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Objectives The purpose of this study was to assess the association of apolipoprotein(a) (apo[a]) isoforms with cardiovascu-
lar disease risk.

Background Although circulating lipoprotein(a) (Lp[a]) is likely to be a causal risk factor in coronary heart disease (CHD), the
magnitude of this association is modest. Lipoprotein(a) particles with smaller, rather than larger, apo(a) iso-
forms may be stronger risk factors.

Methods Information was collated from 40 studies published between January 1970 and June 2009 that reported on as-
sociations between apo(a) isoforms and risk of CHD or ischemic stroke (involving a total of 11,396 patients and
46,938 controls).

Results Thirty-six studies used broadly comparable phenotyping and analytic methods to assess apo(a) isoform size.
These studies yielded a combined relative risk for CHD of 2.08 (95% confidence intervals [CI]: 1.67 to 2.58) for
individuals with smaller versus larger apo(a) isoforms (corresponding approximately to 22 or fewer kringle IV
type 2 repeats vs. �22 repeats or analogously an apo[a] molecular weight of �640 kDa vs. �640 kDa). There
was substantial heterogeneity among these studies (I2 � 85%, 80% to 89%), which was mainly explained by
differences in the laboratory methods and analytic approaches used. In the 6 studies of ischemic stroke that
used comparable phenotypic methods, the combined relative risk was 2.14 (1.85 to 2.97). Overall, however,
only 3 studies made allowances for Lp(a) concentration.

Conclusions People with smaller apo(a) isoforms have an approximately 2-fold higher risk of CHD or ischemic stroke than
those with larger proteins. Further studies are needed to determine whether the impact of smaller apo(a) iso-
forms is independent from Lp(a) concentration and other risk factors. (J Am Coll Cardiol 2010;55:2160–7)
© 2010 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.10.080
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ipoprotein(a) (Lp[a]) is composed of a low-density li-
oprotein (LDL) particle and a glycoprotein molecule
nown as apolipoprotein(a) (apo[a]) (1). Apolipoprotein(a)
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s structurally homologous to plasminogen and is responsi-
le for the unique properties of Lp(a) (1,2). A collaborative
nalysis of individual data from 36 prospective studies,
nvolving more than 126,000 individuals, has demonstrated
hat circulating Lp(a) concentration is continuously associ-
ted with risk of coronary heart disease (CHD) and stroke

See page 2168

ndependent from several conventional risk factors (includ-
ng total cholesterol) (3). The likelihood that Lp(a) is
ausally relevant to vascular disease risk has been increased
y reports of highly significant associations of Lp(a)-related
enetic variants with CHD risk (4–9). However, because

he risk with Lp(a) concentration is only about one-quarter
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f that seen with LDL cholesterol (3), any clinical impli-
ations of this moderate association currently appear lim-
ted. Such considerations could change if specific Lp(a)
ubtypes were shown to confer importantly higher vascular
isks. In particular, it has been proposed that Lp(a) particles
ith smaller apo(a) isoforms may be more pathogenic
ecause they appear to have: 1) increased capacity to bind
xidized phospholipids; 2) greater propensity to localize in
lood vessel walls through increased lysine-binding ability
nd interaction with fibrin; and 3) greater thrombogenic
ffect through increased inhibition of plasmin activity
10 –13). It has also been suggested that smaller apo(a)
soforms may act synergistically with other factors such as
mall-dense LDL and oxidized LDL particles (10,13–15).
he basis for apo(a) size heterogeneity relates to a copy-
umber variation in one of its protein domains, kringle IV
ype 2 (KIV2), which exists in 5 to 50 identically repeated
opies. This copy-number variation confers marked heter-
geneity in the molecular mass of apo(a) isoforms, which
an range between 200 and 800 kDa (Table 1) (1,16,17).
polipoprotein(a) is encoded by the LPA gene, which

ontains a 5.6-kb segment existing in multiple repeats
KIV2 repeat polymorphism) that is responsible for the
po(a) isoform variation (2,18).

Many studies (19–23) have reported on the association of
po(a) isoform size variations with the risk of vascular
isease. Although they have reported apparently diver-
ent relative risks (RRs), these studies have tended to be
mall and to involve wide confidence intervals. Their
nterpretation has been complicated by differences in
elation to: 1) populations studied (e.g., people of Euro-
ean, Asian, or African ancestry) because apo(a) charac-
eristics tend to vary by ethnicity (24); 2) methods used to
easure apo(a) isoforms (e.g., genotypic vs. phenotypic
ethods, and among the latter, quantitative vs. semiquan-

itative approaches); 3) vascular disease outcomes recorded
e.g., myocardial infarction [MI], coronary stenosis, stroke);
nd 4) analytic approaches used (e.g., different cut-offs
hosen to define smaller apo[a] size). Studies have also
iffered in adjustments for covariates, particularly in relation
o circulating Lp(a) concentration, higher levels of which
end to be associated with smaller apo(a) isoforms (4,25,26).

elationship Between Variouspproaches Used to Express apo(a) Isoform SizesTable 1 Relationship Between Various
Approaches Used to Express apo(a) Isoform Sizes

Apo(a) Isoform Size Expressed as

No. of KIV2 Repeats Gel Migration Speed Molecular Weight

11–13 F �400 kDa

14–16 B 460 kDa

17–19 S1 520 kDa

20–22 S2 580 kDa

23–25 S3 640–655 kDa

�25 S4 �700 kDa

or gel migration speed, F � mobility faster than apolipoprotein-B100 (apoB100), B � mobility equal
o apoB100, and S1–S4 � different levels of mobility slower than apoB100. Relevant references are
u
rovided in the Online Appendix.
apo(a) � apolipoprotein(a); KIV2 � kringle IV type 2.
To help clarify the evidence,
e have conducted a systematic

eview and meta-analysis of 40
elevant studies of apo(a) iso-
orms and coronary and ischemic
troke outcomes that involved a
otal of 11,396 cases and 46,938
ontrols.

ethods

tudy selection. Studies pub-
ished between January 1970 and
une 2009 that reported on associ-
tions between apo(a) isoforms and coronary or stroke out-
omes were identified by systematic searches of MEDLINE,
canning of the reference lists of original reports, and
iscussions with investigators. Electronic searches used
eSH terms and free text related to vascular disease and

po(a) isoforms (e.g., “cardiovascular” [MeSH], “lipopro-
ein(a)” [MeSH], “protein isoforms” [MeSH], “apolipopro-
ein(a),” “isoforms,” “coronary heart disease,” and “stroke”).
tudies were eligible for inclusion if they: 1) were broadly
opulation based (i.e., did not select participants or controls
n the basis of preexisting comorbidities or cardiovascular
isk factors (such as end-stage renal disease, diabetes, or
igh LDL cholesterol levels); 2) had used a well-described
ssay to measure apo(a) isoforms; 3) recorded CHD (de-
ned as MI, angina, coronary stenosis, or revascularization) or

schemic stroke outcomes using accepted criteria (i.e., MI using
orld Health Organization or similar criteria, coronary ste-

osis using quantitative angiography and typically defined as at
east 1 coronary artery with �50% coronary stenosis, or
schemic stroke using brain imaging); and 4) provided
ndings that could be used to calculate an odds ratio for
ascular disease. Retrospective and cross-sectional study
esigns were eligible for inclusion because apo(a) isoforms
re determined by copy-number variation in the LPA gene
1,2) and are therefore unlikely to be altered by prevalent
ascular disease. In cases of apparent duplicate publication,
nvestigators were contacted to confirm whether such stud-
es contained unique participants (lack of reply led to use of
he report with the greatest number of participants). Forty
nique studies were included (Fig. 1).
ata extraction. The following information was extracted

rom each article using a standardized abstraction form:
tudy population (including population source and the
ampling method employed), geographic location, year of
aseline survey, age range of participants at baseline, per-
entage of male participants, mean duration of follow-up
for prospective studies), vascular disease outcome defini-
ion, assay methods and standards used, type of blood
ample used, mean apo(a) isoform size and Lp(a) concentra-
ion, RR estimates for CHD or ischemic stroke, cut-off level
sed to categorize apo(a) isoforms as smaller or larger, and
egree of statistical adjustment for any potential confounders

Abbreviations
and Acronyms

apo(a) � apolipoprotein(a)

CHD � coronary heart
disease

KIV2 � kringle IV type 2

LDL � low-density
lipoprotein

Lp(a) � lipoprotein(a)

MI � myocardial infarction

RR � relative risk
sed (� � no adjustment; �� � adj
ustment for age, sex, and
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ome standard vascular risk factors; ��� � adjustment for
he preceding plus Lp[a] concentration).
tatistical analysis. Relative risks for vascular disease were
alculated by comparing individuals with smaller-sized
po(a) isoforms with those with larger isoforms. Cut-off
evels to define smaller versus larger isoforms were taken as
eported in each contributing study. Apolipoprotein(a) iso-
orms have been reported to have a bimodal distribution in
uropean populations, with a trough in the distribution

round 22 KIV2 repeats (approximately 40% of the general
hite population has fewer than 22 repeats) (24). This value
as been used as the cut-off in most studies that used
uantitative electrophoretic approaches to measure apo(a)
soform size (although some studies have used different
ut-offs [e.g., 25 or 27 KIV2 repeats]). Studies that used
emiquantitative approaches generally involved comparable
ut-off values. In the studies that used electrophoretic
ethods, RRs were estimated assuming a dominant effect of

he risk phenotype (i.e., by comparing people who expressed
t least 1 small apo[a] isoform with individuals having 2
arge apo[a] isoforms or those who did not express apo[a]).
our studies that used genotypic (i.e., quantitative polymer-
se chain reaction [PCR] or pulsed-field gel electrophoresis)
ethods were analyzed separately because they measured

he sum of KIV2 repeats on both alleles, which involves
ssumptions about additivity of the effects of KIV2 repeats
see the Discussion section).

When RRs were not reported in publications, they were
alculated based on the numbers of cases and controls falling

Figure 1 Study Flow Diagram

†These studies reported a total of 1,838 CHD cases, approximately 15% of
the total included in the current review. ‡The number of studies exceeds the
number of articles because 1 publication presented data from 3 studies.
nto categories of smaller or larger apo(a) isoforms using the m
isher exact method. Summary RRs for CHD or ischemic
troke were calculated by pooling study-specific estimates
sing a random-effects meta-analysis (parallel analyses in-
olved fixed-effect models). All analyses were performed
sing only within-study comparisons to limit possible bi-
ses. Consistency of findings across studies was assessed by
tandard chi-square tests and the I2 statistic (27). Sources of
eterogeneity were investigated by comparing results from
tudies grouped according to pre-specified study-level char-
cteristics using meta-regression. Evidence of publication
ias was assessed using funnel plots and the Egger test (28)
nd by comparing pooled results from studies involving at
east 500 CHD cases with pooled results from smaller
tudies. All analyses were performed using Stata release 10
StataCorp, College Station, Texas). Statistical tests were
-sided and used a significance threshold of p � 0.05.

esults

total of 40 relevant studies (9,12,14,19,21,22,25,29–59)
eporting on 58,334 individuals were identified (Table 2).
wenty-seven studies were based in Europe, 5 in East Asia,
in the U.S., 3 in South Asia, and 2 in the Middle East; 1

tudy was multinational (with centers in Austria, Germany,
srael, Wales, China, and India). Overall, 57% of the
articipants were male, and the weighted mean age at
aseline was 56 � 10 years. Thirty-six studies used electro-
horesis to characterize apo(a) isoform size. Of these
tudies, 15 compared apo(a) gel migration speed against that
f apolipoprotein-B100, 17 measured the number of KIV2
epeats (9 dichotomized the isoforms at 22 KIV2 repeats,
hereas the remainder used cut-off values of 20, 25, 26, or
7 repeats), and 4 studies measured the molecular weight of
po(a). Table 1 summarizes the approximate relationships
etween these measures. A further 4 studies used genotyp-
ng methods, characterizing apo(a) isoforms as total number
f KIV2 repeats.
Thirty studies (12,14,19,21,22,25,29–51,53) that used

roadly comparable phenotyping and analytic methods as-
essed CHD (7,382 cases and 8,514 controls). Using a
andom-effects model, the combined RR for CHD was 2.08
95% confidence intervals [CI]: 1.67 to 2.58) in a compar-
son of individuals with smaller versus larger apo(a) iso-
orms; the corresponding RR in a fixed-effect model was
.88 (95% CI: 1.74 to 2.04) (Fig. 2). Only 3 of these studies,
owever, reported RRs adjusted for Lp(a) concentration. In
hese studies (463 CHD cases and 298 controls), the
ombined RR was reduced from 2.26 (95% CI: 1.13 to 4.54)
o 1.48 (95% CI: 0.97 to 2.26) after such adjustment. There
as evidence of substantial heterogeneity among the 30

tudies contributing to the CHD total (I2 � 85%, 80% to
9%). A considerable portion of this heterogeneity was
ccounted for by recorded study characteristics, notably
ifferences in definitions used for smaller versus larger
po(a) isoforms (which explained 53% of the observed
etween-study variation; p � 0.001) and type of assay

ethod used (p � 0.04) (Fig. 3). There was limited power
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o detect differences in many of the subgroups displayed in
igure 3; for example, it was not possible to explore
thnic-related differences because most of the available data
elated to people of European continental ancestry. Analyses
y study size, funnel plots, and Egger test did not reveal
vidence for the presence of publication bias (Fig. 3, Online
ig. 1). In the 4 studies (9,52) that used genotypic methods

ummary of 40 Epidemiologic Studies That Assessed the AssociatTable 2 Summary of 40 Epidemiologic Studies That Assessed t

First Author, Year
(Ref. #) Country

Male
(%)

Age
(yrs)

No. of
Cases

No. o
Contro

Studies of CHD That U

Kraft, 1996 (25) Austria 80 51 69 6

Klausen, 1997‡ (30) Denmark 100 ns 74 19

Emanuele, 2004 (35) Italy 65 65 83 9

Parlavecchia, 1994 (31) Italy 100 �55 83 9

Martin, 2002 (19) Spain 100 �50 91 9

Simo, 2001 (12) Spain 100 �50 95 9

Geethanjali, 2002 (51) India ns 53 104 10

Qin, 1995 (47) China ns ns 105 10

Zeljkovic, 2009 (14) Serbia 61 56 109 10

Calmarza, 2004 (32) Spain 100 �60 111 9

Akanji, 2000 (33) Kuwait 73 55 128 14

Katsouras, 2001 (34) Greece 72 61 131 3

Gazzaruso, 1997 (29) Italy 83 60 142 26

Sandholzer, 1991 (48) Singapore 80 58 162 21

Sandholzer, 1991 (48) Singapore 80 58 193 18

Rifai, 2004‡ (36) U.S. 100 40–84 195 19

Emanuele, 2004 (37) Italy 84 55 210 10

Gambhir, 2008 (53) India 87 �40 220 16

Zorio, 2006 (38) Spain 89 �51 222 19

Kalina, 2001 (39) Hungary ns ns 263 9

Bigot, 1997 (40) France 84 38–88 267 25

Paultre, 2000 (41) U.S. 61 56 289 28

Gazzaruso, 1999 (42) Italy 88 52 335 37

Emanuele, 2003 (45) Italy 76 62 337 10

Kark, 1993 (44) Israel 44 54 365 39

Abe, 1992 (49,50) Japan 86 50 470 46

Brazier, 1999 (21) Ireland, France 100 25–64 481 51

Holmer, 2003 (22) Germany 62 51 834 154

Sandholzer, 1992 (46) Multicenter 86 50–59 1013 157

Gazzaruso, 2001 (42) Italy 52 59 201 35

Studies of CHD That

Geethanjali, 2003 (52) India 70 52 480 25

Kamstrup, 2009‡ (9) Denmark 39 55 599 803

Kamstrup, 2009 (9) Denmark 39 59 986 22,26

Kamstrup, 2009 (9) Denmark 39 60 1231 123

Studies of

Yingdong, 1999 (54) China 50 67 42 8

Kronenberg, 1999‡ (55) Italy ns ns 64 82

Peynet, 1999 (56) France 50 17–54 90 8

Zambrelli, 2005 (57) Italy 67 70 94 18

Milionis, 2006 (58) Greece 54 77 163 16

Jurgens, 1995 (59) Austria 34 51 265 28

SDS-agarose and SDS-PAGE refer to apo(a) isoform phenotyping techniques using electrophore
etween individuals with small and large apo(a) isoforms expressed as number of KIV2 repeats, su

n kDa or isoform size quantiles. ‡Prospective studies. §These studies used PFGE to validate apo
AP � angina pectoris; CABG � coronary artery bypass graft; CAD � coronary artery disease; CHD

s � not stated; PFGE � pulsed-field gel electrophoresis; QPCR � quantitative polymerase cha
lectrophoresis; TIA � transient ischemic attack; UAP � unstable angina pectoris.
3,296 cases and 36,787 controls), the combined RR for s
HD was 1.19 (95% CI: 1.06 to 1.33) for smaller versus
reater number of KIV2 repeats.

Six studies (55–60) that used broadly comparable elec-
rophoretic methods focused on ischemic stroke (718 cases
nd 1,637 controls). Using a random-effects model, the
ombined RR for ischemic stroke was 2.14 (95% CI: 1.85 to
.97) (Online Fig. 2) in a comparison of individuals with

etween apo(a) Isoforms and the Risk of CVDssociation Between apo(a) Isoforms and the Risk of CVD

Case Definition
Blood

Sample
apo(a)

Method* Comparison† (Cut Point)

henotyping Methods

I, CAD Plasma SDS-PAGE§ KIV2 repeat (20)

I, AP Plasma SDS-PAGE Migration speed (S2)

I, AP Plasma SDS-agarose KIV2 repeat (25)

I, CAD Plasma SDS-PAGE Migration speed (S2)

I Plasma SDS-agarose KIV2 repeat (25)

I Plasma SDS-agarose§ KIV2 repeat (22)

AD Plasma SDS-agarose Migration speed (S2)

I, CAD ns SDS-PAGE Migration speed (S2)

AD Plasma SDS-agarose KIV2 repeat (22)

I Serum SDS-PAGE Migration speed (S2)

I, CABG Serum SDS-PAGE Migration speed (S2)

I, AP Plasma SDS-agarose KIV2 repeat (26)

I, CAD, AP CABG Plasma SDS-agarose Molecular weight (640 kDa)

AD Plasma SDS-PAGE Migration speed (S2)

AD Plasma SDS-PAGE Migration speed (S2)

P Plasma SDS-agarose KIV2 repeat (22)

I, UAP Plasma SDS-agarose KIV2 repeat (25)

AD Plasma SDS-agarose KIV2 repeat (22)

I Plasma SDS-agarose Migration speed (S2)

AD ns SDS-agarose KIV2 repeat (22)

ABG Serum SDS-PAGE Migration speed (S2)

AD Serum SDS-agarose§ KIV2 repeat (22)

I, CAD, AP, CABG Plasma SDS-Agarose Molecular weight (640 kDa)

I, CAD, AP, CABG Plasma SDS-Agarose Molecular weight (640 kDa)

I Plasma SDS-PAGE Migration speed (S2)

AD Serum SDS-PAGE Migration speed (S2)

I ns SDS-agarose KIV2 repeat (27)

I Serum SDS-PAGE KIV2 repeat (22)

AD Plasma SDS-agarose Migration speed (S2)

AD Plasma SDS-agarose Molecular weight (640 kDa)

enotyping Methods

AD Plasma PFGE KIV2 repeat sum (55)

I Serum QPCR KIV2 repeat sum (41)

I Serum QPCR KIV2 repeat sum (41)

I Serum QPCR KIV2 repeat sum (41)

ic Stroke

schemic stroke Serum SDS-PAGE Migration speed (S2)

VD Plasma SDS-agarose KIV2 repeat (22)

schemic stroke Serum SDS-agarose KIV2 repeat (22)

schemic stroke Plasma SDS-agarose KIV2 repeat (26)

schemic stroke Serum SDS-agarose KIV2 repeat (27)

schemic stroke or TIA Serum SDS-agarose Migration speed (S2)

GE is an apo(a) isoform genotyping technique using electrophoresis. †Comparisons were made

2 repeats in both alleles, speed of migration on gel (F, B, S1, S2, S3, S4, 0), and molecular weight
rm phenotype measurements.
ary heart disease; CVD � cardiovascular disease; MI � myocardial infarction; na � not applicable;
tion; SDS � sodium dodecyl sulfate; SDS-PAGE � sodium dodecyl sulfate polyacrylamide gel
ion Bhe A

f
ls

sed P

9 M

0 M

4 M

6 M

9 M

5 M

4 C

2 M

2 C

9 M

0 M

3 M

4 M

0 C

9 C

5 A

5 M

0 C

9 M

7 C

9 C

3 C

0 M

3 M

7 M

5 C

9 M

8 M

0 C

8 C

Used G

4 C

8 M

5 M

0 M

Ischem

5 I

6 C

4 I

8 I

6 I

8 I

sis, PF
m of KIV
(a) isofo
� coron
maller versus larger apo(a) isoforms; the corresponding RR
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n a fixed-effect model was 2.35 (95% CI: 1.86 to 2.97).
gain, there was considerable heterogeneity among the

tudies contributing to this estimate (I2 � 62%, 8% to 85%).
ata on ischemic stroke were too sparse to attempt sub-

roup analyses.

iscussion

ecent large observational and genetic studies have sug-
ested that Lp(a) concentration is likely to be a causal risk
actor in CHD, but the association is comparatively mod-
rate in magnitude (i.e., an RR of approximately 1.3 in a
omparison of people in the top one-third with those in the
ottom one-third of the population distribution) (3). Con-
equently, there is interest in whether certain subtypes of
p(a) may be more strongly associated with disease risk.
he current systematic review of 40 studies, involving more

han 58,000 participants, indicates that people with smaller
po(a) isoforms have an approximately 2-fold higher risk of

Overall (fixed-effect)

Overall (random-effects)

Paultre, 2000

Zorio, 2006

Sandholzer, 1992

Kark, 1993

Rifai, 2004

Emanuele, 2004
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Figure 2 Apolipoprotein(a) Isoform Size and Risk of CHD Amon
That Used Comparable Phenotyping Methods and Ana

Forest plot of study-specific associations and overall pooled estimates. Size of da
heterogeneity: I2 � 85% (p � 0.001). Fifty-three percent of this variation was expl
comparisons were between individuals having isoforms with F, B, S1, or S2 gel mo
sons used a cut-off value of 640 kDa. Degree of adjustment: � � unadjusted; ��

adjustment for preceding plus Lp(a) concentration. CHD � coronary heart disease
HD (and ischemic stroke) than those with larger proteins. p
his risk relates approximately to a comparison of people
ith 22 or fewer KIV2 repeats versus those with �22

epeats (or analogously, an apo[a] molecular weight of �640
Da vs. �640 kDa). These 2 groups encompass approxi-
ately 40% and 60%, respectively, of the general white

opulation (30,56,58). Furthermore, although the current
eta-analysis focused on studies of general populations,

ssociations of similar magnitude have been observed for
ascular risk with apo(a) isoforms in high-risk populations
uch as patients with hypertension (60), hypercholesterol-
mia (35), or diabetes (61). Hence, available data encourage
tudy of apo(a) isoforms in cardiovascular risk prediction
nd in randomized trials of agents that can lower Lp(a)
oncentration (e.g., niacin or certain inhibitors of cho-
esteryl ester transfer protein) (62,63).

An important limitation, however, is the general lack of
djustment in the available data of associations between
po(a) isoforms and CHD for Lp(a) concentration. In

1.88 (1.74, 2.04)

2.08 (1.67, 2.58)

11 2 4 8 16

RR (95% Cl) for smaller vs. larger apo(a) isoforms

Studies
Approaches

kers is proportional to the inverse of the variance in each study. Assessment of
by the apo(a) isoform size comparison groups (p � 0.001). †Migration speed
vs. those having S3 or S4 mobility or null allele; the molecular weight compari-
justment for standard risk factors (e.g., age, sex, conventional lipids); ��� �

confidence interval; RR � relative risk.
0.5

g 30
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olymorphism contributes between 40% and 70% of the
ariation in Lp(a) concentration, with fewer number of
IV2 repeats being associated with higher Lp(a) concentra-

ion (4,25,26). It is likely, therefore, that at least part of the
ssociation observed between apo(a) isoforms and CHD
isk in the current review is mediated by Lp(a) concentra-
ion. Because only 3 available studies have adjusted associ-
tions of apo(a) isoform with CHD for Lp(a) concentration,
owever, it remains difficult to judge to what extent asso-
iations of apo(a) isoforms and vascular disease depend on
p(a) concentration (55,64). Although it is clear that

arge-scale studies of CHD are needed, with concomitant
ssays of apo(a) isoforms and Lp(a) concentration, a poten-
ial difficulty is the labor-intensive nature of conventional
ethods to measure apo(a) isoforms. Furthermore, inter-

retation of data on apo(a) isoform phenotypes may be
omplicated by: 1) difficulty in detecting apo(a) isoforms
ith fewer than 15 KIV2 repeats (which encompass about
% of the general white population) (24); 2) potential
ifficulties in distinguishing heterozygotes with similarly
ized isoforms; and 3) potential difficulties in distinguishing

Figure 3 Apolipoprotein(a) Isoform Size and CHD Risk Grouped

Pooled associations with CHD risk in relevant subgroups. Size of data markers is
age subgroups, studies may have contributed data to more than 1 category. �p va
category of ethnicity. ‡Two studies did not provide information on age, and 2 stud
CI � confidence intervals; MI � myocardial infarction; PFGE � pulsed-field gel elec
dodecyl sulfate polyacrylamide gel electrophoresis.
etween nonexpressed alleles and homozygous phenotypes. M
ne approach to address these limitations is to use supple-
entary information on KIV2 repeat polymorphisms in the
PA gene, for example, by employing real-time PCR assays

an approach that also facilitates high-throughput measure-
ents) (65). Use of this genotypic approach alone, however,

s potentially limited because it measures the sum of KIV2
epeats in both alleles (rather than the number of repeats in
ach allele), which implies an additive effect of the number
f repeats. This assumption is inconsistent with observa-
ions that different KIV2 repeats are not equally expressed;
or example, alleles with fewer than 22 KIV2 repeats are
xpressed in more than 90% of individuals, whereas those
ith �22 repeats are expressed in approximately 50% (with

he expression rate decreasing as the number of repeats
ncreases) (23). Hence, this genotypic approach to apo(a)
soform assessment may be liable to misclassify isoform size
ategories, potentially leading to underestimation of the true
ssociations. Such assay considerations could account for the
onsiderably lower RRs for CHD seen in the current
nalysis with studies that used real-time PCR compared
ith those that used conventional electrophoretic methods.

ecorded Study-Level Characteristics

tional to the inverse of the variance in each study. For the ethnicity, sex, and
r heterogeneity from meta-regressions. †Two studies contributed to more than 1
vided information on both categories of age. CHD � coronary heart disease;
resis; RR � relative risk; SDS � sodium dodecyl sulfate; SDS-PAGE � sodium
by R

propor
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ore generally, analytic and assay differences between



a
n
t
l

p
i
a
a
i
a
f
d
i
I
s
s
t
w
a
t
c
m
o
a
p
v
f
a
p
i
o

C

P
2
w
m
c
o

R
m
b
8

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2166 Erqou et al. JACC Vol. 55, No. 19, 2010
Apolipoprotein(a) Isoforms and Vascular Risk May 11, 2010:2160–7
vailable studies accounted for much of the heterogeneity
oted in the current analysis. Hence, further work is needed
o optimize approaches to apo(a) isoform assessment in
arge studies.

Although the current literature-based meta-analysis has
rovided the most comprehensive assessment yet of apo(a)
soforms and risk of vascular disease, it has relied on
ggregated published data. As such, it was not possible to
djust uniformly for potential confounding factors nor
nvestigate vascular medication usage. Large new studies
re, therefore, needed to evaluate potentially important
eatures of this risk relationship, such as the shape of any
ose-response curve and most importantly, the extent of

ndependence of apo(a) isoforms from Lp(a) concentration.
t is not possible to discount completely the influence of
elective reporting on the current review, despite the lack of
trong evidence for publication bias. For example, it may be
hat in some studies, cut-off levels for apo(a) isoform size
ere chosen only after exploration of the data. Although

po(a) isoforms are determined by copy-number variation in
he LPA gene (and hence not likely to be affected by
ardiovascular disease status), the retrospective design of
any of the studies included in this review could be a source

f other types of biases, such as selection bias. Evaluation of
po(a) isoforms in prospective studies in the future will
rovide more robust data. As Lp(a) concentrations tend to
ary considerably across different ethnic groups (41,66),
urther studies are needed in nonwhite populations. In
ddition, there is a need for detailed phenotyping of
articipants to help assess potential joint effects of apo(a)
soforms with circulating levels of small-dense LDL and
xidized phospholipids (10,13–15).

onclusions

eople with smaller apo(a) isoforms have an approximately
-fold higher risk of CHD or ischemic stroke than those
ith larger proteins. Further studies are needed to deter-
ine whether smaller apo(a) isoforms are relevant to vas-

ular disease independent from Lp(a) concentration and
ther risk factors.
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