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1. INTRODUCTION 

The primary purpose of this paper is to study the following situation. 

(i) G is a finite group. p lis an odd prime and P is a Sylow p-group of 
G with 1 P 1 = q. 

(ii) G = G’. Z(G) is cyclic and G/Z(G) is simple. 

(iii) P is abelian. If x E G - N,(P) the72 P n x+Px = (1). 

(iv) C,(P) = P x Z(G) and 1 N,(P) : C,(P)/ = 2. (*I 

The main result of this paper follows. 

THEOREM 1. Suppose that (*) is sakjied with q 3 7. Let x be a faithful 
irreducible character of G with x(l) + 0 (modp). Then one of the following 
holds. 

(I) Z(G) = (1). 

(II) j Z(G)1 = 2.2q + 1 is aprinzepower and G/Z(G) a PSL,(2q + 1). 

(III) / Z(G)/ is mm and G contains esactl?, one conjugate class of non- 
central involutions. 

(IV) For q > 19, x(l) >, q((q - 7)/4) - 2 if q = 3 (mod 4). x(1) > 
q((q - 9)/4y - 2 ifq z 1 (mod 4). FuAmnore if q = 7 OY II then X( 1) 3 
2q - 2. If q = 13 or 17 then x(1) > q - 2. 

The following result which was announced previously [9, Theorem 
8.3.4(iii)] is a consequence of Theorem 1. 

THEOREM 2. Let G be a finite group. Let p > 5 be a prime and let P be a 
Sylow p-group of G. Assume that G has a faithful complex irreducible represen- 
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tation of degree p - 2. Then either P 4 G or p - 1 = 2” and G e 
SL,( p - 1) X A where d is an abelian group. 

In case p = 5 Theorems 1 and 2 are both false since there exists a group G 
with a center Z of order 3 and G/Z a Q$ which has a faithful three-dimen- 
sional complex irreducible representation. As all three-dimensional complex 
groups are known it can be seen by inspection that up to an abelian factor 
the above mentioned group is the only counterexample for p = 5. 

Theorem 2 is proved by using Theorem 1 to reduce to the case where 
the center of G has order 1. In this case the result is an immediate consequence 
of [S, Theorem 21. The main result of [6] . 1s used to reduce to the case that 
P has order p. The argument here is quite straightforward and is similar to 
that used in [S]. 

Section 5 contains a proof of the following result which is handled by 
similar methods and is occasionally useful. 

THEOREM 3. Let G be a jinite group with G = G’. Let p be an odd prime. 
Suppose G has an abelian Sylow p-group P which satisJies tlze following 
cmditiom 

(i) If x E G - N,(P) then x-lPs n N,(P) = <I>. 

(iij There exists a subgroup H of G such that C,(P) = C,(u) = P x H 
for all uEP, u # 1. 

(iii) ) No(P) : C,(P)\ = 3. 

Thelz if X is a nonprincipal linear character of P x H/H 

(1 pxH - A)” = 10 + 0 - 5 -- Tj 

where 6, 5, 7 are irreducible characters of G and 8( 1 j <( 1 j q( 1) is the square of 
a ratioonal integer. 

As an immediate corollary of Theorem 3 one gets the following theorem. 

THEOREM 4. Suppose that G has a Sylozu p-group P of order p > 3. 
Assume that G = G’ and 1 N,(P) : C,(P)1 = 3. Let lG , @, 9, x1 ,..., x(u--1)13 
be all the irreducible characters in the principal p-block of G where x1 ,. ~ ., xcDeI) ,‘3 
are exceptional. Then 8(l) y(1) x1(l) is the spare of a rational integer. 

The situation described in Theorem 3 occurs infinitely often. For instance 
let G,(q) = PSL,(q) and let G-,(q) = PSU,(q). Then for E = 51, G,(q) 
contains a subgroup _;2 = P x H which satisfies the assumptions of Theorem 
3oforder(q”+Eq+ l)/(q2+cq+ 1,3).Th e d g e rees of the given characters 
are 43, q2 + cq, and (q2 - l)(q - c). 
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The notation used is standard and is the same as that used in [8] except 
that the gothic letters have been replaced by ordinary capital letters. 

2. SOME CONSEQUENCES OF CONDITION (*) 

Throughout this section it will be assumed that condition (*) is satis$ed. 

LEMMA 2.1. P is cyclic. 

Proof. This follows from [ll]. 
The results of [I l] are not really necessary for this paper since the results 

of [2] yield sufficient information about the characters of G for what is needed 
here. However in view of Lemma 2.1 the theory of blocks with a cyclic 
defect group becomes available and can be used to simplify some of the 
arguments. 

Let Z = Z(G). Let 1 Z 1 = m and let ~11 = I, ,..., pm be all the irreducible 
characters of Z. For i = I,..., m let Bi be the p-block of G corresponding 
to /Ai. 

Let P = (yj. 

LEMMA 2.2. Any two involutions in G/Z aye conjugate. 

Proof. Since G/Z satisfies (*) it may be assumed after a change of notation 
that Z = (1) and G = G/Z. Since / N,(P) : P / = 2 it follows that N,(P) 
contains exactly one conjugate class of involutions. Suppose that .X is an 
involution in G which is not conjugate to any element of N,(P). Then y is 
not the product of two conjugates of EC. Therefore 

1 &4’ t(Y) = 1 !34 al) !%Y) = c E(l)” t(Y) = 0, 
5(l) ((1) f(l) 

(2.3) 

where 6 ranges over all the irreducible characters of G. Since t(y) = 0 
unless [ is in B, the same equations hold if [ runs over the irreducible 
characters in B, . Let 

o-o-o 
I 17 b 

be the tree corresponding to B, . Then (2.3) implies that 
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Hence the vectors (1, c(l), T(L)), (1, I(r), y(x)) lie in an isotropic subspace 
for the diagonal quadratic form (1, <(1)-l, -q( 1)-r). Since this is a non- 
degenerate form an isotropic subspace has dimension at most 1. Thus the 
two vectors are proportional and so l(x) = <( 1). Hence x is in the kernel of j 
contrary to the simplicity of G. 

LEMMA 2.3. One of the following holds 

(i) Condition (I), (II), 01’ (III) of Theorem 1 is satisjed. 

(ii) There exists an involution zu in N,(P) - C,(P) which is rzot conjugate 
in G to any element of the form zuz witlz z in Z, z # 1. 

Proof. Suppose that N,(P) -- C,(P) contains no involutions. Then there 
exists a unique involution .z in N,(P) and x E Z. Then by Lemma 2.2 x is 
the unique involution in G. This implies that a Sylow 2-group of G is a 
generalized quaternion group. Thus a Sylow 2-group of G/Z is a dihedral 
group, Therefore the main result of [4] implies that G/Z is either isomorphic 
or f& or PSL,(r) for some prime power 1’. It is easily seen that @, does not 
satisfy (2~) for any prime p. Furthermore if PSL,(v) satisfies (+) for p then 
/ P 1 = (K 5 1)/2. Since 4 > 7, PSL,(2q * 1) has a Schur multiplier of 
order 2. Thus either condition (I) or (II) of Theorem 1 is satisfied. 

Suppose that w is an involution in N,(P) - C,(P) and condition (ii) of 
the Lemma does not hold. Let x be an element in Z, x f 1, such that w is 
conjugate to zoz in G. Then clearly x is an involution. Since every involution 
in N,(P) is conjugate to ‘w, ,zu.z or z in N,(P) it follows from Lemma 2.2 that 
every involution in G is conjugate to w or z. Thus condition (III) of Theorem 1 
is satisfied and the Lemma is proved. 

Suppose that condition (ii) of Lemma 2.3 is satisfied. For i = I,..., m 
define 

LEivnvra 2.4. Suppose that condition (ii) of Lemma 2.3 is sati$ed. Then 
fi = fi foT i = l,..., m. 

Proof. Induction on m. If m = 1 the result is clear. 
Let I-I be any subgroup of Z. Let G =: Gjll and let P be the image of s in 

G. The group G clearly satisfies condition (:K). If H f (1) and r = E,% 
for some element z in Z with z # I then x has order at least 4. Thus w is not 
conjugate to x. IIence G also satisfies condition (ii) of Lemma 2.3. 

Let n, be the number of ordered pairs of involutions x1 , x2 in G with 
7 = x1x2 and x1 , x, conjugate to .~l in G. Then sr , xp E N&P). Hence 
condition (ii) of Lemma 2.3 implies that ?zzH = p. Furthermore 
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I C&>l I H I = I W4l. Thus 

(2.6) 

By induction fi = fl if p-ci is not a faithful character of 2. There are 4(m) 
faithful characters of Z and they are all algebraically conjugate. Since fi is 
rational for all i this implies that if prfi is a faithful character of Z thenfj = fm 
for any faithful character pj of Z. Hence (2.6) with H = Z yields that 

Consequently fm = fi and the result is proved. 

3. PROOF OF THEOREM 1 

Throughout this section the following will be assumed. 

Condition (*) and condition (ii) of Lemma 2.3 aye both sati$ied with q 3 7. 

Z(G) f (1). 

x is a faithful irreducible character of G with x( 1) + 0 (mod p). 

The notation of Section 2 will be used without change and W = (w). 
In view of Lemma 2.3 the proof of Theorem 1 will be complete once it 

is shown that the above mentioned hypotheses imply that condition (IV) of 
Theorem 1 holds. This will be done in a series of Lemmas in this section. 

LEMMA 3.1. Let 5 be an irreducible character of G with ((1) + 0 (modp). 
Then 

(i) t(l) = kq & 1 or hq & 2 foT some iizteger h. 

(ii) If t(l) = hq + 1 then I E(w)] < h + 1. q t(l) = hq - 2 the-n 
1 E(w)1 < h. Furthermore 
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(iii) YE(l) = 4 + 1 then t(w) = &{I - (-l)!q+l)~). rf[(l) = q - 2 
then t(w) = (-l)@+‘)p. 

Proof. By [31 ( > . i is an immediate consequence of Lemma 2.1, 

L-1 
or Yk - x f c Yi 

:=I 

where each yi is a character of PW which vanishes on P - (1). h is an 
irreducible character of PW and in the second case X is a constituent of ys . 
This is easily seen to imply that yi = oli pw is the character of PW induced 
by the linear character 01~ of IV. Thus y,(w) = +l for all i and yi has a 
unique linear irreducible constituent. Furthermore every nonlinear irreducible 
character of PW vanishes on w. If e( 1) = kq + 1 this implies that / E(zu)l = 
1 X(W) + x:=, yi(w)i < K + 1. If E(l) = kq - 2 then X(M) = 0 and so 
j t(w)1 = / zF=, yi(zcjl -<, k. The last statement in (ii) follows by inspection. 

Let M(w) be the linear transformation corresponding to zu in the represen- 
tation which affords [. All the characteristic roots of M(W) are jrrl and the 
determinant of M(W) = 1. Thus -- 1 occurs as a characteristic root with 
even multiplicity. Since the trace of M@) is ~(ZLI) condition (iii) is a direct 
consequence of condition (ii). 

LEMMA 3.2. Let 

t-1 52 
be tAe tree covesponding to tlze block B = Bi . Then after possibly intmchanging 
t1 arzd 6, it follows that t,(l) = 1 (mod 2) and 

\ El(W) ___- 
ff = i 5,(l) 

Ed4 1” ! 1 , 1 i-1. 
t,(i) ! iE10 52(l) ) 

hoof. It may be assumed that El(l) = E (mod 9) for E = il. BY 
definition 

Direct computation shows that ~fi is equal to the expression in the statement 
of the lemma. Since fi = fr > 0 this implies that 6 = 1. 

LEMMA 3.3. For a, t Teal let g(t) = (a + t>’ t-l. Then g(t) is monotonic 
increasing for j t I > / a / and g(t) is wzonotonic decreasitzg for 0 < j t 1 < ! a /. 

Proof. Elementary calculus. 
Throughout the rest of this section the following notation will be used. 
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B := Bi is the block containing x. f = fi . Since x is faithful and Z f (1) 
it follows that B # B, . Thus every irreducible character in B is faithful 
on Z and hence faithful on G. 

Let 
o-o-o 
1 5 

be the tree corresponding to B, and let c(l) = c. Let 

o-o-o 
X e 

be the tree corresponding to B and let x(l) = d, O(1) = e. Choose the 
notation so that d < e. 

LEMMA 3.4. (i) fi > 1 - 5/g. 

(ii) If d = q - 2 then f < 9/2q. 

(iii) If d > q - 2 thefz 

Proof (i). Suppose that c = q - 2. By Lemma 3.l(iii) and Lemma 3.2 

fi 2 (1 - 5)’ (1 + -&-l = (4 o(q3)2 l) 
= 1 _ (32 - 7) 5 

qz-3q+2 >l-y* 

Suppose that c > q - 2. By Lemma 3.2 c > q. Let gi(t) == 

(l/p - 2 + t)” t-l. Thenf, > g,(l + l/c). Since 1 + l/c < 2 - l/p. Lemma 
3.3 implies that 

(ii) If e = q - 2 then Lemma 3.l(iii) and Lemma 3.2 imply that f = 0. 
If e = q + 1 then by Lemma 3.l(iii) 

f<(-& 2 )‘(-&+&)’ + 31 
I--- 9(q - 1)” 

(2q - I)(qq(i + 1) < -2; 

for q > 7. 
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Suppose that e > q + 1. Then e > 2q - 2 by Lemma 3.2 and so 
l/q < l/d + l/e < 2/q. Let g(t) = (l/q + t>” t-l. Then f < g(l/d + l/e). 
Hence by Lemma 3.3 

(iii) Let g(t) = (2/q + t)’ t-l. Then f < g(l/d + l/e). Since l/d < 
l/d + l/e < 2/q it follows from Lemma 3.3 that 

LEMMA 3.5. Condition (IV) of the theoFern holds for q >, 13. 

Proof. Suppose that q 3 13. By Lemma 2.4 and 3.4 1 - 5jq < fi =f. 
If d = q - 2 then Lemma 3.4 implies that 1 - 5/q < 9/2q and so 2q < 19 
which is not the case. Suppose that d > q - 2. Thus it may be assumed 
that q > 19. Then Lemma 3.4 implies that 

1-+<$d+e,i. 

Therefore 0 < 4d2 - (q2 - 9q)d + q2. Hence one of the following possi- 
bilities must occur. 

8d < q1 - 9q - q(q2 - ISq + 65)li2 < q((q - 9) - (q - lOj} = q, 

8d 3 q2 - 9q + q(q2 - lXq+ 65)rj” > q{(q - 9) + (q - 10); = q(2q - 19). 

Since d >q - 2 the first possibility cannot occur. Therefore d > q(2q - 19)/K 
If q = 3 (mod 4) this implies that d > q((q - 7)/4) - (3B)q. Since d = 1 
or -2 (mod q) this implies that d >, q((q - 7)/4) - 2. If q = 1 (mad 4j 
then d > q((q - 9)/4) - 5q/8. Hence d > q((q - 9)/4) - 2 in this case. 
The last statement in Condition (IV) is an immediate consequence as q > 13 
and the lemma is proved. 

To complete the proof of condition (IV) of Theorem 1 it is now sufficient 
to consider the cases where q = 7 or q = 11 and d = q -k 1 or q - 2. 

Suppose that d = q + 1. By Lemma 3.l(iii) x(w) = 0 for q = 7 or Il. 
If e = q + 1 then f = 0 by Lemma 3.1(G). Then by Lemmas 2.4 and 3.4 
o=“f> 1 - 5/q which is not the case. If e > q + 1 then e > 2q - 2. 
Lemmas 3.l(ii) and 3.2 imply that if g(t) = ((l/q(q + 1)j + t)2 t-l then 
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If q = 7 or 11 this implies by direct computation that f < 1 - 5/q contrary 
to Lemmas 2.5 and 3.4. 

Suppose that d = q - 2. Then Lemmas 2.4 and 3.4 yield that 1 - 5/q < 
9/2q and so 2q < 19. Thus q 5 11 and so q = 7. Hence d = 5. If x is a 
monomial character then P (1 G contrary to assumption. If x is not monomial 
then G is one of the groups listed in [l]. It can be seen by inspection that 7 
does not divide ( G I. Hence this case cannot occur. The proof of Theorem 1 
is complete. 

4. PROOF OF THEOREM 2 

LEMMA 4.1. Let G be a minimal counterexample to Theorem 2. Then G 
satis-es condition (*) with 1 P j = p. 

Proof. Since G is a counterexample to Theorem 2 P Q G. The main 
result of [6] yields the existence of a subgroup P,, of P with 1 P : P,, ( = p 
and P,, Q G. Since G has a faithful representation of degree p - 2 < p it 
follows that P is abelian. Hence PC C,(P,) 4 G. Let G,, be the subgroup 
of G generated by all elements of order p. Thus GO Q G and G,, _C C,(P,). 
Hence Burnside’s transfer theorem implies that G,, = Gr x PO for some 
characteristic subgroup Gr of GO . Therefore G1 4 G. Let PI = P n G, . 
Thus j PI I = p and PI + Gl . 

Suppose that Gr # G. The minimality of G implies that p = 2” $- 1 and 
Gr = Ga x A where G, .W SL,(p - 1) and A is abelian. The smallest 
degree of a faithful irreducible character of SL,(p - 1) isp - 2 and no outer 
automorphism of SL,(p - 1) stabilizes a character of degree p - 2. Thus 
xGz is irreducible and G = GaC,(G,) = Ga x C&G,) with C,(G,) abelian 
contrary to the fact that G is a counterexample to Theorem 1. 

Therefore Gr = G. Hence PI = P and G = G,, is generated by all 
elements of order p. Thus G = G’. Since G has a faithful irreducible 
character Z(G) is cyclic. 

Let H be a normal p’-subgroup of G. Then PH is a p-solvable group 
which has a faithful complex representation of degree p - 2. Thus by a 
result of Ito P <3 PH. See e.g. [5, (24.6)]. Hence P Z C,(H) 4 G. Since G 
is generated by its p-elements this implies that H C Z(G). Thus G/Z(G) is 
simple and condition (ii) of (*) is satisfied. 

Condition (iii) of (*) is satisfied as I P I = p. By [7, Theorem l] C,(P) = 
P x Z(G). Thus by [3] I N,(P) : C,(P)1 = 2. Hence also condition (iv) of 
(*) is satisfied. 

Theorem 2 can now be proved. 
Let G be a minimal counterexample to Theorem 2. By Lemma 4.1 (*) is 

satisfied with ! P 1 = p. Thus Theorem 1 can be applied. Since x(1) = p - 2 
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is odd it follows that / Z(G)] is odd. Therefore (II), (III), or (IV) of Theorem 1 
cannot hold. Consequently by Theorem 1 ( Z(G)\ = I. Theorem 2 now 
follows directly from [S, Theorem 21. 

5. PROOF OF TKEORE~~ 3 

s uppose that G satisfies the hypotheses of Theorem 3. Let K = N,(P). 

Let X = A, , A, ,.. . be all the nonprincipal irreducible characters of (P x H)/H. 
Let xi be the character of N induced by Xi . Then each xi is an irreducible 
character of N and after relabeling it may be assumed that xi ,..., A,& are al1 
the distinct irreducible characters of N in the principal p-block which do not 
contain P in their kernel where n = (1 P 1 - 1)/3. 

There exists a sign E = &l and irreducible characters xi ,..., x,~ of G 
with (/Xi’ - X,)G = E(S~ - xj). See for instance [2]. Furthermore 

IJ(lpxx - h)G p = 4 and 

where 0, f 8, are irreducible characters distinct from 1 and each ,Q , and 
Sj = +I for j = 1,2. 

Let 3’ be an element of P - (1). Since / N : C,(P)1 = 3 it follows that 
no p-singular element of G is the product of two involutions. Thus if B 
denotes the principal p-block of G then 

(5.1) 

By the results of [2] it follows that (1, , 0, , 0, , x1 ,... , x,,J is precise11 
the set of all irreducible characters in the principal p-block. Furthermore 
xi(y) = -&(y) and O,(y) = Si for i = 1,2. Thus (5.1) becomes 

for x1” = 21”; = 1. 
Let I;; be a four-dimensional rational vector space. Define the symmetric 

bilinear from 3 on V by 

It suffices to show that I/ has a two-dimensional isotropic subspace because 
in that case exactly one of E, 6, , 6, is +l and I/ is the orthogonal sum of 
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two hyperbolic planes. See for instance [IO, Chapter XIVJ Thus the 
discriminant of B is a square. Since the discriminant of B is {xl( 1) e,(I) 08( I)}-l 
Theorem 2 is proved. 

By (5.2) u = (1, xl(l), 0,(l), &(I)) is an isotropic vector in V. Since G = G 
there exists an involution x in G which is not in O,,(G) and so is not in the 
kernel of x1 , 0, , and Be . Let v = (1, xl(x), B,(X), 0,(x)). Thus u and v are 
linearly independent vectors. By (4.2) 

B(u, u) = B(u, v) = B(u, v) = 0. 

Hence the two-dimensional subspace of V which is spanned by zc and D 
is isotropic as required. 
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