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1. INTRODUCTION

The primary purpose of this paper is to study the following situation.
(1) G is a finite group. p is an odd prime and P is a Sylow p-group of
G with | P| = q.
(i) G = G'. Z(G) is cyclic and G[Z(G) is simple.
(i) P és abelian. If x € G — Ng(P) then P N x1Px = (1}.
(iv) Co(P) = P X Z(G) and | Nyz(P) : Ce(P)| = 2. ()

The main result of this paper follows.

TrEOREM 1. Suppose that (x) is satisfied with q = 7. Let y be a faithful
trreducible character of G with y(1) 5= 0 (mod p). Then one of the following
holds.

I ZG) = -
(D) | Z(G)| = 2.2q + 1 is aprime power and G|Z(G) ~ PSL,(2q 4+ 1).
(II) | Z(G)| 7s even and G contains exactly one conjugate class of non-

central involutions.

(V) For ¢ =19, x(1) = q((¢ — 7)/4) —2 if ¢= 3 (mod 4). x(1) >
q((g — 9)/4) — 2 ¢f q =1 (mod 4). Furthermore if ¢ =T or 11 then x(1) =
29 — 2. If g =13 or 17 then x(1) > q — 2.

The following result which was announced previously [9, Theorem
8.3.4(ii1)] is a consequence of Theorem 1.

THEOREM 2. Let G be a finite group. Let p > 5 be a prime and let P be a
Sylow p-group of G. Assume that G has a faithful complex irreducible represen-
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tation of degree p — 2. Then either P <1G or p—1=2% and G ~
SLy(p — 1} X A where A is an abelian group.

In case p = 5 Theorems 1 and 2 are both false since there exists a group G
with a center Z of order 3 and G/Z ~ (¥, which has a faithful three-dimen-
sional complex irreducible representation. As all three-dimensional complex
groups are known it can be seen by inspection that up to an abelian factor
the above mentioned group is the only counterexample for p = 5.

Theorem 2 is proved by using Theorem 1 to reduce to the case where
the center of G has order 1. In this case the result is an immediate consequence
of {8, Theorem 2]. The main result of {6] is used to reduce to the case that
P has order p. The argument here is quite straightforward and is similar to
that used in [8].

Section 5 contains a proof of the following result which is handled by
similar methods and is occasionally useful.

TreoREM 3. Let G be a finite group with G = G'. Let p be an odd prime.
Suppose G has an abelian Sylow p-group P which satisfies the following
conditions

(1) If x€ G — Ng(P) then x'Px N\ Ng(P) = {1).
(it) There exists a subgroup H of G such that Co(P) = Ci(u) = P x H
forall ue P, u £ 1.
(i) | No(P): Co(P) = 3.

Then if X is a nonprincipal linear character of P X H/H
(Lo — A =16+ 0 —~L—n

where 6, [, n are trreducible characters of G and 0(1) L(1) y(1) is the square of
a rational integer.

As an immediate corollary of Theorem 3 one gets the following theorem.

Turorem 4. Suppose that G has a Sylow p-group P of order p > 3.
Assume that G = G and | Ng(P) : Co(P) = 3. Let 15, 8,7, 1 -, Xo-1/3
be all the irreducible characters in the principal p-block of G where x1 ,..., X(p-1) 13
are exceptional. Then 0(1) n(1) x3(1) is the square of a rational integer.

The situation described in Theorem 3 occurs infinitely often. For instance
let G,(q) = PSLy(q) and let G_y(g) == PSU(g). Then for ¢ = +1, G(g)
contains a subgroup 4 = P x H which satisfies the assumptions of Theorem
3 of order (g® + eg + 1)/(¢% + eg + 1, 3). The degrees of the given characters

are ¢, ¢% -+ <g, and (g2 — 1)}{(g — €).
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The notation used is standard and is the same as that used in [8] except
that the gothic letters have been replaced by ordinary capital letters.

2. SomE CoNsEQUENCES OF CONDITION (¥)
Throughout this section it will be assumed that condition (%) is satisfied.

Lemma 2.1. P s cyclic.

Proof. 'This follows from [11].

The results of [11] are not really necessary for this paper since the results
of [2] yield sufficient information about the characters of G for what is needed
here. However in view of Lemma 2.1 the theory of blocks with a cyclic
defect group becomes available and can be used to simplify some of the
arguments.

Let Z = Z(G). Let | Z| = mand let p; = 1, ,..., pp,, be all the irreducible
characters of Z. For ¢ = 1,..., m let B; be the p-block of G corresponding
to u;.

Let P = (y).

Lemma 2.2, Any two involutions in G|Z are conjugale.

Proof. Since G|Z satisfies (*) it may be assumed after a change of notation
that Z = (1> and G = G/Z. Since | Ng(P) : P| = 2 it follows that Ng(P)
contains exactly one conjugate class of involutions. Suppose that x is an
involution in G which is not conjugate to any element of Ng(P). Then y is
not the product of two conjugates of x. Therefore

5 EFED) |y EEDED) |y HIFED)

&) &) =0 @3

1) '

where £ ranges over all the irreducible characters of G. Since £&(y) =0
unless ¢ is in B; the same equations hold if ¢ runs over the irreducible
characters in B, . Let

I 7 {
be the tree corresponding to B, . Then (2.3) implies that

L a1y L)L o))
1y o Q) 7(1)
G ar
Uy )

1+

=1+
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Hence the vectors (1, {(1), n(1)), (1, {(x), %(x)) lie in an isotropic subspace
for the diagonal quadratic form (1, {(1)~1, —»(1)~). Since this is a non-
degenerate form an isotropic subspace has dimension at most 1. Thus the
two vectors are proportional and so (x) = {(1). Hence x is in the kernel of {
contrary to the simplicity of G.

Lemma 2.3. One of the following holds
(1) Ceondition (1), (II), or (I11) of Theorem 1 is satisfied.

(i) There exists an involution w in No(P) — Cy(P) which is not conjugate
in G to any element of the form wz with z in Z, 2 + 1.

Proof. Suppose that Ng(P) — Cg(P) contains no involutions. Then there
exists a unique involution 2 in Ng(P) and 2 € Z. Then by Lemma 2.2 2z is
the unique involution in G. This implies that a Sylow 2-group of G is a
generalized quaternion group. Thus a Sylow 2-group of G/Z is a dihedral
group. Therefore the main result of [4] implies that G/Z is either isomorphic
or 0¥; or PSLy(r) for some prime power r. It is easily seen that (%, does not
satisfy () for any prime p. Furthermore if PSLy(r) satisfies (%) for p then
| P| = (r 4 1)/2. Since ¢ 2> 7, PSLy(2g -+ 1) has a Schur multiplier of
order 2. Thus either condition (I) or (II) of Theorem 1 is satisfied.

Suppose that w is an involution in Ng(P) — Cg(P) and condition (ii) of
the Lemma does not hold. Let 2 be an element in Z, & = 1, such that w is
conjugate to w2 in G. Then clearly 2 is an involution. Since every involution
in Ng(P) is conjugate to @, wz or z in Ng(P) it follows from Lemma 2.2 that
every involution in G is conjugate to @ or 2. Thus condition (III) of Theorem |
is satisfied and the Lemma is proved.

Suppose that condition (ii) of Lemma 2.3 is satisfied. For ¢ = 1,...,#
define

g e
fo= X =)

Levmma 2.4, Suppose that condition (ii) of Lemma 2.3 is satisfied. Then
fi=ffori=1,.,m

Proof. Induction on m. If m = 1 the result is clear.

Let H be any subgroup of Z. Let G = G/H and let ¥ be the image of x in
G. The group G clearly satisfies condition (*). If H % {1} and ¥ = @&z
for some element 2 in Z with & 5% | then x has order at least 4. Thus w is not
conjugate to x. Hence G also satisfies condition (ii) of Lemma 2.3.

Let n;; be the number of ordered pairs of involutions x, , x, in G with
§ = xy%, and ¥, %, conjugate to @ in G. Then x;,x, € Ng(P). Hence
condition (ii) of Lemma 2.3 implies that sy = p. Furthermore
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| Co()] | H| = | Co(w)|. Thus

- |G: H |
LAy =P =R, = e i
l Cc (w)lz Z:lj @ = " I CG(xl)lz Hinkernelofuif
Consequently
2 fi=1H]| Y fi (2:6)
i=1 Hinkernelofy;

By induction f; = f; if p; is not a faithful character of Z. There are ¢(m)
faithful characters of Z and they are all algebraically conjugate. Since f; is
rational for all 7 this implies that if u, is a faithful character of Z then f; = f,,
for any faithful character u; of Z. Hence (2.6) with H = Z yields that

m

mfy = Z, fi={m — $(m)} fr + $(m) fou -

Consequently f,, = f; and the result is proved.

3. Proor oF THEOREM 1

Throughout this section the following will be assumed.
Condition (%) and condition (ii) of Lemma 2.3 are both satisfied with g = 7
Z(G) # 1.
x 25 a faithful irreducible character of G with x(1) == 0 (mod p).

The notation of Section 2 will be used without change and W = (w).

In view of Lemma 2.3 the proof of Theorem 1 will be complete once it
is shown that the above mentioned hypotheses imply that condition (IV) of
Theorem 1 holds. This will be done in a series of Lemmas in this section.

Lemma 3.1, Let £ be an irreducible character of G with £(1) 5= 0 (mod p).
Then
(1) é(1) = kg 4 1 or kg + 2 for some integer k.
() If &1) =kg-+ 1 then |E&w) <k -+ 1. If &) = kg — 2 then
| &) < k. Furthermore

JE@l _ 1 1
TE) S TED
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(i) If &1) = q -+ 1 then &w) = 4-{1 — (— 1)V IFE1) = ¢ — 2
then &(w) = (—1)eD/2,

Proof. By [3] (i) is an immediate consequence of Lemma 2.1.

k kE—1
EPW:A+ZYi or Ylu*“)““}“zyi
i=1 i=1

where each y; is a character of PW which vanishes on P — {1>. A is an
irreducible character of PW and in the second case A is a constituent of y,, .
This is easily seen to imply that y; = «f¥ is the character of PW induced
by the linear character o; of W. Thus y, (@) = 41 for all / and y, has a
unique linear irreducible constituent. Furthermore every nonlinear irreducible
character of PI¥ vanishes on w. If £(1) = kg + 1 this implies that | (@)} =
M) + S5y yiw) <k+ 1. If &1) = kg—2 then Mw) =0 and so
| &w)| = | Zfﬂ y:i(z)] < k. The last statement in (ii) follows by inspection.

Let M(w) be the linear transformation corresponding to w in the represen-
tation which affords £. All the characteristic roots of M(w) are +4-1 and the
determinant of M(w) = 1. Thus —1 occurs as a characteristic root with
even multiplicity. Since the trace of M(w) is &(w) condition (iii) is a direct
consequence of condition (ii).

Levma 3.2, Let

O

3 &
be the tree corresponding to the block B = B, . Then after possibly interchanging
& and &, it follows that £,(1) = 1 (mod q) and

f; _ ) &w) &x(w) )?‘ {1 ‘ 1 "—1.

TUED T &MY TED T DY

Proof. It may be assumed that §(1) = ¢ (modg) for e = 41. By
definition

@) &) (@) + &)

fi= @ TR T A& T A

Direct computation shows that f; is equal to the expression in the statement
of the lemma. Since f; = f; = 0 this implies that ¢ = 1.

Levma 3.3. For a,t real let g(t) = (a -+ £)? t7%. Then g(t) is monotonic
increasing for | t| > | a | and g(t) is monotenic decveasing for 0 < 1| <|al.

Proof. Elementary calculus.
Throughout the rest of this section the following notation will be used.
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B == B, is the block containing x. f = f; . Since y is faithful and Z #= {1>
it follows that B 5= B; . Thus every irreducible character in B is faithful
on Z and hence faithful on G.

Let

O O

1 ¢

be the tree corresponding to B, and let {(1) = ¢. Let

O il

X 8

o]

be the tree corresponding to B and let (1) = d, 6(1) = e. Choose the
notation so that d < e.

Levma 34. (i) fi > 1—5/q.
Gty If d =q— 2 then f < 9/2q.
(i) Ifd > q— 2 then

fgrdt iy

Proof (i). Suppose that ¢ = g — 2. By Lemma 3.1(iii) and Lemma 3.2

f= (1_71?12_) ( ) (4 ~42_)(q3)— 1)
‘7%%“‘3

Suppose that ¢ >¢g—2. By Lemma32 ¢>gq. Let g =
(1/g — 2+ )22 Then f; = g(1 + 1/c). Since 1 + 1/c < 2 — 1/g. Lemma
3.3 implies that

h=zg& (1 -+ L) = (I — -z-)z (1 - %);1 = ég(l_q:—{—‘zl);_

_Ge—4 5

¢ +q q

(ii) If ¢ = g — 2 then Lemma 3.1(iii) and Lemma 3.2 imply that f = 0.
If e = g4 1 then by Lemma 3.1(iii)

T I | 1\t
f<(g——~2+q+l)(q——2+q+1—)
g — 1)
(29— Dg—2)¢+ 1)

for ¢ > 7.
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Suppose that e >¢g -+ 1. Then ¢ >2¢—2 by Lemma 3.2 and so
Vg < ljd+ lle < 2/q. Let g(t) = (1/g + t)* L. Then f < g(1/d -+ 1/e).
Hence by Lemma 3.3

20 (3 9
felp) =) 5 =5

(iii) Let g(t) = (2/g + £)*t. Then f<g(l/d + 1je). Since 1/d <
1/d + 1Je < 2/q it follows from Lemma 3.3 that

sl (2o e

LemMa 3.5.  Condition (IV) of the theorem holds for ¢ > 13.

Proof. Suppose that ¢ 2> 13. By Lemma 2.4 and 3.4 1 — 5/¢g < f, = f.
If d = ¢ — 2 then Lemma 3.4 implies that 1 — 5/g < 9/2¢ and so 2¢g < 19
which is not the case. Suppose that d > ¢ -— 2. Thus it may be assumed
that ¢ > 19. Then Lemma 3.4 implies that

5 4 4 1
- < —d+— 4 —.
q ¢ +q d

Therefore 0 < 4d% — (¢% — 9¢)d + ¢* Hence one of the following possi-
bilities must occur.

8d < ¢*— 99 — q(¢* — 18¢ + 65)'2 <g{(¢ = 9) — (¢ — 10)} = g,
84 = ¢* — 9 + q(¢® — 18¢+ 65)'2> q{(g — 9) - (g — 10)} = ¢(2¢ — 19).

Since d 2= ¢ — 2 the first possibility cannot occur. Therefore d > ¢(2¢ —19)/8.
If ¢ = 3 (mod 4) this implies that d > ¢{(g — 7)/4) — (3/8)g. Since d =1
or —2(mod ¢) this implies that d = q((g — 7)/4) — 2. If ¢ = 1 (mod 4)
then d > g((¢g — 9)/4) — 5¢/8. Hence d = g{(g — 9)/4) — 2 in this case.
The last statement in Condition (IV) is an immediate consequence as ¢ = 13
and the lemma is proved.

To complete the proof of condition (IV) of Theorem 1 it is now sufficient
to consider the cases where ¢ = 7org = llandd =¢ 4 lorg— 2.

Suppose that d = ¢ + 1. By Lemma 3.1(iii) y{w) = 0 for g = 7 or 11
If e = ¢+ 1 then f = 0 by Lemma 3.1(iii). Then by Lemmas 2.4 and 3.4
0 =/ > 1 — 5/¢ which is not the case. If ¢ > g - 1 then e == 2¢ — 2.
Lemmas 3.1(ii) and 3.2 imply that if g(z) = ((1/g(g + 1)) + ¢)* ¢! then

1 1 1 Iy Bg—2(g+D)
I<el+ ) <¢ b= +751) 3 —ee— 1)
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If ¢ = 7 or 11 this implies by direct computation that f < 1 — 5/q contrary
to Lemmas 2.5 and 3.4.

Suppose that d == ¢ — 2. Then Lemmas 2.4 and 3.4 yield that | — 5/g <
9/29 and so 29 << 19. Thus ¢ % 11 and so ¢ = 7. Hence d = 5. If y is a
monomial character then P <7 & contrary to assumption. If y is not monomial
then G is one of the groups listed in [1]. It can be seen by inspection that 7
does not divide | G |. Hence this case cannot occur. The proof of Theorem 1
is complete.

4. ProoF oF THEOREM 2

LemMa 4.1. Let G be a minimal counterexample to Theorem 2. Then G
satisfies condition () with | P | = p.

Proof. Since G is a counterexample to Theorem 2 P <41 G. The main
result of [6] yields the existence of a subgroup P of P with | P: Py| = p
and P, <1 G. Since G has a faithful representation of degree p — 2 < p it
follows that P is abelian. Hence P C Cy(P,) <1 G. Let G, be the subgroup
of G generated by all elements of order p. Thus G, <1 G and G, C Cy(P,).
Hence Burnside’s transfer theorem implies that Gy = G; X Py for some
characteristic subgroup G; of Gy. Therefore G, <{ G. Let P, = PN G, .
Thus | Py | = pand P; 41 G, .

Suppose that G 5= G. The minimality of G implies that p = 2% 4- 1 and
G, = G, X A where G, ~ SLy(p — 1) and A is abelian. The smallest
degree of a faithful irreducible character of SLy(p — 1) is p — 2 and no outer
automorphism of SLy(p — 1) stabilizes a character of degree p — 2. Thus
¥c, 18 irreducible and G = G,Cq(G;) = G, X Cg(G,) with Cg(G,) abelian
contrary to the fact that G is a counterexample to Theorem 1.

Therefore G, = G. Hence P, = P and G = G, is generated by all
elements of order p. Thus G = G'. Since G has a faithful irreducible
character Z(G) is cyclic.

Let H be a normal p’-subgroup of G. Then PH is a p-solvable group
which has a faithful complex representation of degree p — 2. Thus by a
result of Ito P <q PH. See e.g. [5, (24.6)]. Hence P C Ci(H) <1 G. Since G
is generated by its p-elements this implies that H C Z(G). Thus G/Z(G) is
simple and condition (i) of (x) is satisfied.

Condition (iif) of () is satisfied as | P | = p. By [7, Theorem 1] Cy(P) =
P x Z(G). Thus by [3] | Ng(P) : C4(P)| = 2. Hence also condition (iv) of
(x) is satisfied.

Theorem 2 can now be proved.

Let G be a minimal counterexample to Theorem 2. By Lemma 4.1 (x) is
satisfied with | P | = p. Thus Theorem 1 can be applied. Since (1) = p — 2
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is odd it follows that | Z(G))] is odd. Therefore (II), (I11), or (IV) of Theorem 1
cannot hold. Consequently by Theorem 1 | Z(G)! = 1. Theorem 2 now
follows directly from |8, Theorem 2].

s

5. Proor or TuEOREM 3

Suppose that G satisfies the hypotheses of Theorem 3. Let N = Ng(P).
Letd = A, A, ,... be all the nonprincipal irreducible characters of (P x H)/H.
Let X; be the character of N induced by A, . Then each A, is an irreducible
character of N and after relabeling it may be assumed that A, ,..., A, are all
the distinct irreducible characters of N in the principal p-block which do not
contain P in their kernel where n = (| P| — 1)/3.

There exists a sign € = --| and irreducible characters y; ,..., ¥, of G
with (\; — X;)¢ = e(y; — x;)- See for instance [2]. Furthermore

H(IP’KH " ’\)G “2 =4 and (lPxH “‘ /\)G = l¢ + €1 T+ 81‘91 + 52’92 s

where §; 5= 0, are irreducible characters distinct from 1 and each v, , and
8 = +lforj=1,2

Let 3 be an element of P — {1}. Since | N : Cz(P)| = 3 it follows that
no p-singular element of G is the product of two invelutions, Thus if B
denotes the principal p-block of G then

5 é%%)é@:o (5.1)

£inB

for x? = x> = 1.

By the results of [2] it follows that {l;, 0, 8,, x1 ,--, X} is precisely
the set of all irreducible characters in the principal p-block. Furthermore
x:(¥) = —eA(y) and 0,(y) = §, for i = 1, 2. Thus (5.1) becomes

e xa(2) xa(x2) 8,8, (%1) Oy (x) 8505(%y) bafxs) _
B € 7 () R X R

for x,2 = x,2 =
Let I” be a four-dimensional rational vector space. Define the symmetric
bilinear from B on I by

o € 3 L8
B(u, v) = u;vy +—7(1(1—)u27)2 -+ o) UsTy 70 30y .

It suffices to show that I/ has a two-dimensional isotropic subspace because
in that case exactly one of ¢, 8;, 8, is -1 and ¥ is the orthogonal sum of
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two hyperbolic planes. See for instance [10, Chapter XIV]. Thus the
discriminant of B is a square. Since the discriminant of B is {y,(1) 8,(1) 8,(1)}*
Theorem 2 is proved.

By (5.2) u = (1, x(1), 64(1), 65(1)) is an isotropic vector in V. Since G = G’
there exists an involution x in G which is not in O,/(G) and so is not in the
kernel of y;,6;, and 6,. Let v = (1, yy(x), 0,(x), Oo(x)). Thus % and v are
linearly independent vectors. By (4.2)

B(u, ¥) = B(u, v) = B(v, v) = 0.

Hence the two-dimensional subspace of V' which is spanned by # and o
is isotropic as required.
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