agent, changes in sVEGFR2 levels from baseline to
on treatment should be evaluated in bone metastatic breast cancer
patients in the future.
5. Conclusions

In this hypothesis-generating study, sVEGFR2 was identified as
a potentially important candidate biomarker for assessing clinical
outcome in bone predominant metastatic breast cancer patients.
Given the lack of supporting information regarding its role in the
bone metastatic microenvironment, studies to determine its effect
on bone metastasis progression and to validate its use as a bio-
marker of clinical response are warranted.
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