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We obtain the Baxter Q -operators in the Uq(ŝl2) invariant integrable models as a special limits of the 
quantum transfer matrices corresponding to different spins in the auxiliary space. We derive the Baxter 
equation from the well-known fusion relations for the transfer matrices. Our method is valid for an 
arbitrary integrable model corresponding to the quantum group Uq(ŝl2), for example for the XXZ-spin 
chain.
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1. Introduction

At present time the quantum groups and the universal R-matrix 
[1,2] are the powerful tools to study various aspects of quan-
tum integrable models such as the Yang–Baxter equation, Baxter 
Q -operator and functional relations. Using the special q-oscillator 
representations of the quantum group Uq(ŝl2) for the auxiliary 
space the Baxter Q -operator [3] was constructed for the Conformal 
Field Theory [4] and the six-vertex model [5,6]. Using the explicit 
form of the universal R-matrix [7] the L-operator for the Baxter 
Q -operator was derived in [8]. The functional relations in the uni-
versal form for the Uq(ŝl2)-invariant integrable models were ob-
tained in [9]. In the present paper we continue to study the Baxter 
Q -operator in various Uq(ŝl2)-invariant integrable models. We dis-
cuss the connection between the j → ±∞ limits of the quantum 
transfer matrix Z j and the Baxter Q -operators. First, we derive 
the correspondence between the limits of the spin- j representa-
tions of the quantum group and the q-oscillator representations. 
Second, we find the limits of the transfer matrices and show that 
it is given by the Q -operators. Finally, we obtain the Baxter equa-
tion as a limit of the functional relations in the universal form 
(fusion relations). Thus we show that the Q -operator could be de-
rived without the knowledge of the q-oscillator representations.

2. Quantum group Uq(̂sl2)

We begin with the definition of the algebra Uq(ŝl2) and the 
corresponding universal R-matrix. It is the complex associative al-
gebra with the generators corresponding to the simple roots ei , f i , 
hi , i = 0, 1, obeying the following defining relations:
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[hi,h j] = 0, [hi, e j] = aije j, [hi, f j] = −aij f j,

[ei, f j] = δi j
qhi − q−hi

q − q−1
,

where aij is the Cartan matrix A which for the case of the algebra 
ŝl2 equals

A =
(

2 −2
−2 2

)
.

This definition should be supplemented by the Serre relations sat-
isfied for all distinct i and j:

e3
i e j − [3]qe2

i e jei + [3]qeie je
2
i − e je

3
i = 0,

f 3
i f j − [3]q f 2

i f j f i + [3]q fi f j f 2
i − f j f 3

i = 0.

We do not need the grading element d in the present paper. The 
generators ei, f i, hi correspond the simple roots vectors α, β ac-
cording to the rule e0 = eβ , e1 = eα and the same for f i, hi . Define 
the root vector δ = α +β . Then the root lattice consists of the root 
vectors α + mδ, β + mδ and mδ where m ≥ 1. The correspond-
ing generators can be obtained from eα,β , fα,β using the formulas 
given in Ref. [7]. The algebra Uq(ŝl2) is a Hopf algebra with the 
comultiplication � defined by the equations

�(ei) = ei ⊗ qhi + 1 ⊗ ei, �( f i) = f i ⊗ 1 + q−hi ⊗ f i,

�(hi) = hi ⊗ 1 + 1 ⊗ hi . (1)

Now we introduce the universal R matrix which is an element in 
Uq(ŝl2) ⊗ Uq(ŝl2). This matrix satisfies the following simple rela-
tion:

�′(g)R = R�(g), g ∈ Uq(ŝl2), (2)
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where �′(g) is obtained from �(g) by the permutation of the cor-
responding operators. The Hopf algebra is called quasitriangular if 
the following relations are satisfied:

(� ⊗ 1)R = R13 R23, (1 ⊗ �)R = R13 R12, (3)

where the notations R12 = R ⊗ 1, R23 = 1 ⊗ R are used. From 
Eqs. (2), (3) it follows that the universal R-matrix satisfies the 
Yang–Baxter equation:

R12 R13 R23 = R23 R13 R12. (4)

The explicit expression for the universal R-matrix for the case of 
the algebra Uq(ŝl2) is given in [7]. For us it is sufficient to establish 
the following facts about it. The universal R-matrix can be repre-
sented in the form R = ∑

i Ai ⊗ Bi ∈ Uq(b+) ⊗ Uq(b−), where b±
are the positive and the negative Borel subalgebras of the alge-
bra ŝl2. More precisely it has the form R = K

∑
i Ai ⊗ Bi , where 

K = q(hα⊗hα)/2 and the operators Ai and Bi are some polynomials 
in the generators eα,β and fα,β respectively. Once the representa-
tions of the quantum group V 1, V 2 are specified the corresponding 
matrix R12 which is the building block in the framework of the 
Quantum Inverse Scattering Method is given by the projection of 
the universal R-matrix: R12 = (V 1 ⊗ V 2)R .

3. Representations of quantum group and their correspondence

Let us introduce the representations of the quantum group 
which are required for the construction of the transfer-matrices 
and Q -operators according to the Quantum Inverse Scattering 
Method. First consider the representation V j(λ) which is obtained 
as a combination of Jimbo evaluation homomorphism and the 
standard finite-dimensional highest weight spin j representation 
of the algebra Uq(sl2). In fact consider the mapping

eα = f , fα = e, hα = −h;
eβ = λe, fβ = λ−1 f , hβ = h; (5)

where e, f , h are the standard generators of Uq(sl2):

[h, e] = 2e, [h, f ] = −2 f , [e, f ] = qh − q−h

q − q−1
.

The highest weight spin j representation is realized in the basis 
|k〉, k = 0, 1, . . . 2 j in the following way:

f |k〉 = |k + 1〉, e|k〉 = [k]q[2 j + 1 − k]q|k − 1〉,
h|k〉 = (2 j − 2k)|k〉, (6)

where [x]q = (qx − q−x)/(q − q−1). These formulas give the repre-
sentation V j(λ). We denote the corresponding transfer-matrix by 
Z j(λ). We also need the representation V +

j (λ), where j is an arbi-
trary complex number, given by the same Eqs. (5), (6) except that 
the basis |k〉 is now infinite k = 0, 1, . . . , ∞. We denote the corre-
sponding transfer matrix by Z+

j (λ).
To construct the Q -operators we will also need the two rep-

resentations V ± of the positive Borel subalgebra Uq(b+) i.e. the 
subalgebra given by the positive generators eα,β, hα,β and their 
descendants. These representations cannot be extended to the rep-
resentations of the full quantum group. The representations V ±
are build up from the so-called q-oscillator algebras [4]. We define 
two different operator algebras. The first one consists of the oper-
ators a+, a, Ha obeying the following commutational relations:

[Ha;a+] = 2a+, [Ha;a] = −2a,

qa+a − 1
aa+ = λ

−1
.

q (q − q )
The second algebra consists of the operators b+, b, Hb obeying the 
following commutational relations:

[Hb;b+] = 2b+, [Hb;b] = −2b,

qbb+ − 1

q
b+b = λ

(q − q−1)
.

One can choose the basis |k〉, k = 0, 1, . . . , ∞, such that the action 
of the operators is:

a+|k〉 = |k + 1〉, a|k〉 = λ

(q − q−1)2

(
1 − q2k

)
|k − 1〉,

Ha|k〉 = 2k|k〉 (7)

for the first case and

b+|k〉 = |k + 1〉, b|k〉 = λ

(q − q−1)2

(
1 − q−2k

)
|k − 1〉,

Hb|k〉 = 2k|k〉 (8)

for the second case. Then the q-oscillator representations V ± of 
the subalgebra Uq(b+) are defined by the following relations:

eα = a+, eβ = a, hα = Ha, hβ = −Ha (9)

for the representation V + and

eα = b+, eβ = b, hα = Hb, hβ = −Hb (10)

for the representation V − . One can show that the operators corre-
sponding to the auxiliary spaces given by the representations V ±
are the Baxter Q -operators Q ±(λ).

Now from Eqs. (5)–(10) one can see that the representations 
V ± can be obtained as a special limits of the representations 
V j(λ), V +

j (λ) (for example, see [9]). In fact one has the equations:

lim
j→∞

λq−2 j−1[k]q[2 j + 1 − k]q

→ λ

(q − q−1)2

(
1 − q−2k

)
, (V −), (11)

lim
j→−∞

λq2 j+1[k]q[2 j + 1 − k]q

→ λ

(q − q−1)2

(
1 − q2k

)
, (V +), (12)

which show that the representations V ± of the positive Borel sub-
algebra Uq(b+) can be obtained as a limits j → ±∞ of the repre-
sentation V +

j . Note that this correspondence cannot be extended 
to the representations of the full quantum group Uq(ŝl2). On the 
level of generators of quantum group the last equations imply the 
following substitution of generators:

eα = f → a+(λ), eβ = λq−2 j−1e( j) → a(λ), (V +),

and

eα = f → b+(λ), eβ = λq2 j+1e( j) → b(λ), (V −),

which will be used in the next section.

4. Tensor product of the representations and functional relations

Let us derive the functional relations in the universal form the 
representations of the quantum group. The simplest way to derive 
the Baxter T Q -equations and the so-called fusion relations for the 
product of two transfer matrices is to consider the tensor product 
of two representations V ± . For example, consider the tensor prod-
uct V − ⊗ V + in detail. One should consider the product of the 
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two operators Q −(λ′′)Q +(λ′). For each of the operators one has 
the following formal expression:

Q ±(λ) = TrV −⊗V + R =
∑

i

∞∑
k=0

qkS〈k|Ai(V ±)|k〉Bi, (13)

where Bi are the operators which act in the quantum space and 
we denote by S the value of the generator −hα in the quantum 
space (S = Sz for the XXZ-spin chain). To evaluate the product of 
two Q -operators one can use the first of the relations (3) to get 
the following expression:

Q −(λ′′)Q +(λ′)

=
∑

i

∞∑
n,l=0

q(n+l)S〈n, l|�(Ai)(V − ⊗ V +)|n, l〉Bi, (14)

where |n, l〉 = |n〉|l〉 is the basis in the space V − ⊗ V + (the op-
erators a+, a act in the first space, and the operators b+, b – in 
the second, see Section 3). Now one should choose the convenient 
basis in the space |n, l〉. Using Eqs. (1) one finds the following ex-
pressions:

�(eα) = a+ + b+qHa , �(eβ) = a + bq−Ha .

The convenient basis is given by the equation:

|φk,m〉 = (�(eα))k|m〉|0〉.
Thus Eq. (14) can be represented in the form:

Q −(λ′′)Q +(λ′)

=
∑

i

∞∑
k,m=0

q(k+m)S〈φk,m|�(Ai)(V − ⊗ V +)|φk,m〉Bi . (15)

The action of the operators �(eα,β) on the states |φk,m〉 has the 
following form:

�(eα)|φk,m〉 = |φk+1,m〉,
�(eβ)|φk,m〉 = λ[k]q[2 j + 1 − k]q|φk−1,m〉 + ck,m|φk,m−1〉 (16)

for the spectral parameters λ′ = λq−2 j−1, λ′′ = λq2 j+1. The explicit 
form of the constants ck,m is not important. The commutativity of 
Z j(λ) and Q ±(λ) follows from the universal Yang–Baxter equation 
(4), while the commutativity of Q ±(λ) follows from the fact that 
these operators can be obtained as a special limits of the trans-
fer matrices (see Section 5). From Eqs. (15), (16) we come to the 
transfer matrix Z+

j (λ) which has the following formal expression:

Z+
j (λ) =

∑
i

∞∑
k=0

q(k− j)S〈k|Ai(V +
j )|k〉Bi . (17)

Comparing this equation with Eq. (15) we obtain the following ba-
sic functional relation:

Z+
j (λ) = 1 − qS

q jS
Q −(λq2 j+1)Q +(λq−2 j−1). (18)

It is convenient to redefine the operators Q ±(λ) according to the 
equations:

Q −(λ) = λS/4 Q ′ −(λ), Q +(λ) = λ−S/4 Q ′ +(λ).

Then the relation (18) takes the form:

Z+
j (λ) = C Q ′ −(λq2 j+1)Q ′ +(λq−2 j−1),

C = qS/2(1 − qS). (19)
The next step is to find the relation connecting the transfer-
matrices Z j(λ) and Z+

j (λ). Taking into account Eqs. (6), (17) one 
can see that the sum over k from 2 j + 1 to ∞ in Eq. (17) is equal 
to Z+

− j−1(λ). Thus we obtain:

Z+
j (λ) = Z j(λ) + Z+

− j−1(λ),

Z j(λ) = Z+
j (λ) − Z+

− j−1(λ). (20)

From these equations we obtain the following fundamental func-
tional relation:

Z j(λ) = C
(

Q ′ −(λq2 j+1)Q ′ +(λq−2 j−1)

− Q ′ −(λq−2 j−1)Q ′ +(λq2 j+1)
)

. (21)

From Eq. (21) one can derive all the other functional relations in 
the universal form. For example, taking into account the Z0(λ) = 1, 
Z1/2(λ) = Z(λ) one can easily obtain the Baxter equation in the 
universal form:

Z(λ)Q ′ ±(λ) = Q ′ ±(λq2) + Q ′ ±(λq−2). (22)

It is easy to obtain these relations considering the tensor product 
of the representations V 1/2 ⊗ V ± . In a similar way using (21), (22)
one can obtain the following fusion relations for the transfer ma-
trices:

Z(λ)Z j(λq−2 j−1) = Z j−1/2(λq−2 j−2) + Z j+1/2(λq−2 j) (23)

and

Z(λ)Z j(λq2 j+1) = Z j−1/2(λq2 j+2) + Z j+1/2(λq2 j). (24)

All the relations presented above are written down in the univer-
sal form i.e. for an arbitrary integrable model in the quantum space 
Uq(b−). The normalization of the operators corresponds to the ap-
propriate projection of the universal R-matrix. In order to write 
down these operators in the polynomial form one should calculate 
the corresponding expressions for the universal R-matrix [8].

5. Limits of quantum transfer matrices as Baxter Q -operators

In this section we derive the limits j → ±∞ of the transfer 
matrices Z j(λ) and Z+

j (λ) and show their relations to the Bax-

ter Q -operators. Consider the transfer matrix Z+
j (λ). First, one can 

take the limits j → ±∞ in Eq. (18) and take into account that 
Q ±(0) = (1 − qS)−1 (in order to avoid singularities at S = 0 one 
should introduce the twist angle φ, we will put φ = 0 everywhere 
for simplicity and consider the case φ = 0 in all the final expres-
sions). Second, the same result can be obtained from Eqs. (11), 
(12). In fact the sum over k in Eq. (17) is determined by the low 
values of k (the sum in Eq. (13) converges). Thus both methods 
leads to the same result:

lim
j→∞

(
Z+

j (λq−2 j−1)q jS
)

= Q −(λ), (25)

lim
j→−∞

(
Z+

j (λq2 j+1)q jS
)

= Q +(λ). (26)

One can argue that in the case j → ∞ the number k can take the 
values k ∼ 2 j and Eq. (11) breaks down. However, we see from 
Eq. (18) that the contributions from the regions below the value 
k = 2 j + 1 and above this value cancel each other. Now let us con-
sider the limits of the usual transfer matrix Z j(λ). It is convenient 
to represent Eq. (21) in the following form:
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Z j(λ) = 1 − qS

q jS
Q −(λq2 j+1)Q +(λq−2 j−1)

− 1 − qS

q(− j−1)S
Q −(λq−2 j−1)Q +(λq2 j+1).

From this equation it is easy to obtain the following limits:

lim
j→∞

(
Z j(λq−2 j−1)

)
= Q −(λ) − Q +(λ), S = 0,

lim
j→∞

(
Z j(λq−2 j−1)q(− j−1)S

)
= −Q +(λ), S > 0,

lim
j→∞

(
Z j(λq−2 j−1)q jS

)
= Q −(λ), S < 0, (27)

and

lim
j→−∞

(
Z j(λq2 j+1)

)
= Q +(λ) − Q −(λ), S = 0,

lim
j→−∞

(
Z j(λq2 j+1)q jS

)
= Q +(λ), S > 0,

lim
j→−∞

(
Z j(λq2 j+1)q(− j−1)S

)
= −Q −(λ), S < 0. (28)

Note that the transfer matrix Z j(λ) at j < 0 is obtained as an an-
alytical continuation of this function at j = 0, 1/2, 1, . . . . Consider 
the limits j → ∞ in more details. First, consider the case S = 0. 
Clearly the contribution Q −(λ) comes from the low values of k ∼ 1
in the sum over k in the formal equation of the type (17):

Z j(λ) =
∑

i

2 j∑
k=0

q(k− j)S〈k|Ai(V j)|k〉Bi . (29)

The term −Q +(λ) comes from the values k ∼ 2 j in the sum over 
k in this equation. This fact can be confirmed by the following 
arguments. Consider Eq. (25). The sum over k is infinite for Z+

j . 
The contribution of the region k ≥ 2 j + 1 in Eq. (17) equals Q +(λ). 
In fact, substituting k = 2 j + 1 + k′ , k′ ≥ 0 in Eq. (6) and taking the 
limit j → ∞ we obtain exactly the operator Q +(λ). Taking into 
account Eqs. (17), (25), (29) one can see that the contribution of 
the region k = 2 j +1 −k′ , k′ > 0, is equal to −Q +(λ) in agreement 
with Eq. (27). One can come to the same conclusion by noticing 
that the contribution of the region above k = 2 j + 1 is equal to 
the limit of Z+

− j−1(λq−2 j−1) which can be easily evaluated. Thus 
the appearance of the term −Q +(λ) in Eq. (27) is explained. One 
can also calculate this contribution explicitly. In fact, taking k =
2 j + 1 − k′ , k′ ≥ 0, we see that the representation of the quantum 
group corresponding to this contribution is:

eα |k′〉 = |k′ − 1〉,
eβ |k′〉 = λ

(q − q−1)2

(
1 − q−2k′) |k′ + 1〉, (30)

where k′ ≥ 0. From Eq. (30) one can see that the contribution of 
the i-th term in the decomposition R = K

∑
i Ai ⊗ Bi has the form

Ni∑
N=0

CN

∞∑
k′=1

q−(S+2N)k′
,

where CN are some constants and Ni are the number of the gen-
erators eβ in Ai , while the contribution of the same term for the 
operator Q +(λ) equals

Ni∑
CN

∞∑
q(S+2N)k.
N=0 k=0
Comparing these two contributions one can easily see that the de-
sired contribution is in fact equal to −Q +(λ). Next one can see 
that the limits (27) for S > 0 and S < 0 agree with the general for-
mula (29). The case S < 0 is obvious while the limit in the case 
S > 0 follows from the arguments presented above. As for the lim-
its (28) they are obviously related to the limits (27) via the relation 
Z j(λ) = −Z− j−1(λ). Finally one can also see that the limits (27), 
(28) are in agreement with the relation (20). While Eqs. (25), (26)
where written down in [10], Eqs. (27), (28) – are the main result 
of the present paper. We have found the limits of the transfer ma-
trices Z j(λ), Z+

j (λ) both by the explicit calculations and from the 
functional relations (19), (21).

Now we show how to obtain the Baxter equation from the fu-
sion relations without the knowledge of the explicit form of the 
Q -operators and their relation to the q-oscillator algebras. The 
point is that the fusion relations for the transfer matrices were 
obtained without the use of the quantum groups so that the Bax-
ter Q -operator could be obtained without the knowledge of the 
q-oscillator representations. For example, consider the fusion re-
lation (23). This equation can be represented in the following 
form:

Z(λ)Z j(λq−2 j−1)

= Z j−1/2(λq−2( j−1/2)−1q−2) + Z j+1/2(λq−2( j+1/2)−1q2).

Considering the case S < 0, multiplying both sides of this equa-
tion by the factor q jS and taking the limit j → ∞ we obtain the 
equation:

Z(λ)Q −(λ) = Q −(λq−2)qS/2 + Q −(λq2)q−S/2.

It is easy to prove that in all the other cases we get the same 
equation. In the same way from the fusion relation (24) we ob-
tain

Z(λ)Z j(λq2 j+1)

= Z j−1/2(λq2( j−1/2)+1q2) + Z j+1/2(λq2( j+1/2)+1q−2),

which in the limit j → −∞ leads to the equation:

Z(λ)Q +(λ) = Q +(λq−2)q−S/2 + Q +(λq2)qS/2.

These equations are equivalent to the usual equations for the stan-
dard Baxter Q -operators Q ′ ±(λ):

Z(λ)Q ′ ±(λ) = Q ′ ±(λq2) + Q ′ ±(λq−2).

Thus we obtained the Baxter Q -operators without the knowledge 
about their connection with the q-oscillator algebras. Surely this 
is connected with the relations of the representations of quantum 
group given in Section 3.

6. Conclusion

In conclusion, we obtained the Baxter Q -operators in the quan-
tum group Uq(ŝl2) invariant integrable models as a limits of the 
quantum transfer matrices corresponding to different spins in the 
auxiliary space. We showed that the Baxter equation and the form 
of the Q -operator follow from the usual fusion functional relations 
for the quantum transfer matrices. All the relations are represented 
in the universal form and valid for an arbitrary quantum integrable 
model in the quantum space, for example, for the XXZ-spin chain. 
In order to find the functional relations for the concrete model, 
one should calculate the universal R-matrix in a given representa-
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tion [9], or to find the R- and L-operators as a polynomials in the 
spectral parameter.
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