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Down-regulation of human osteoblast PTH/PTHrP receptor alterations in mineral metabolism generated by renal
mRNA in end-stage renal failure. failure have profound effects on the skeleton. Abnormal-

Background. Resistance to the action of parathyroid hor- ities of bone turnover are characteristic of renal osteo-mone (PTH) has been demonstrated in end-stage renal failure
dystrophy. High turnover bone disease is typified by highand is considered to be important in the pathogenesis of sec-
numbers of osteoblasts and osteoclasts with high boneondary hyperparathyroidism. The mechanism of resistance is

unknown. However, altered regulation of cellular PTH/PTH- formation rates. Patients typically have elevated levels
related protein (PTH/PTHrP) receptor (PTH1R) has been as- of serum parathyroid hormone (PTH). In contrast, ab-
sumed to be important. normally low numbers of osteoblasts and osteoclasts areMethods. We have used in situ hybridization to examine

found in low turnover bone lesions (adynamic and osteo-PTH1R mRNA expression by osteoblasts in human bone and
malacia) with low bone formation rates and PTH levelshave compared the expression in high- and low-turnover renal

bone disease, high-turnover nonrenal bone disease (healing within or just above the normal range. PTH levels are
fracture callus and Pagetic bone), and normal bone. Bone usually elevated in end-stage renal disease as a probable
biopsies were formalin fixed, ethylenediaminetetraacetic acid consequence of decreased 1,25-dihydroxyvitamin D3, hy-decalcified, and paraffin wax embedded. A 1.8 kb PTH1R

perphosphatemia, hypocalcemia, and end-organ resis-cDNA probe, labeled with 35S, was used, and the hybridization
tance to PTH. Resistance to the action of PTH in patientssignal was revealed by autoradiography. The density of signal

over osteoblasts was quantitated using a semiautomated Lei- with chronic renal failure has been known for many
cae image analysis software package. years [1, 2]. These findings have been confirmed by the

Results. The mean density of PTH1R mRNA signal over
demonstration of a diminished calcemic response to PTHosteoblasts in renal high-turnover bone was only 36% of that
stimulation in both uremic dogs [3] and rats [4], whilefound in nonrenal high-turnover bone (P , 0.05) and 51% of

that found in normal bone (P , 0.05). Osteoblast PTH1R isolated perfused bones of uremic dogs have a blunted
mRNA signal in adynamic bone from individuals with diabetes cAMP response to PTH [5]. Furthermore, recent histo-
mellitus was 28% of normal bone (P , 0.05) and 54% of that morphometric studies of human bone biopsies have
found in renal high-turnover bone (P , 0.05).

shown that serum intact PTH (iPTH) levels several timesConclusions. These results demonstrate a down-regulation
greater than normal are required to maintain parametersof osteoblast PTH1R mRNA in end-stage renal failure in com-

parison to normal and high-turnover bone from otherwise of bone turnover within the normal range [6–11]. Such
healthy individuals, and provide an insight into the mechanisms data have led several authors to conclude that there
of “skeletal resistance” to the actions of PTH. must be altered regulation of PTH receptors, resulting

in “down-regulation” or “desensitization” [7, 12]. The
etiology of skeletal resistance to PTH in renal failure

Bone is influenced by the cumulative, long-term effects is unknown. Hyperphosphatemia [12, 13], deficiency of
of metabolic derangement, and thus, the long-standing vitamin D3 [14–19], uremic toxins (abstract; Dunlay et

al, Kidney Int 35:426, 1989) [4, 19], hypercalcitoninemia
[20], and hyperparathyroidism (abstract; ibid) [3, 19, 21]Key words: bone metabolism, kidney failure, renal osteodystrophy,

high turnover bone disease, parathyroid hormone receptor. have all been postulated as factors that modulate PTH
receptor function in vivo causing skeletal resistance inReceived for publication March 17, 1999
renal failure.and in revised form April 4, 2000
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related protein (PTHrP), the PTH/PTHrP receptor viduals obtained from the iliac crest at the time of bone
grafting (N 5 5).(PTH1R) [22]. Receptor regulation may occur at several

points, namely transcription, translation, receptor ex-
Sources and preparation of bone tissuepression, ligand affinity, and second-messenger/effector

Specimens examined were as follows: 13 illiac boneactivation [23]. With the cloning of the rat PTH1R
biopsies from individuals with ESRF, which showed no[24, 25], attention has focused on transcriptional regula-
evidence of a mineralization defect or aluminum deposi-tion of the receptor in renal failure in rats. Urena et al
tion; 2 illiac bone biopsies from patients with Paget’sisolated total RNA from bone and kidney of uremic rats
disease; 2 healing fracture callus specimens; and 5 sam-and found a decrease in PTHR1 mRNA compared with
ples of normal iliac bone. Bone trephines were split longi-normal rats [26]. Other authors have also recently re-
tudinally into two portions. One portion was fixed inported a down-regulation of PTH1R mRNA in kidney,
ethanol and embedded in methylmethacrylate resin.liver, and heart from uremic rats [27–29]. Although histo-
From these resin blocks, 7 m sections were cut using amorphometric data suggest that human bone cells exhibit
LKB macrotome, stained free-floating in toluidine blue,PTH resistance in renal failure [6–10], there is no expla-
and mounted on glass slides. All renal patients receivednation for this at the cellular level in vivo. Cloning of
1 g of oral tetracycline 14 and 4 days prior to bone biopsy.the human PTH1R gene [24, 25] and the development
For these samples, additional 15 mm sections were cutof molecular techniques such as in situ hybridization
for examination of tetracycline labeling using ultraviolet(ISH) have made it possible to address questions that
epi-illumination microscopy. The criteria for classifica-are fundamental in understanding renal bone cell biology
tion as either adynamic or high-turnover bone diseasein vivo. Therefore, the aim of this study was to investi-
have been published previously [30]. The second portiongate, using ISH, whether there is down-regulation of the
was fixed for 24 hours in 10% (vol/vol) neutral-bufferedPTH1R mRNA in human osteoblasts in renal failure as
formalin and then decalcified in 20% wt/vol ethylenedi-compared with normal osteoblasts and osteoblasts in
aminetetraacetic acid (EDTA; pH 7.2) until radiologi-other high-turnover bone states.
cally decalcified (10 to 14 days). Following decalcifica-
tion, the tissue was processed routinely into paraffin wax

METHODS and 5 mm sections mounted onto silanated slides [31]
for ISH.Subjects

This study comprised 13 individuals with renal failure In situ hybridization
(8 male and 5 female, mean age of 46.1 years, range 27 Probe. A human cDNA probe (1.8 kb) to PTH1R (a
to 63 years). Of these, three individuals were in end- generous gift from Dr. Schipani, Boston, MA, USA) was
stage renal failure (ESRF) and had a trans-iliac bone random prime labeled to a specific activity of approxi-
biopsy under general anesthetic at the time of Tenckhoff mately 1 3 108 cpm/g using 35S dCTP. For control pur-
catheter insertion; the remaining 10 individuals were re- poses, similarly sized fragments of lambda DNA labeled
ceiving continuous ambulatory peritoneal dialysis (mean to the same specific activity were used.
duration of 25.5 months, range 1 to 48 months). The Hybridization. The prehybridization treatments were
cause of renal failure in two individuals was unknown. as detailed previously [32]. Briefly, these included se-
Two had autosomal dominant polycystic kidney disease. quential immersion in 0.2N HCl (20 min), 0.2 3 standard
Two individuals were recorded as having hypertensive saline citrate (SSC 5 0.15 mol/L NaCl and 0.015 mol/L
renal disease. One had chronic pyelonephritis, and six sodium citrate, 10 min); g/mL of proteinase K in 50
had diabetic nephropathy. All subjects were taking cal- mmol/L Tris-HCl, pH 7.5, one hour at 378C; 0.2% (wt/
cium carbonate with meals as a phosphate binder, and vol) glycine in phosphate-buffered saline (PBS); and
none were taking aluminum-containing phosphate bind- 0.4% (wt/vol) paraformaldehyde in PBS, pH 7.0 (20
ers. No subject had been treated with vitamin D or had min), and freshly prepared 0.25% (vol/vol) acetic anhy-
undergone parathyroidectomy. None of the females had dride in 0.1 mol/L triethanolamine, pH 8. Following pro-
received hormone replacement therapy. Blood sampling teinase treatment, serial sections were reacted with 1
was carried out on the same day as bone biopsy to allow mg/mL of RNAse A in 0.5 3 SSC for one hour at 378C.
measurement of ionized calcium, serum phosphate, se- All sections were prehybridized for one hour at 378C in
rum iPTH, and serum 1,25(OH)2D3. The study also com- 50% formamide, 1 mg/mL of bovine serum albumin,
prised individuals with normal renal function with Pag- 0.02% (wt/vol) Ficoll, 0.02% (wt/vol) polyvinyl pyrroli-
et’s disease (N 5 2, both male, 61 and 58 years old) and done, 0.6 mol/L NaCl, 0.2 mg/mL of sheared salmon
healing bone fracture (N 5 2, both male, 42 and 47 years sperm DNA, 10 mmol/L Tris (pH 7.4), 0.5 mmol/L
old), which comprised the nonrenal high-turnover group EDTA, 10 mmol/L dithiothreitol (DTT), and 10% (wt/

vol) dextran sulfate. Hybridization with heat denaturedand specimens of normal bone from age-matched indi-
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35S-labeled probe (100 ng/mL prehybridization solution) groups, and data are represented as the mean and 95%
CI. Comparisons between histologic groups were carriedwas carried out at 378C overnight. After hybridization,

the tissue sections were washed with a series of high- out using the Mann–Whitney U-test. Differences were
considered significant at a value of P , 0.05. In the renalstringency washes: twice for 5 minutes in 0.5 3 SSC

with 1 mmol/L EDTA and 10 mmol/L DTT; twice for high- and low-turnover groups, Spearman’s rank-order
correlation was used to investigate the relationship be-5 minutes in 0.5 3 SSC with 1 mmol/L EDTA; 15 minutes

in 50% formamide, 0.15 mol/L NaCl, 5 mmol/L Tris (pH tween serum iPTH, serum phosphate, ionized calcium,
serum 1,25(OH)2D3, duration of dialysis, and the age of7.5), and 0.5 mmol/L EDTA; four times for 5 minutes

in 0.5 3 SSC at 558C, followed by 5 minutes at room subject at the time of bone biopsy and PTH1R mRNA
signal.temperature in 0.5 3 SSC. Slides were then dehydrated

in 70 and 90% ethanol with 0.3 mol/L ammonium acetate
and were air dried. Autoradiography was performed with

RESULTS
Ilford K5 emulsion melted at 408C and was diluted 1:1

Biochemistrywith distilled water. The slides were exposed at 48C for
14 days and then developed in Kodak D 19 developer The mean serum iPTH for the group with hyperpara-

thyroid bone disease (N 5 9) was 644 pg/mL (range 180for five minutes, rinsed, fixed for five minutes, and coun-
terstained with hematoxylin and eosin. to 1700 pg/mL) and 85 pg/mL (range 30 to 148 pg/mL)

for those with diabetes and adynamic bone (N 5 4). TheQuantitation. Analysis of autoradiographic signal over
bone cells was performed using a Quantimete semiauto- normal range for serum iPTH was 10 to 65 pg/mL. The

mean serum 1,25(OH)2D3 for the hyperparathyroid bonemated image analysis system incorporating software de-
signed in conjunction with Leica Software Systems (Mil- group was 7.8 pg/mL (range 0 to 18 pg/mL) and 5.8

pg/mL (range 3 to 10 pg/mL) for the group with adynamicton Keynes, UK). Analysis was performed by two
investigators (P.M. and J.A.H.). Using t-test and analysis bone and diabetes mellitus. Levels of 1,25(OH)2D3

greater then 20 pg/mL are considered normal. The meanof variance (ANOVA), there was no significant differ-
ence between the two observers (P , 0.05). ISH was serum phosphate for the hyperparathyroid bone group

was 2.1 mmol/L (range 1.2 to 3.07 mmol/L), and thatperformed four times on a series of biopsies, and no
significant difference was found between ISH runs (P , for the diabetic-adynamic bone group was 1.7 mmol/L

(range 1.54 to 2.16). The normal range was 0.75 to 1.50.05). Signal density (grains per unit area of cell) was
analyzed for osteoblasts. For each biopsy, approximately mmol/L. Mean ionized calcium for the hyperparathyroid

bone group was 1.24 mmol/L (range 1.01 to 1.41 mmol/L)10 random high-power fields were examined or as many
as possible if less than 10. All osteoblasts within each and for the diabetic-adynamic bone group was 1.2

mmol/L (range 1.12 to 1.22 mmol/L). The normal rangehigh-power field were identified and their area and that
portion of that area covered by signal measured in arbi- is taken as 1.12 to 1.33 mmol/L. The complete biochemi-

cal data are shown in Table 1.trary pixel units. This represents “Signal Density.” Back-
ground signal over matrix and noncellular areas of bone

Cellular localization of PTHR1 mRNAwas measured in two random high-power fields in the
same manner. Results were recorded as the mean density PTH1R mRNA hybridization signal was generally

greatest over osteoblasts with variation in signal intensityof signal over cells in all fields, minus the background
signal. seen in the different bone states studied (Fig. 1). In

addition, in individual biopsies, some variability in inten-Biochemistry. Serum iPTH levels were measured in
all renal patients using a commercially available two-site sity of signal was apparent with “plump” osteoblasts in

areas of active matrix synthesis most positive. There wasimmunoradiometric assay (IRMA) for the measurement
of PTH (Nichols Institute Diagnostics, San Juan Capis- no difference between cortical and trabecular osteo-

blasts. No signal was seen over flat resting surface cells,trano, CA, USA). Serum levels of 1,25(OH)2D3 were
measured using a method previously described [33]. Se- and osteocytes were not convincingly positive except in

healing fracture callus. This pattern of signal expressionrum phosphate was measured by colorimetric assay using
a Hitachi 747 Autoanalyzer (Nissei Sangyo Co., Ltd., was seen in all bone studied, although the level of signal

differed. Flat elongated fibroblast-like cells in areas ofLondon). Ionized calcium was determined using a Radi-
ometer ICA2 electrode. peritrabecular fibrosis (in the renal bone biopsies) were

positive, although much less than osteoblasts. This was
Statistical analysis particularly the case when peritrabecular fibrosis was

adjacent to trabecular surfaces, which were being ac-Summary statistics in the form of means and 95%
confidence intervals (95% CI) were calculated for tively remodeled. Scattered unidentifiable bone marrow

cells were positive. Clearly, the localized hybridizationmRNA signal density for normal bone, Paget’s disease
and healing fracture, and renal high- and low-turnover signal was also seen over actively resorbing osteoclasts
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Table 1. Biochemical and clinical data for ESRF subjects with high-turnover bone disease (H1–9) and adynamic bone disease (A1–4)

Dialysis Serum PTH1R
Age duration Histological iPTH iCa 1,25(OH)2D3 phosphate mRNA

Patient Gender years Renal disease Months diagnosis pg/mL mmol/L pg/mL mmol/L signal

H1 Male 27 Chronic pyelonephritis 25 HPT 1700 1.2 0 3.07 4.85
H2 Female 63 Unknown 1 HPT 305 1.19 7 1.2 2.99
H3 Male 63 Hypertensive renal disease 48 HPT 740 1.41 9 2.05 4.47
H4 Female 45 APKD 24 HPT 570 1.18 4 1.73 2.33
H5 Male 50 Diabetic nephropathy 0 HPT 180 1.15 4 1.29 4.46
H6 Male 40 Diabetic nephropathy 0 HPT 185 1.22 8 1.81 3.11
H7 Male 30 APKD 0 HPT 195 1.27 14 1.74 5.83
H8 Female 35 Unknown 36 HPT 580 1.24 18 2.64 3.33
H9 Female 51 Hypertensive renal disease 7 HPT 1340 1.26 6 2.99 3.38
A1 Male 57 Diabetic nephropathy 16 ABD 38 1.12 3 2.16 1.48
A2 Male 55 Diabetic nephropathy 40 ABD 148 1.17 3 1.65 1.67
A3 Female 46 Diabetic nephropathy 48 ABD 125 1.22 7 1.63 1.37
A4 Male 37 Diabetic nephropathy 32 ABD 30 1.18 10 1.54 3.2

in renal hyperparathyroid bone, healing fracture callus, bone from two uremic rats and found a PTH1R mRNA/
28S ratio of 0.78 in normal animals compared with 0.59and particularly in Pagetic bone (Fig. 2). In Pagetic bone,
in rats with chronic renal failure illustrating a down-the hybridization signal was often greater over osteo-
regulation of receptor mRNA in skeletal tissue [26]. Inclasts than over osteoblasts. No identifiable osteoclasts
this study of osteoblasts in human bone, the meanwere seen in normal bone.
PTH1R mRNA signal density in high-turnover renal os-

Quantitation of PTH1R mRNA expression teodystrophy samples was 3.70 (3.40 to 4.13, 95% CI)
and in diabetic-adynamic renal bone was 1.99 (1.27 toPTH1R mRNA expression in osteoblasts was signifi-
2.70, 95% CI). By contrast, in the nonrenal high-turnovercantly less in renal high-turnover bone (mean 3.70, 3.40
specimens, the mean signal density was 10.30 (9.72 toto 4.13, 95% CI) than either the fracture and Pagetic
10.87, 95% CI) and in normal bone was 7.24 (6.41 tobone (mean 10.30, 9.72 to 10.87, 95% CI) or normal
8.08, 95% CI). Hence, renal high-turnover osteoblastsbone (mean 7.24, 6.41 to 8.08, 95% CI, P , 0.05). In
in vivo had levels of PTH1R mRNA expression thatdiabetic-adynamic bone, PTH1R mRNA expression
were 36 and 51% of levels found in nonrenal high-turn-(mean 1.99, 1.27 to 2.70, 95% CI) was significantly less
over and normal bone, respectively. Osteoblasts fromthan in high-turnover renal bone and normal bone (P ,
diabetic-adynamic bone had receptor mRNA expression0.05; Fig. 3). There were no significant correlations be-
28% of normal osteoblasts and 54% of the expressiontween PTH1R mRNA signal and serum PTH (rs 5 0.58),
found in high-turnover renal bone. Our data show down-serum 1,25(OH)2D3 (rs 5 0.24), serum phosphate (rs 5
regulation of PTH1R mRNA in the PTH target tissue,0.34), ionized calcium (rs 5 0.50), age at time of biopsy
bone. The decrease in PTH1R expression at the level of(rs 5 20.38). or dialysis duration (rs 5 20.26) when
the osteoblast may represent the molecular basis for theanalyzed using Spearman’s rank-order correlation in the
resistance of the skeleton to PTH in uremic patients. It13 ESRF patients examined (Fig. 4).
must be noted that we have shown down-regulation of
receptor mRNA and not of the receptor protein itself,

DISCUSSION although it is probable that the expression of the receptor
Parathyroid hormone has a central role in renal osteo- protein is also down-regulated in uremia. However, this

dystrophy, and the cloning of the PTH1R gene has made still remains to be demonstrated.
it possible to investigate the possibility of altered recep- In a study of this nature, where the number of biop-
tor mRNA regulation. Although several authors have sies is small, it is difficult to draw definite conclusions
suggested that abnormal regulation of the PTH1R by about the roles of serum PTH, ionized calcium, serum
bone cells in patients with ESRF is likely to be important phosphate, serum vitamin D3, and uremic factors in the
in the pathogenesis of skeletal resistance to PTH found pathogenesis of PTH1R modulation, in particular the
in these patients [7, 11], to our knowledge, this is the down-regulation of receptor mRNA. There is general
first time that a reduction in steady-state levels of PTH1R agreement in the literature regarding the negative regu-
mRNA has been demonstrated in human osteoblasts. latory effect of PTH on PTH1R expression and cAMP
PTH1R mRNA in vivo has been shown to be down- production in vitro [34–41]. More recently, the expres-
regulated in uremic rat kidney [26, 27], liver [28], and sion of PTH1R receptor mRNA in vitro has been exam-

ined and found to be reduced in response to PTH stimu-heart [29]. Interestingly, Urena et al have also examined
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Fig. 1. Photomicrograph showing PTH1R mRNA expression [visualized as black (silver) autoradiographic grains] by osteoblasts (arrow) lining
the bone surface in (a and b) renal hyperparathyroid bone (a, magnification 350; b, magnification 3200), (c and d ) normal bone (magnification
3250), and (e and f ) normal healing fracture callus (e, magnification 350; f, magnification 3200). Note the increase in signal seen in nonuremic
osteoblasts compared with those in renal bone.

lation [42–46]. The data obtained from experimental parathyroidectomy in animals without renal failure did
not increase the expression of PTH1R mRNA [48]. Inanimals, however, have not been as clear cut. A reduction

of increased PTH levels to normal did not improve the our present study, the majority of individuals had serum
PTH levels that were elevated above normal, althoughblunted calcemic response to PTH in azotemic animals

(abstract; Bover et al, XIIth International Congress of those individuals with the higher levels were those with
high-turnover bone disease and had relatively higherNephrology, Jerusalem, Israel, June 13–18, 1993, p 453).

In addition, Urena et al have shown that thyroparathyro- levels of PTH1R mRNA expression. This would argue
against PTH being the cause of receptor mRNA down-idectomy does not prevent renal PTH1R mRNA down-

regulation in uremic rats, suggesting that hyperparathy- regulation.
The role of 1,25(OH)2D3 in vivo is to improve or abol-roidism is not essential for down-regulation to occur [47].

Others have found that selective parathyroidectomy did ish resistance to PTH in uremic individuals [14–18]. Stud-
ies in vitro reveal that the cAMP response of bone cellsnormalize receptor mRNA levels in uremic rat kidney,

liver, and heart [27–29]. This same group found that from vitamin D-deplete animals to PTH stimulation is
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Fig. 2. Photomicrograph showing PTH1R mRNA expression by osteoclasts in renal hyperparathyroid bone (a, magnification 3100) and Pagetic
bone (b, magnification 3100). Note the increase in hybridization signal in Pagetic osteoclasts.

Fig. 3. Levels of osteoblast PTH1R mRNA signal in different bone states. PTH1R mRNA hybridization signal in osteoblasts from fracture callus
(F1-2), Pagetic bone (P1-2), normal bone (N1-4), renal hyperparathyroid (H1-9), and diabetic-adynamic bone (A1-4). Mean signal density values
(per unit area of cell) with 95% CI are presented for each individual.
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Fig. 4. PTH serum levels, serum phosphate, ionized calcium, serum 1,25(OH)2D3 and age of subject at time of biopsy correlated with PTH1R
mRNA hybridization signal density (N 5 13 renal bone biopsies).

increased after treatment of those bone cells with vitamin Intracellular calcium levels have been felt to be impor-
tant in the down-regulation of PTH1R mRNA in ratD [49]. However, the majority of in vitro experiments

reveal a reduction in cAMP response [50] and a reduc- kidney, liver, and heart [28, 29, 48, 56]. However, in
this present study, we found no significant correlationtion in receptor number and receptor mRNA [51] after

treatment with 1,25(OH)2D3. It would seem that the level between extracellular ionized calcium and receptor
mRNA signal.of vitamin D depletion and the presence of uremia are

important factors in determining the effect of vitamin In the present study, the duration of peritoneal dialysis
was significantly different between the high- and low-D. No significant correlation was found between serum

1,25(OH)2D3 and receptor mRNA signal in the group of turnover bone groups, with the adynamic group being
on dialysis for longer (P , 0.05). Other studies haveindividuals examined in this study.

In vivo studies carried out in animals with renal failure indicated that continuous ambulatory peritoneal dialysis
is associated with adynamic bone disease [57], and inhave implicated hyperphosphatemia as an important fac-

tor in the development of PTH resistance [13, 52]. In our study, adynamic bone is associated with lower levels
of receptor mRNA. It must be noted that all of thoseaddition, in vitro experiments have shown that both high

[12, 53, 54] and low [55] extracellular levels of phosphate individuals with adynamic bone had diabetes mellitus,
which is itself associated with adynamic bone disease,reduce either cAMP or calcium efflux from bone in re-

sponse to PTH stimulation. No significant correlation and diabetes mellitus has also been shown to be associ-
ated with the down-regulation of the PTH1R mRNAwas found between serum phosphate and receptor

mRNA signal in the group of individuals examined in in renal tissue [56]. Thus, it remains unclear whether
duration of dialysis, the presence of diabetes mellitus,our study.
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