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Abstract

Given any symmetric monoidal category C, a small symmetric monoidal category Σ and a strong monoidal
functor j:Σ → C, it is shown how to construct C[x: jΣ], a polynomial such category, the result of freely
adjoining to C a system x of monoidal indeterminates for every object j(w) with w ∈ Σ satisfying a
naturality constraint with the arrows of Σ. As a special case, we show how to construct the free co-affine
category (symmetric monoidal category with initial unit) on a given small symmetric monoidal category.
It is then shown that all the known categories of “possible worlds” used to treat languages that allow for
dynamic creation of “new” variables, locations, or names are in fact instances of this construction and hence
have appropriate universality properties.
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1 Introduction

The concept of a polynomial algebra R[x], constructed from an algebra R by freely
adjoining an indeterminate element x, is familiar from algebra. Similarly, Lambek
and Scott [12, Part I, Section 5] show how to construct a cartesian (or cartesian
closed) polynomial category C[x: c] from a base cartesian (closed) category C by
freely adjoining an indeterminate arrow x: 1 → c.

The polynomial algebra R[x] is the “most general” such extension of R. Simi-
larly, the polynomial category C[x: c] is the most general cartesian (closed) exten-
sion of C containing indeterminate x. Such properties are proved as universality
results. For example, consider the embedding Rx:C → C[x] of C into C[x: c], any

1 chermida@cs.queensu.ca
2 rdt@cs.queensu.ca
3 This research was supported by a Discovery grant from the Natural Sciences and Engineering Research
Council of Canada.

Electronic Notes in Theoretical Computer Science 249 (2009) 39–60

1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.07.083

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82624905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


cartesian (closed) functor F :C → D, and any d: 1 → F (c) in D; then there exists
a unique cartesian (closed) functor F |dx from C[x: c] to D such that (F |dx)(x) = d

and F |dx · Rx = F :

C D

C[x: c]

F

Rx

...........

F |dx

In this work, we develop comparable technology for symmetric monoidal cate-
gories [14]. Given a symmetric monoidal category C, a small symmetric monoidal
category Σ, and a strong monoidal functor j:Σ → C, we show how to construct
C[x: jΣ], the symmetric monoidal polynomial category that results from freely ad-
joining, for every object j(w) for w ∈ Σ, indeterminates xj(w): I → w satisfying a
naturality constraint with respect to the arrows of Σ. When Σ is the sub-symmetric
monoidal category freely generated by some set of C objects 4 the indeterminates
are completely “free,” as in the examples described above.

We believe this construction has many applications. As our leading exam-
ples, we consider the categories of “possible worlds” that have been used in the
semantics of imperative programming languages. John Reynolds and Frank Oles
[31,23,24,25,19] show how block-structured storage management in Algol-like lan-
guages [22] may be explicated using a semantics based on functor categories W ⇒ S,
where W is a suitable category of “worlds” characterizing local aspects of storage
structure, and S is a conventional semantic category of sets or domains. Every
programming-language type θ is interpreted as a functor [[θ]]:W → S and every
programming-language term-in-context π � X: θ is interpreted as a natural trans-
formation [[π � X: θ]]: [[π]] .→ [[θ]].

Oles gives two presentations of his category of worlds and shows that they are
equivalent. Reynolds presents what seems to be a different category of worlds; how-
ever, it has recently been shown [7] that, under reasonable closedness assumptions,
it is in fact equivalent to Oles’s category.

The functor-category framework has also been exploited to analyze noninterfer-
ence in Reynolds’s specification logic [30,32,36,16,20], block expressions in Algol-
like languages [35], and passivity in a variant of Reynolds’s Syntactic Control of
Interference [29,17]. These applications used a related but significantly different
category of worlds, due to Tennent.

Several authors [15,28,33,34,3] have used finite sets (of locally available “loca-
tions” or “names”) as worlds, with injections as the morphisms.

What is noteworthy about all of this work is that the categories of worlds in-
volved have been developed in ad hoc fashion and their properties have not been
well understood. We show here that all of these categories of worlds are instances
of our monoidal polynomial construction and have universality properties.

The construction of C[x: jΣ] and its key properties, such as universality, and

4 i.e., the sub-symmetric monoidal category consisting of all tensorings of the objects, with arrows being
the relevant structural isomorphisms of C.
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an important special case (Σ generated by a single object) are presented in §2. Our
applications are discussed in §4. Some additional properties of C[x: jΣ] not directly
relevant to our applications are treated in §3; this may be skipped by readers more
interested in the applications.

2 Monoidal Polynomial Categories

2.1 The Categories C and Σ

Consider a symmetric monoidal category C with unit I and structural isomorphisms

λx: I ⊗ x ∼= x

ρx: x ⊗ I ∼= x

αx,y,z: (x ⊗ y) ⊗ z ∼= x ⊗ (y ⊗ z)

σx,y:x ⊗ y ∼= y ⊗ x

subject to the usual coherence axioms [14]. See [10] for explanations of addi-
tional monoidal-categorical concepts, such as monoidal transformation and strong
monoidal functor, and [8] for detailed considerations of coherence issues.

We want to add indeterminates (generic global elements) to some objects of
C subject to a naturality constraint. We therefore parameterize our construction
with an auxiliary small symmetric monoidal category Σ and a strong monoidal
functor j:Σ → C, with structural isomorphisms δv,w: j(v) ⊗ j(w) → j(v ⊗ w) and
γ: I → j(I).

Two boundary cases will be of particular interest:

(i) Σ = F (
) the free symmetric monoidal category generated by one object and
j the canonical mapping picking one object in C; the only commutativity
constraints are those imposed by structural isos.

(ii) Σ = C, j = id, when C is itself small; commutativity with all C morphisms
will be required.

In the following, we describe the construction of a category with the same objects
as C and morphisms (f, w):x → y for every w ∈ |Σ| and f :x ⊗ j(w) → y in C.
We do this in two steps: firstly, we set up a bicategory [1] C(x: jΣ), and, secondly,
we obtain our desired category C[x: jΣ] by taking connected components of the
hom-categories of this bicategory.

2.2 The Bicategory C(x: jΣ)

– the objects are those of C;

– for any w an object in Σ and f :x⊗ j(w) → y a morphism in C, (f, w):x → y

is a morphism in C(x: jΣ);

– a 2-cell h:(f, w) ⇒ (f ′, w′) is a morphism h: w → w′ in Σ such that
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y

x ⊗ j(w) x ⊗ j(w′)
x ⊗ j(h)

f f ′

– the identity for x is
(
ρx · (x ⊗ γ−1), I

)
:x → x.

– given morphisms (f, w):x → y and (g, w′): y → z their composite is the mor-
phism (h, w ⊗ w′):x ⊗ j(w ⊗ w′) −→ z defined as follows:

x ⊗ j(w ⊗ w′)

x ⊗ j(w) ⊗ j(w′)

`
x ⊗ j(w)

´ ⊗ j(w′)

y ⊗ j(w′)

z

x ⊗ δ−1

α−1

f ⊗ j(w′)

g

– the structural isomorphisms are inherited from the monoidal structure of C:
given (f, w):x → y, (g, v): y → z and (h, u): y → z, define αf,g,h to be
αw,v,u: h(gf) −→ (hg)f , and similarly for λ and ρ.

2.3 The Category C[x: jΣ]

Recall that the connected components functor π0:Cat → Set, left adjoint to the
discrete category functor from Set to Cat, preserves products. Therefore, by ap-
plying it to the hom-categories of C(x: jΣ) we obtain a category, 5 our intended
C[x: jΣ]:

C[x: jΣ](x, y) = π0

(
C(x: jΣ)(x, y)

) ∼=
∐

w∈|Σ|

[
C

(
x ⊗ j(w), y

)]
�(1)

so that (f :x ⊗ j(w) → y, w) � (g:x ⊗ j(v) → y, v) iff there is a zig-zag path of
2-cells between them in C(x: jΣ)(x, y):

· · ·

y

x ⊗ j(w1) x ⊗ j(wn)x ⊗ j(w) x ⊗ j(v)

f f1 gfn

x ⊗ j(h1) x ⊗ j(hn)

. . .

Proposition 2.1 C[x: jΣ] has a symmetric monoidal structure.

5 Because we collapse the structural-isomorphism 2-cells, composition becomes strictly associative and
unitary.
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Proof. The tensor product of objects x and y is x⊗y, as in C, and the same is true
for the unit I. The tensor product of morphisms [f, w]:x → y and [f ′, w′]:x′ → y′

is the morphism [g, w ⊗ w′]:x ⊗ x′ → y ⊗ y′ where g is defined as follows:

x ⊗ x′ ⊗ j(w ⊗ w′)

x ⊗ x′ ⊗ j(w) ⊗ j(w′)

x ⊗ j(w) ⊗ x′ ⊗ j(w′)

y ⊗ y′

x ⊗ x′ ⊗ δ

x ⊗ σx′,j(w) ⊗ j(w′)

f ⊗ f ′

(omitting associativity isos). Verification that this action is functorial involves only
functoriality of ⊗, naturality of σ, and the coherence conditions on σ. The structural
isomorphisms are given by those in C suitably composed with λs to discard the unit
parameter, e.g., associativity isomorphisms are of the form[

αx,y,z · λ(x⊗y)⊗z·γ−1 : (x ⊗ y) ⊗ z −→ x ⊗ (y ⊗ z), I
]

�

Note that a symmetry (or, more generally, a braiding) is needed to tensor morphisms
as above.

2.4 Raw morphisms

There is a natural mapping of C into C[x: jΣ] that takes f :x → y into

[f · ρx · (x ⊗ γ−1), I]:x → y

As a consequence of the coherence axioms, ρI = λI : I × I ∼= I [8, Prop. 1.1], and
this mapping yields a functor RΣ:C → C[x: jΣ].

A morphism [f, w]:x → y with w ∼= I is termed raw. Raw morphisms yield a
broad sub-category (i.e., with the same objects as the ambient category) of C[x: jΣ],
the essential image of RΣ.

Proposition 2.2 RΣ:C → C[x: jΣ] is (strongly) symmetric monoidal; i.e., it
preserves the structure up to coherent isomorphism.

Proof. The coherent structural isomorphisms are the “raw” images of those in C
under RΣ and functoriality ensures that the coherence axioms hold as well; this
makes RΣ strongly symmetric monoidal. �

To clarify the presentation, we will write the raw images of α, ρ, λ and σ

underlined, so that, for example, α will denote an associativity isomorphism in
C[x: jΣ].
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2.5 Monoidal Indeterminates

The most significant feature of C[x: jΣ] is that it has, for every w ∈ |Σ|, a “global
element” xw = [λj(w), w]: I → j(w). These morphisms will be termed (constrained)
monoidal elements.

Definition 2.3 Given a strong monoidal functor F :C → D and a small symmet-
ric monoidal category Σ with a strong monoidal functor j:Σ → C, a system of
constrained monoidal elements for F (with respect to Σ) is a monoidal transforma-
tion d: ID

Σ =⇒ F · j, where ID
Σ :Σ → D is the strong monoidal functor constantly

I. When Σ is free on a set of objects, we talk simply of monoidal elements; these
are free or unconstrained, as in our original scenario of polynomial algebras and
categories in §1.

The xw defined above form a system of constrained monoidal elements for RΣ

with respect to Σ, x: IC[x:jΣ]
Σ =⇒ RΣ · j. Because Σ includes the relevant structural

isomorphisms, naturality of x entails the following three commutativities:

j
`
(u ⊗ v) ⊗ w

´
j
`
u ⊗ (v ⊗ w)

´

I

x(u⊗v)⊗w xu⊗(v⊗w)

RΣjαu,v,w

j(w)

I

j(I ⊗ w) j(w ⊗ I)

xI⊗w xw⊗I
xw

RΣjλw RΣjρw
j(u ⊗ v) j(v ⊗ u)

I

xu⊗v xu⊗v

RΣjσu,v

while the monoidal condition entails xI = RΣγ: I → j(I) and

j(u) ⊗ j(v) j(u ⊗ v)

I ⊗ I I

xu ⊗ xv xu⊗v

λI

δu,v

Proposition 2.4 x = [λj , ( )]: IC[x:jΣ]
Σ =⇒ RΣ · j is natural in Σ and monoidal.

Proof. For naturality, consider h: w → w′ in Σ and the following diagram:

I ⊗ j(w′)

`
I ⊗ j(w′)

´ ⊗ II ⊗ `
j(w′) ⊗ I

´
I ⊗ j(w′ ⊗ I) j(w′) ⊗ I j(w′)α−1 λj(w′)⊗I ρj(w′)

`
I ⊗ j(w)

´ ⊗ II ⊗ `
j(w) ⊗ I

´
I ⊗ j(w ⊗ I) j(w) ⊗ I j(w)

α−1 λj(w)⊗I ρj(w)str

str

I ⊗ `
j(h) ⊗ I

´
I ⊗ j(h ⊗ I) j(h)

ρI⊗j(w′)I ⊗ ρj(w′)
I ⊗ j(ρw′ ) λj(w′)

C. Hermida, R.D. Tennent / Electronic Notes in Theoretical Computer Science 249 (2009) 39–6044



(I ⊗ I) ⊗ `
j(v) ⊗ j(w)

´

I ⊗ `
I ⊗ `

j(v) ⊗ j(w)
´´

I ⊗ `
(I ⊗ j(v)) ⊗ j(w)

´

I ⊗ `
(j(v) ⊗ I) ⊗ j(w)

´

I ⊗ `
j(v) ⊗ j(w)

´

I ⊗ `
j(v) ⊗ (I ⊗ j(w))

´

j(v) ⊗ j(w)

`
I ⊗ j(v)

´ ⊗ j(w)

`
I ⊗ j(v)

´ ⊗ `
I ⊗ j(w)

´

α−1

I ⊗ α−1

ρI ⊗ `
j(v) ⊗ j(w)

´
λj(v)⊗j(w)

I ⊗ σI,j(v) ⊗ j(w)

I ⊗ α−1

α−1

`
I ⊗ j(v)

´ ⊗ λj(w)

λj(v) ⊗ j(w)α−1I ⊗ λj(v)⊗j(w)

I ⊗ `
λj(v) ⊗ j(w)

´

I ⊗ `
ρj(v) ⊗ j(w)

´

I ⊗ `
j(v) ⊗ λj(w)

´

Fig. 1. Monoidality Diagram

where str denotes the coherent structural isomorphism I ⊗ j( ) ⊗ γ−1 · I ⊗ δ−1

associated to j. The leftmost bottom triangle commutes by [8, Prop. 1.1] and the
rest by naturality of the λ, ρ and α. We conclude that ρw′ · (h ⊗ I):w ⊗ I → w′

is a 2-cell in C(x: jΣ) from RΣ(h) · λw to λw′ , and therefore RΣ(h) · xw = xw′ in
C[x: jΣ].

For monoidality, xI = [λjI , I] = γ = γ · ρI · I ⊗ γ−1, because λI = ρI by
[8, Prop. 1.1], and in the diagram in Figure 1, the leftmost-top triangle and the
rightmost-bottom one commute by [8, Prop. 1.1]; the top triangle involving σ com-
mutes by [8, Prop. 2.1]; and the remaining ones commute by the coherence axiom re-
lating α, λ and ρ, and naturality of α. Using once again the coherence axiom relating
α, λ and ρ and naturality of λ it may be concluded that λv,w: I ⊗ (v ⊗ w) → v ⊗ w

realizes a 2-cell in C(x: jΣ), which identifies δv,w · (xv ⊗ xw) · RΣ(λ−1
I ) and xv⊗w

in C[x: jΣ]. �

We will show below (Theorem 2.7) that C[x: jΣ] is freely generated by this system
of constrained monoidal elements. In other words, the x( ) form a generic such
system; we call them monoidal indeterminates.

Definition 2.5 For any object y ∈ C, ew
y : [idy⊗j(w), w]: y → y ⊗ j(w) is termed the

expansion morphism at y (with respect to w).

The terminology will be justified in §4.1.

Lemma 2.6 (Expansion–Raw Morphism Factorization)

(1) Interdefinability of expansions and indeterminates:
ew
y = (y ⊗ xw) · ρ−1

y
: y → y ⊗ j(w) and xw = λj(w) · ew

I .
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(2) The expansion morphisms ew
y are natural in y, and natural in w with respect

to Σ-morphisms.

(3) Expansions compose: ey
v⊗w = α−1

y,j(v),j(w) · e
y⊗j(v)
w · ey

v.

(4) Every C[x: jΣ] morphism [f, w]: y → z factors uniquely (up to isomorphism)
as an expansion ew

y : y → y ⊗ j(w) followed by a raw morphism

[f · ρy⊗j(w) · (y ⊗ j(w) ⊗ γ−1), I]: y ⊗ j(w) → z

This factorization is unique in the following sense: if [f, w] = RΣ(g) · ey
w′ for

some g: y ⊗ w′ → z, then [f, w] = [g, w′].

Proof.

(1) By [8, Prop.2.1], ρI · σI,I = λI ; hence, because λI = ρI , we have that σI,I =
idI⊗I . Since j is strongly symmetric monoidal, σjI, jI = idjI⊗jI . Therefore, the
composite (y ⊗ xw) · ρ−1

y
reduces to the morphism

(ρy ⊗λw) ·α−1
y,I,I⊗j(w) ·

„
y⊗

“
γ−1 ⊗ `

γ−1 ⊗ j(w)
´”«

· `
y⊗ j(I)⊗ δ−1

´ · `
y⊗ δ−1, I ⊗ (I ⊗ w)

´

in C(x: jΣ). Consider the following diagram:

(y ⊗ I) ⊗ `
I ⊗ j(w)

´

y ⊗ `
I ⊗ j(w)

´
y ⊗ `

I ⊗ `
I ⊗ j(w)

´´
y ⊗ j(w)

α−1
y,I,(I⊗j(w))

ρy ⊗ λj(w)ρy ⊗ `
I ⊗ j(w)

´
y ⊗ λI⊗j(w) y ⊗ λj(w)

The left triangle commutes by the coherence axioms for α, λ and ρ, and the
right triangle by functoriality of ⊗. We conclude that λw ·λI⊗w: I⊗(I⊗w) → w

is a 2-cell in C(x: jΣ), which yields the identity ew
y = (y⊗xw) ·ρ−1

y
: y → y⊗w.

The diagram

`
I ⊗ j(w)

´ ⊗ I I ⊗ j(w) j(w)

I ⊗ `
j(w) ⊗ I

´
I ⊗ j(w ⊗ I) I ⊗ j(w)

I ⊗ str

I ⊗ ρj(w)
αI,j(w),I

ρI⊗j(w) λj(w)

I ⊗ j(ρw) λj(w)

I ⊗ ρj(w)

in which the bottom left triangle commutes by [8, Prop.1.1], and the top left
one for coherence for j, shows that ρw:w ⊗ I → w realizes a 2-cell in C(x: jΣ),
which identifies λwew

I with xw in C[x: jΣ].

(2) Follows from (1), because xw is natural with respect to morphisms in Σ.

(3) The morphism v⊗ ρw: v⊗ (w⊗ I) → v⊗w realizes a 2-cell in C(x: jΣ) which
identifies (α−1

y,v,w · ey⊗v
w ) · ey

v with ey
v⊗w in C[x: jΣ].

(4) The morphism ρw: w ⊗ I → w realizes a 2-cell in C(x: jΣ) from„
f · ρy⊗j(w) ·

“`
y ⊗ j(w)

´ ⊗ γ−1
”
· α−1

y,j(w),I · (y ⊗ δ−1), w ⊗ I

«

to (f, w) which yields the required identification. Given another expansion-
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raw factorization, e.g., [f, w] = RΣ(g) · ey
w′ , we have to argue by induction

by the length of the zig-zag path of 2-cells in C(x: jΣ)(y, z) realizing the
identification. Clearly, it suffices to consider the case of a basic path of length
one (the inductive step): assume a morphism h:w′ ⊗ I → w such that f(y ⊗
jh) = g · ρy⊗jw′ · str . Then, setting h̄ = h · ρ−1

w′ , we have f · (y ⊗ jh̄) = g, hence
[f, w] = [g, w′]. �

2.6 Universality of C[x: jΣ]

Theorem 2.7 (Universality) Given a symmetric monoidal category D, a strong
symmetric monoidal functor F :C → D, and a system d: ID

Σ =⇒ F · j of monoidal
elements for F with respect to Σ, there exists an essentially unique strong symmetric
monoidal functor F |dx:C[x: jΣ] → D and a monoidal iso 2-cell θ: (F |dx ·RΣ) =⇒ F

such that F |dx · x ∼= d:

Σ C
j

D

C[x: jΣ]

F

RΣ

................

F |dxθ ⇓

The isomorphism F |dx · x ∼= d here is a convenient abbreviation for the following
commutativity of monoidal transformations on functors from Σ to D:

ID
ΣF |dx · IC[x:jΣ]

Σ

F · JC
ΣF |dx · RΣ · JC

Σ

dF |dx · x

γ

θj

where γ is the structural isomorphism associated with F |dx.

Proof. It is clear that the action of F |dx on objects should be (F |dx)(y) = F (y).
For a morphism [f, w]: y → z factored as [f · ρy⊗jw · ((y ⊗ jw) ⊗ γ−1), I] · ew

y , with
ew
y = (y ⊗ xw)ρ−1

y by Lemma 2.6.(1), we get (F |dx)[f, w] =

Fy Fy ⊗ I Fy ⊗ F
`
j(w)

´ ∼= F
`
y ⊗ j(w)

´
Fz

ρ−1
Fy Fy ⊗ dw Ff

In order to show the value of (F |dx)[f, w] is independent of the choice of repre-
sentative, consider (f, w) � (g, v) with g: y ⊗ v → z via h:w → v in Σ and the
diagram
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Fy ⊗ F
`
j(v)

´

Fy ⊗ F
`
j(w)

´

Fy ⊗ IFy

F (y ⊗ j(v))

F
`
y ⊗ j(w)

´

Fz
ρ−1

Fy

Fy ⊗ dv

Fy ⊗ dw

δy,v

δy,w

Fg

Ff

Fy ⊗ F
`
j(h)

´
F

`
y ⊗ j(h)

´

where the leftmost triangle commutes by naturality of d, while the rightmost one
commutes because F is a functor.

Functoriality of (F |dx) follows from the coherence axioms for the structural iso-
morphisms associated with F and the monoidality of the transformation d. F |dx is
strong monoidal, with the same structural isomorphisms as F . We can take θ = id,
but the general statement requires a general θ as we want F |dx characterized only
up to strong monoidal isomorphism.

The coherence conditions on F imply that
(
F |dx

)
(xw) =

(
F |dx

)
[λj(w), w] = dw ·γw

(with θ = id), and
(
F |dx

)
[f · ρy · (y ⊗ γ−1), I] = F (f) for any morphism f : y → z in

C. �

Remark 2.8 There is a 2-dimensional aspect to the universality of C[x: jΣ]. Given
strong symmetric monoidal functors F,G:C → D with systems of monoidal ele-
ments d: ID

Σ =⇒ F · j and e: ID
Σ =⇒ G · j, there is one-to-one correspondence be-

tween monoidal transformations β: (F |dx) =⇒ (G|ex) and monoidal transformations
β: F =⇒ G such that βj · d = e. This aspect is illustrated in Example 4.7.

The following special case will prove useful in §4.6 in characterizing the “states”
functor in the semantics of imperative languages:

Corollary 2.9 If the unit 0 of the symmetric monoidal category D is an initial
object, there is an essentially unique strong monoidal functor F :C[x: jΣ] → D

extending a strong monoidal functor F :C → D:

Σ C
JC
Σ

D

C[x: jΣ]

F

RΣ

................

F⇓

Proof. The unit 0 is initial, so there is a unique way to choose a global element
!w: 0 → F (w) for any w ∈ Σ, and F = F |!wx , natural in w with respect to C. �

2.7 The Co-Affine Envelope of C

When C is small, we can consider the important special case that Σ = C and j = id.
The examples in §4 will be instances of C[x:C] for suitable small categories C; to
simplify the notation, we will use �C� as an abbreviation for C[x:C].
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Proposition 2.10 For any small symmetric monoidal C, the unit is initial in
�C�.

Proof. For any object w of �C�, we have a morphism xw = [λw, w]: I → w. Given
another morphism [f : I ⊗ v → w, v] in �C�, consider the following diagram:

I ⊗ w

I ⊗ (I ⊗ v)

I ⊗ v

w

I ⊗ v

I ⊗ λ−1
v

I ⊗ f

λw

λI⊗v

id

f

The bottom part of the diagram commutes by naturality and the triangle commutes
by the following:

I ⊗ v

(I ⊗ I) ⊗ vI ⊗ (I ⊗ v) I ⊗ (I ⊗ v)

I ⊗ λv λI ⊗ v

id

α−1 α−1

ρI ⊗ v = λI ⊗ v

where the left triangle commutes by the coherence axiom for α, ρ and λ, and the
remaining two equalities are given in [8, Prop. 2.1]. We conclude that f · λ−1

v : v → w

is a 2-cell in C(x:C), which identifies xw and [f, v] in �C�. �

Alternatively, we can prove it as follows:

Proof. Recall that for a small category D, an initial object amounts to a limit
of the identity functor id:D → D, that is: a cone {ιd : I → d}d∈D such that
ιI = idI . Using Lemma 2.6.(1) and monoidality of x, we conclude that our system
of indeterminates is natural with respect to expansions: ew

v ·xv = xv⊗w: I → v⊗w.
Because they are natural with respect to all raw morphisms (by construction of
�C�), the {xv: I → v}v∈|�C�| form a cone, and by monoidality of x, xI = idI . �

Combining Corollary 2.9 and Proposition 2.10, we conclude that the construction
C 	→ �C� provides the universal way of forcing the unit I to be initial:

Corollary 2.11 For C a small symmetric monoidal category, functor R:C → �C�
is universal among strong symmetric monoidal functors into symmetric monoidal
categories whose unit is an initial object.

Symmetric monoidal categories with an initial unit are called co-affine in [27].
Therefore the above corollary provides an explicit construction of the free co-affine
category on a symmetric monoidal category, which we call the co-affine envelope

of C.
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2.8 Indeterminate on a Single Object

A special case of interest is the construction of the symmetric monoidal category
generated by a category C and an indeterminate xw: I → w for a single object w.
By tensoring such an indeterminate with itself and using the isomorphism λI =
ρI : I ⊗ I ∼= I, one obtains indeterminates for all tensor powers wi of w, and more
generally, all i-ary bracketings of w. We are led to consider Σ�, the free symmetric
monoidal category on one generator, and the strong symmetric monoidal functor
jw:Σ� → C, which takes 
 to w.

Remark 2.12 We recall that Σ� can be explicitly described as the category Fbij

of finite sets and bijections, see §4.7.

Given a symmetric monoidal category D and a strong symmetric monoidal func-
tor F :C → D, a monoidal transformation d: ID

Σ =⇒ F · jw amounts precisely to
an element d�: I → Fw. Therefore, C[x: jwΣ�] is the free symmetric monoidal
category with an indeterminate x: I → w.

2.9 Monoidal Indeterminates in a Cartesian Setting

When the monoidal structure on C is given by finite products so that v⊗w = v×w

and I = 1, each object w carries a comonoid structure given by !w:w → 1 and
δw:w → w × w. Furthermore, each morphism in C is a comonoid morphism, by
naturality of ! and δ. In particular, a global element x: 1 → w satisfies

1 1 × 1

1 w w × w

id x

δ1

δw

x × x

!w

Therefore, if we want a monoidal indeterminate xw: 1 → w to be a cartesian one, we
must enforce naturality with respect to Σ×

� , the free symmetric monoidal category
on one generator with a comonoid structure (
, δ�, !�). Equivalently, Σ×

w is the free
cartesian category on one generator , since all tensor powers of 
 come equipped
with natural comonoid structures, using repeatedly δ� and !�. Once again, we
consider the strong symmetric monoidal functor jw:Σ×

� → C which takes (
, δ�, !�)
to (w, δw, !w). It is easy to see that jw is actually cartesian.

Remark 2.13 We recall that Σ×
� can be explicitly described as Fop, the dual of

the category of finite sets.

As we mentioned in our introduction, Lambek and Scott [12, Part I, Section 5]
show that C[x: 1 → w], the free cartesian category obtained from C by adjoining
an indeterminate x: 1 → w, can be explicitly described by the Kleisli category
of the comonad ( ) × w:C → C, which we write C×w, with associated functor
Jw:C → C×w. Given a morphism f : y×w → z in C×w, we write J(f) = [f, 
] and
interpret it as a morphism in C[x: jwΣ×

w].
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Proposition 2.14 The assignment f 	→ J(f) is an identity-on-objects isomor-
phism of categories J :C×w → C[x: jwΣ×

� ] and the following diagram commutes:

C C×w

C[x: jwΣ×
� ]

jw

R
Σ×

�
J

Proof. The isomorphism

C(y × w, z) ∼=
( ∐

i≥0

C(y × wi, z)
)

�

induced by J on homs is verified by setting up morphisms φi
�: 
 → 
i which yield

a 2-cell inducing the required identification in C[x: jwΣ×
� ]; the φi

� are defined by
induction on i:

φ0
� =!� φi+1

� = (δ� × 
i−1) · φi
�

Functoriality of J requires preservation of identities and composition, which is also
achieved via !� and δ� respectively. The identity J · jw = RΣ×

�
requires identifying

π′
y,w: y × w → w with π′

y,1: y × 1 → y, via !�: 
 → 1 (the same way in which J

preserves identities). �

3 Further Properties of C[x: jΣ]

In this section, we describe additional properties of C[x: jΣ], with a view to the
role this structure plays in categorical logic and semantics. Some readers might
prefer to skip ahead to the applications in §4.

3.1 Closed Structure and Duals

Proposition 3.1 If C is a closed symmetric monoidal category, so is C[x: jΣ];
furthermore, RΣ:C → C[x: jΣ] preserves the closed structure.

Proof. Given the formulation of the hom-sets of C[x: jΣ] in equation (1), C[x: jΣ]
inherits closed structure from C via the isomorphism∐

w∈Σ C
(
(x ⊗ y) ⊗ jw, z

) ∼= ∐
w∈Σ C(x ⊗ jw, y ⇒ z)

which is compatible with the equivalence relation �. It is then clear that RΣ

preserves the closed structure. �

Corollary 3.2 If C is compact closed (i.e., every object c admits a dual c∗ such
that C(x ⊗ c, y) ∼= C(x, c∗ ⊗ y)), so is C[x: jΣ]; furthermore, RΣ preserves duals.
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3.2 Traces

The notion of trace [9,5] in a monoidal category is also compatible with the addition
of monoidal indeterminates.

Proposition 3.3 If C admits a trace, so does C[x: jΣ]; furthermore, RΣ preserves
traces.

Proof. A trace function

Tru
x,y:C(x ⊗ u, y ⊗ u) → C(x, y)

for C is compatible with the equivalence � by dinaturality[∐
w∈W Tru

x⊗jw,y

]
�
:
[∐

w∈W C
(
(x ⊗ jw) ⊗ u, y ⊗ u

)]
�

→
[∐

w∈W C(x ⊗ jw, y)
]
�

and therefore induces a trace function on C[x: jΣ], evidently preserved by RΣ. �

4 Applications

4.1 The Oles Category of Possible Worlds

The following category is described in [23,25]. Let set be a small sub-category of
the usual category of all sets and functions, interpreted as (products 6 of) “data
types.” The objects of Oles’s category are those of set, interpreted as the sets of
states allowed in each possible world, and a morphism from X to Y is a pair f, Q

such that

(i) f is a function from Y to X;

(ii) Q is an equivalence relation on Y with Y/Q an object of set; and

(iii) X Y Y/Q
f y 	→ [y]Q is a product diagram in set.

Intuitively, f extracts the small state embedded in a larger one, and Q relates
large states with identical “extensions.” Note that the restriction of f to any
Q-equivalence class is bijective.

The identity morphism idX on an object X has as its two components: the
identity function on X and 
X , the universally-true binary relation on X. The
composition of morphisms f, Q:X → Y and g,R:Y → Z has as its two components:
the functional composition of f and g, and the equivalence relation on Z that
relates z0, z1 ∈ Z just if they are R-related and Q relates g(z0) and g(z1); in short,
R ∩ g−1(Q).

We will refer to this category as O(set). Oles gives another description which
may be interpreted in any category C with finite products; see [21, Section 10]. So
we have a construction O(C) that agrees with Oles’s category when the ambient
category C is set.

6 Note that procedure types are not “data” types in Algol-like languages.
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4.2 The Tennent Category of Possible Worlds

To model noninterference in Reynolds’s specification logic [30,32,36,20], the product
condition on the f component of morphisms f, Q in Oles’s category was weakened
in [36] to the requirement that it be injective on Q-equivalence classes (with the
same definitions of identities and composites); we will refer to the resulting category
as T(set).

4.3 Universality of Tennent Categories

We now apply our theory of monoidal indeterminates; we begin by characterizing
T(set) as a polynomial category. The description may be re-formulated as follows.
Recall that, for any function f :X → Y , ker(f), the kernel of f , is the binary
relation {(x, x′) ∈ X × X | fx = fx′}.

Proposition 4.1 Given sets X and Y , there is a one-to-one correspondence be-
tween the following sets of data:

(1) equivalence classes of pairs [m, W ]� where W is an object of set,
m:Y ↪→ X × W is a monomorphism and (m, W ) � (n, V ) if π · m = π · n

and ker(π′ · m) = ker(π′ · n), where π and π′ denote the first and second pro-
jections of a product;

(2) T(set)(X, Y ).

Proof. From (1) to (2): Let f :Y → X be the composite Y
m
↪→ X × W

π→ X and

Q be the kernel of Y
m
↪→ X × W

π′→ W ; i.e., yQy′ iff π′(my) = π′(my′). To show
that f is injective on each equivalence class, assume yQy′ and f(y) = f(y′); then
π(my) = π(my′) and π′(my) = π′(my′) and so my = my′. But then y = y′ because
m is monic. Notice that, by construction, f and Q are independent of the choice of
representative (m, W ).

From (2) to (1): Take [m, W ]�, where W is Y/Q and m:Y → X × W maps y

to the pair (fy, [y]Q). To show m is monic, assume my = my′; then fy = fy′ and
yQy′, and so y = y′. �

Corollary 4.2 The above correspondence restricts to one between O(set)(X, Y )and
equivalence classes of pairs [i, W ]� where W is an object of set and i: Y ∼= X × W

is an isomorphism.

These correspondences are applicable to any category in which we can reason about
“quotients of equivalence relations”; for instance, the argument can be carried out
in any exact category. We now give an equational characterisation of the relation
� in Proposition 4.1.

Lemma 4.3 In any regular category,

(i) given morphisms f :x → y, g:x → z and a monomorphism m: z ↪→ y such that
f = m · g, we have that ker(f) = ker(g);
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(ii) given morphisms f :x → y and g: x → z, ker(f) = ker(g) iff there exists
q:x → w and monomorphisms m:w ↪→ y and n: w ↪→ z such that f = m · q
and g = n · q.

Proof.

(i) Reasoning by elements, ker(g) ⊆ ker(f). For the converse,

f · x = f · y =⇒ m · g · x = m · g · y =⇒ g · x = g · y

the last step justified by m being a monomorphism.

(ii) Given ker(f) = ker(g) take the (common) quotient of these kernels q: x → w.
Both f and g factor through q via monos m:w ↪→ y and n: w ↪→ z. The
converse follows from (i). �

Let setmn be the broad sub-category of set consisting of monomorphisms. Finite
products in set endow setmn with a symmetric monoidal structure, so we can apply
our construction of constrained monoidal indeterminates to it.

Theorem 4.4 T(set) ≡ �setop
mn�,

where, as mentioned at the end of §2.7, �setop
mn� = setop

mn[x: jΣ] for Σ = setop
mn and

j = id.

Proof. By Lemma 4.3, we see that the equivalence relation (m, w) � (n, v) involved
in forming the hom-sets of setop

mn[x: jΣ] is exactly the equivalence of Proposition 4.1,
part (2), because π ·m = π ·n by the definition of 2-cells in setop

mn(x: jΣ). Therefore,
the underlying graphs of both categories are the same. All we need to verify is that
the compositions in the two categories agree: given [m, w]:x → y and [n, v]: y → z,
i.e., m: y ↪→ x×w and n: z ↪→ y × v, their composite is [α · (m× v) · n, (w × v)] and
we verify that

ker
(
π′ · α · (m × v) · n)

= ker(π′ · n) ∩ (
π · n)−1(ker(π′ · m)

)
�

Having identified T(set) as a free addition of constrained monoidal indetermi-
nates, it seems worthwhile to point out the ingredients of �setop

mn� in the former:

– An indeterminate xW in T(set) is (!: W → 1,ΔW ), where ΔW is the equality
relation on W .

– Raw morphisms are of the form (m:W → V,
W ). By the injectivity require-
ment, m must be a monomorphism.

– The naturality constraint for the indeterminates is satisfied: (m,
W )·xV = xW

because m−1(ΔV ) = ΔW by injectivity of m. Notice that this is a necessary,
as well as a sufficient, condition on m for commutativity with indeterminates.

– Any morphism (f :Y → X, Q) factors as (π: X × Y/Q → X,
X × ΔY/Q)
(expansion) followed by (〈f, q〉:Y → X × Y/Q,
Y ) (raw monomorphism).
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4.4 Universality of Oles Categories

In a category with finite products, we say an object X is internally non-empty if
the unique arrow into a terminal object, X → 1, is a regular epi (necessarily a
coequalizer of the two projections π, π′:X × X → X).

For a small regular category C, let Ciso be the broad sub-category of C whose
arrows are all of the isomorphisms. Then,

Theorem 4.5 O(C) ≡ �Cop
iso�, provided every object of C is internally non-empty.

Proof. Oles’s category is essentially the broad sub-category of the Tennent category
where we restrict the raw morphisms to be (equivalence classes of) isos, rather than
monos. Given isomorphisms m: y ∼= x × w and n: y ∼= x × v, and a mono h: w ↪→ v

such that n = m ·x×h, it follows by cancellation that x×h is an isomorphism, and
x non-empty implies then that h is itself an isomorphism. Thus, we conclude that,
whether Σ is Cop

mn or Cop
iso, the hom-categories Cop

iso(x: jΣ)(x, y) agree, provided x

is non-empty. The result now follows from Theorem 4.4 and Corollary 4.2. �

The reason that we restrict to non-empty objects above is that the identification
in O(C)(x, y) should be achieved as in Proposition 4.1. This would require taking
monos as the identifying arrows, but the base category of raw morphisms only
provides isos. As argued in the above proof, if x is non-empty, (x × m) iso implies
m is an iso, and hence isos suffice to provide the required identifications in this
context.

The empty set could be added to O(C) above as a terminal object, should it
be needed in any application. The universality property should then be suitably
extended by demanding that the target categories have terminal objects, and the
mediating ‘substitution’ functors between them preserve such.

4.5 Symmetric Monoidal Generalizations of Oles and Tennent Categories

Consider now any small symmetric monoidal category C where x ⊗ :C → C pre-
serves monomorphisms, e.g., when C has cartesian monoidal structure. We may
now describe T(C), a category of worlds with data types in C, which agrees with
Tennent’s category when C is set with its cartesian monoidal structure, and can
therefore be seen as a symmetric monoidal generalization of Tennent’s construc-
tion. Let Cmn be the broad sub-category of C spanned by the monomorphisms. It
inherits the symmetric monoidal structure of C by our assumption on x ⊗ ; then
define T(C) = �Cop

mn�.
We may also describe an analogous symmetric monoidal generalization of Oles’s

construction. For any small symmetric monoidal category C, let Ciso be the broad
sub-category of isomorphisms, which retains the symmetric monoidal structure of C.
Then, �Cop

iso� agrees with O(C) when C is any small category of non-empty sets.
Thus, we obtain a version of Oles’s construction that applies to any symmetric
monoidal category, in line with the later developments of O’Hearn and Reynolds
[18].
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4.6 The States Functor

In [19], a functor mapping worlds to the sets of states available in that world is
discussed. This functor can be seen to be a direct consequence of the universality of
Oles’s category of worlds. It is induced as follows: to give a strong monoidal functor
Sop:O(C) → setop with respect to the cartesian monoidal structure in set, we have
to pick objects S(c) for every c ∈ C together with “global elements” setop

(
1, S(c)

)
.

But, as noted in the proof of Corollary 2.9, there is only one such global element,
namely the unique map ! from S(c) into the terminal 1.

Therefore, the resulting contravariant functor S:O(C) → set sends “expan-
sions” (tensors of identities and indeterminates) to projections (cartesian tensor of
identities and !s), which is the action of S via Oles’s description of O(set) [24].

It is worth pointing out that the remaining basic semantic functors for Algol,
namely those corresponding to expressions, commands, and variables, are defin-
able from S and constant functors via the contra-exponentiation of [19]. The only
other noteworthy ingredient in the semantics of Algol (besides the cartesian closed
structure of the functor category) is the use of “initial values” for local variables
in the definition of the binder new, which come from the presence of monoidal
indeterminates in O(C) as indicated above.

4.7 The Category of Finite Sets and Injections

Several authors [15,28,33,34,3] have used the category Finj of finite sets (of locally
available “locations” or “names”) with injections as the morphisms. Fiore [4] has
observed that Finj is equivalent to the free symmetric (strict) monoidal category
with an initial unit on one generator. We will exhibit this category as an instance
of (our generalization of) the Oles construction described in §4.4.

Consider the category Fbij of finite sets and bijections (or permutations). This
is known to be the free symmetric monoidal category on one generator [11], the
generator being any one-point set 1, and the monoidal structure being disjoint union
(finite co-product). Applying the Oles construction to Fbij freely adds a monoidal
indeterminate x1: ∅ → 1.

Proposition 4.6 There is an identity-on-objects isomorphism Finj
∼= �Fbij� and

so (Finj,+, ∅) is the free symmetric monoidal category on one generator 1 with a
monoidal indeterminate x1: ∅ → 1.

Proof. An injection f : X ↪→ Y corresponds to a identity-on-objects isomorphism
X + W ∼= Y with W = Y \ f(X) and this correspondence is compatible with
permutations of W . The universal characterization of (Finj, +, ∅) now follows from
those of (Fbij,+, ∅) and the Oles construction. �

Although we are using the �·� construction, these indeterminates are in fact free,
as Fbij is a free sub-symmetric monoidal category. In contrast to the characterization
mentioned by Fiore, we do not assume initiality of the unit, only the presence of
a global element on the generator (to map the “monoidal indeterminate” given by
the inclusion ∅ → 1). In fact, initiality of the unit is a consequence, as explained in
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Proposition 2.10. The following example illustrates the different strengths of these
two characterisations:

Example 4.7 Let SMCAT denote the large 2-category of symmetric monoidal cat-
egories, strong symmetric monoidal functors and monoidal transformations.

SMCAT
(
(Finj,+, ∅), (Set,×,1)

) ∼= 1/Set

To give a strong symmetric monoidal functor H:Finj → Set is to give a set and
an element x ∈ H({
}), while a monoidal transformation β:H =⇒ H ′:Finj → Set
amounts to a function h = β{�}:H({
}) → H ′({
}) such that hx = x′. Notice that
the freeness of Finj as a co-affine category tells us nothing in this situation, since
(Set,×,1) is not co-affine.

A straightforward consequence of our identification is that the formula

BA(s) = setFinj
(
A(s + ·), B(s + ·))

for functor exponentiation in [34, Section 5] is an instance of the Exponent Repre-
sentation Lemma of [18, Lemma 4], which in fact holds for any O(C) category.

5 Discussion

We have described here the construction of a polynomial symmetric monoidal
(closed) category, obtained from a symmetric monoidal (closed) category by freely
adjoining a system of monoidal indeterminates. The construction was motivated
by our desire to understand the categories of possible worlds that have been used
in semantical analyses of languages allowing creation of “new” variables or names.
These categories, though originally presented in fairly ad hoc fashion, have all been
shown here to be polynomial monoidal categories, with corresponding universality
properties. Intuitively, the indeterminates represent uninitialized “new” compo-
nents of the state or name context; the substitution functor F |dx then provides the
means to produce an “expanded” state or context with initialized new variables, for
any appropriate choice of initial values d:

C C[x: jΣ]
RΣ

F |dx
We expect that the methodology introduced here will be useful in other appli-

cations. For example, it is tempting to consider “contextual (or functional) com-
pleteness” [6] in the symmetric-monoidal setting by requiring RΣ to have a left
(resp. right) adjoint. However, we have not yet been able to identify reasonable
conditions under which the adjunctions would be Kleisli or co-monadic.

Related work

After our initial submission of this work, it came to our attention that the construc-
tion of a category generated by an indeterminate for a single object (cf. §2.8) in the
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strict symmetric monoidal case and its universal property were briefly described in
the Appendix of Richard Wood’s dissertation [37].

Pavlović [26] considered an application of monoidal indeterminates in relation
to Milner’s action calculi. Only the evident “syntactic” construction is considered,
together with the well-known special case when the object under consideration
admits a comonoid structure, whereby the addition of an indeterminate can be
realised by taking the Kleisli category of the resulting comonad, see §2.9. This
latter identification is further analyzed in [6], where it is shown that, in the cartesian
setting, C×w has the universal property of C[xw: w] based merely on its 2-categorical
universal characterisation as a lax colimit, regardless of any explicit description.

The above mentioned “syntactic” construction corresponds to the fact that
the categorical structures under consideration are monadic over the category of
graphs [2], and therefore admit presentations by generators and relations. Thus,
given a symmetric monoidal category C, we consider its underlying graph G(C),
add whichever elements W we require, freely generate a symmetric monoidal cate-
gory on the extended graph F

(
G(C)+W

)
, and then impose the existing relations in

C so as to obtain a strong symmetric monoidal functor R:C → [
F

(
G(C) + W

)]
�.

As far as the structure of categories of possible worlds is concerned, the promi-
nent role of expansion morphisms and an associated notion of quotient are consid-
ered in [13].
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