Commutativity in special unitary groups at odd primes

Daisuke Kishimoto, Tomoaki Nagao*
Department of Mathematics, Kyoto University, Kyoto, Japan

A R T I C L E I N F O

Article history:

Received 22 January 2010
Received in revised form 11 April 2010
Accepted 12 April 2010

Keywords:

Samelson product
Homotopy commutativity

Abstract

It is a classical result by Bott that $\mathrm{SU}(s)$ and $\mathrm{SU}(t)$ homotopy commute in $\mathrm{SU}(n)$ if and only if $s+t \leqslant n$. We consider the p-localization analog of this problem and give an answer at odd primes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fix a positive integer $n \geqslant 2$, and let i^{s} denote the inclusion $\mathrm{SU}(s) \rightarrow \operatorname{SU}(n)$ for $s \leqslant n$. We say that for $s, t \leqslant n, \mathrm{SU}(s)$ and $\mathrm{SU}(t)$ commute in $\mathrm{SU}(n)$ up to homotopy if the Samelson product $\left\langle i^{s}, i^{t}\right\rangle$ is trivial. It is a naive question for which values of $s, t, \mathrm{SU}(s)$ and $\mathrm{SU}(t)$ homotopy commute in $\mathrm{SU}(n)$, and Bott [1] gave a complete answer to this:

Theorem 1.1. (Bott [1]) $\operatorname{SU}(s)$ and $\operatorname{SU}(t)$ homotopy commute in $\mathrm{SU}(n)$ if and only if $s+t \leqslant n$.
Localize $\operatorname{SU}(n)$ at a prime p in the sense of Hilton, Mislin and Roitberg [5], and denote the p-localization by $-(p)$. We say that $\operatorname{SU}(s)_{(p)}$ and $S U(t)_{(p)}$ homotopy commute in $\operatorname{SU}(n)_{(p)}$ if the Samelson product $\left\langle i_{(p)}^{s}, i_{(p)}^{t}\right\rangle$ is trivial as well as the usual case, where the multiplicative structure of $\operatorname{SU}(n)_{(p)}$ is inherited from $\operatorname{SU}(n)$. As is seen in $[8,7,6]$, the above multiplicative structure on $\operatorname{SU}(n)_{(p)}$ depends on the prime p. Then it is worth considering the p-localization analog of the above question, that is, for which values of $s, t, \mathrm{SU}(s)_{(p)}$ and $\mathrm{SU}(t)_{(p)}$ homotopy commute in $\mathrm{SU}(n)_{(p)}$.

For a positive integer m, we define m^{\prime} by $m \equiv m^{\prime}(p)$ and $1 \leqslant m^{\prime} \leqslant p$. Hereafter, let p denote an odd prime, and put $q=p-1$.

Theorem 1.2. For positive integers s, t, n satisfying $2 \leqslant s, t \leqslant n \leqslant q^{2}+1$, we have:

1. Under the condition $s^{\prime}+t^{\prime} \geqslant p+1, \mathrm{SU}(s)_{(p)}$ and $\mathrm{SU}(t)_{(p)}$ homotopy commute in $\mathrm{SU}(n)_{(p)}$ if and only if $s+t \leqslant n$.
2. Under the condition $s^{\prime}+t^{\prime} \leqslant p, \mathrm{SU}(s)_{(p)}$ and $\mathrm{SU}(t)_{(p)}$ homotopy commute in $\mathrm{SU}(n)_{(p)}$ if and only if $s+t-\min \left\{s^{\prime}, t^{\prime}\right\} \leqslant n$.

Outline of the proof is as follows. We first decompose the Samelson product $\left\langle i_{(p)}^{s}, i_{(p)}^{t}\right\rangle$ into easier ones using the mod p decomposition of $\operatorname{SU}(n)$. We next calculate these Samelson products by applying unstable K-theory of Hamanaka and Kono $[4,3]$, and determine the triviality of the Samelson product $\left\langle i_{(p)}^{s}, i_{(p)}^{t}\right\rangle$.

[^0]
2. Decomposition of the Samelson product $\left\langle\boldsymbol{i}_{(\boldsymbol{p})}^{\boldsymbol{s}}, \boldsymbol{i}_{(\boldsymbol{p})}^{\boldsymbol{t}}\right\rangle$

Hereafter, everything will be localized at the odd prime p. Then, in particular, the coefficients of cohomology will be $\mathbf{Z}_{(p)}$. We will often make no distinction between maps and their homotopy classes.

As in the introduction, we fix a positive integer $n \geqslant 2$. For $1 \leqslant m \leqslant q$, we set:

$$
\rho(m, n)= \begin{cases}\left\lfloor\frac{n-2}{q}\right\rfloor+1, & 1 \leqslant m \leqslant n-\left\lfloor\frac{n-2}{q}\right\rfloor q-1, \\ \left\lfloor\frac{n-2}{q}\right\rfloor, & n-\left\lfloor\frac{n-2}{q}\right\rfloor q \leqslant m \leqslant q .\end{cases}
$$

Let us recall the mod p decomposition of $\operatorname{SU}(n)$. Recall that the cohomology of $\operatorname{SU}(n)$ is given as

$$
H^{*}(\mathrm{SU}(n))=\Lambda\left(x_{3}, x_{5}, \ldots, x_{2 n-1}\right)
$$

where $x_{2 i-1}$ is the suspension of the universal Chern class c_{i}. For $1 \leqslant m \leqslant q$, Mimura, Nishida and Toda [9] constructed a simply connected finite complex B_{m}^{k} (or $\left.B_{m}^{k}(p)\right)$ having the following properties:

1. $H^{*}\left(B_{m}^{k}\right)=\Lambda\left(u_{2 m+1}, u_{2 m+2 q+1}, \ldots, u_{2 m+2(k-1) q+1}\right),\left|u_{i}\right|=i$.
2. There exists a map $\bar{e}_{m}(n): B_{m}^{\rho(m, n)} \rightarrow \operatorname{SU}(n)$ such that $\left(\bar{e}_{m}(n)\right)^{*}\left(x_{2 m+2 i q+1}\right)=u_{2 m+2 i q+1}$ for $i=0, \ldots, \rho(m, n)$.

Then, in particular, the map

$$
\varphi_{n}=\mu_{q} \circ\left(\bar{e}_{1}(n) \times \cdots \times \bar{e}_{q}(n)\right): B_{1}^{\rho(1, n)} \times \cdots \times B_{q}^{\rho(q, n)} \rightarrow \mathrm{SU}(n)
$$

is a p-local homotopy equivalence, where μ_{q} is the q-fold multiplication of $\operatorname{SU}(n)$. This mod p decomposition of $\operatorname{SU}(n)$ corresponds to that of $\Sigma \mathbf{C} P^{n-1}$ via the inclusion $g: \Sigma \mathbf{C} P^{n-1} \rightarrow \operatorname{SU}(n)$ as follows. As is seen in [2] and [9], for $1 \leqslant m \leqslant q$, there is a simply connected finite complex A_{m}^{k} having the following properties:

1. $H^{*}\left(A_{m}^{k}\right)=\left\langle v_{2 m+1}, v_{2 m+2 q+1}, \ldots, v_{2 m+2(k-1) q+1}\right\rangle,\left|v_{i}\right|=i$.
2. There exists a map $g^{\prime}: A_{m}^{k} \rightarrow B_{m}^{k}$ such that $g^{\prime *}\left(u_{2 m+2 i q+1}\right)=v_{2 m+2 i q+1}$ for $i=0, \ldots, k-1$.
3. There exists a map $e_{m}(n): A_{m}^{\rho(m, n)} \rightarrow \Sigma \mathbf{C} P^{n-1}$ satisfying a homotopy commutative diagram:

We have an additional property of the map $g^{\prime}: A_{m}^{k} \rightarrow B_{m}^{k}$.
Proposition 2.1. (Cohen [2]) If $k \leqslant q$, then $\Sigma g^{\prime}: \Sigma A_{m}^{k} \rightarrow \Sigma B_{m}^{k}$ admits a left homotopy inverse.
For $s \leqslant n$, we put $\epsilon_{m}^{s}=i^{s} \circ g \circ e_{m}(s)$ and $\bar{\epsilon}_{m}^{s}=i^{s} \circ \bar{e}_{m}(s)$.
Theorem 2.1. Suppose $s, t \leqslant q^{2}+1$. Then $\left\langle i^{s}, i^{t}\right\rangle$ is trivial if and only if so is $\left\langle\epsilon_{i}^{s}, \epsilon_{j}^{t}\right\rangle$ for each $1 \leqslant i, j \leqslant q$.
Proof. For the pinch map $\pi: X \times Y \rightarrow X \wedge Y$, we notice that the induced map $\pi^{*}:[X \wedge Y, \operatorname{SU}(n)] \rightarrow[X \times Y, \operatorname{SU}(n)]$ is injective. Then the triviality of $\pi^{*}\left(\left\langle i^{s}, i^{n}\right\rangle\right)$ is equivalent to that of $\left\langle i^{s}, i^{t}\right\rangle$.

Denote the projection $\prod_{i=1}^{q} B_{i}^{\rho(i, r)} \rightarrow B_{m}^{\rho(m, r)}$ and the diagonal map $X \rightarrow X^{n}$ by p_{m} and Δ_{X}^{n}, respectively. Note that the composite of maps

$$
\mathrm{SU}(r) \xrightarrow{\Delta_{\mathrm{SU}(r)}^{q}} \prod_{i=1}^{q} \mathrm{SU}(r) \xrightarrow{\prod_{i=1}^{q} \varphi_{r}^{-1}} \prod_{i=1}^{q} \prod_{j=1}^{q} B_{j}^{\rho(j, r)} \xrightarrow{\prod_{i=1}^{q} p_{i}} \prod_{i=1}^{q} B_{i}^{\rho(i, r)} \xrightarrow{\varphi_{r}} \mathrm{SU}(r)
$$

is equal to the identity of $\operatorname{SU}(r)$. Then, in particular, the product $\left(\bar{\epsilon}_{1}^{r} \circ p_{1} \circ \varphi_{r}^{-1}\right) \cdots\left(\bar{\epsilon}_{q}^{r} \circ p_{q} \circ \varphi_{r}^{-1}\right)$ in the group [$\mathrm{SU}(s), \mathrm{SU}(n)$] is the map i^{s}. Let $q_{r}: \mathrm{SU}(s) \times \mathrm{SU}(t) \rightarrow \mathrm{SU}(r)$ be the projection for $r=s, t$. We put $\lambda_{i}^{r}=\bar{\epsilon}_{i}^{r} \circ p_{i} \circ \varphi_{r}^{-1} \circ q_{r}$ for $r=s, t$. Then, for $\left(q_{s} \times q_{t}\right) \circ \Delta_{\mathrm{SU}(s) \times \mathrm{SU}(t)}^{2}=1_{\mathrm{SU}(s) \times \mathrm{SU}(t)}$, we obtain an equality

$$
\left[\lambda_{1}^{s} \cdots \lambda_{q}^{s}, \lambda_{1}^{t} \cdots \lambda_{q}^{t}\right]=\pi^{*}\left(\left\langle i^{s}, i^{t}\right\rangle\right)
$$

where the left-hand side is the commutator in the group $[\mathrm{SU}(s) \times \mathrm{SU}(t), \mathrm{SU}(n)]$.

Let G be a group, and let x^{y} stand for $y x y^{-1}$ for $x, y \in G$. Then obviously we have

$$
[x, y z]=[x, y][x, z]^{y}
$$

for $x, y, z \in G$. It follows that $\left[\lambda_{1}^{s} \cdots \lambda_{q}^{s}, \lambda_{1}^{t} \cdots \lambda_{q}^{t}\right]$ is equal to a product of $\left[\lambda_{i}^{s}, \lambda_{j}^{t}\right]^{\alpha_{i j}}$ for some $\alpha_{i j} \in[\operatorname{SU}(s) \times \operatorname{SU}(t), \operatorname{SU}(n)]$. Then we get $\left\langle i^{s}, i^{t}\right\rangle$ is trivial if so is $\left[\lambda_{i}^{s}, \lambda_{j}^{t}\right.$] for each i, j. On the other hand, we have

$$
\left[\lambda_{i}^{s}, \lambda_{j}^{t}\right]=\left(q_{s} \times q_{t}\right)^{*} \circ \pi^{*}\left(\left\langle\bar{\epsilon}_{i}^{s}, \bar{\epsilon}_{j}^{t}\right\rangle\right)
$$

as well as above. Thus we obtain $\left\langle i^{s}, i^{t}\right\rangle$ is trivial if so is $\left\langle\bar{\epsilon}_{i}^{s}, \bar{\epsilon}_{j}^{t}\right\rangle$ for each i, j.
Assume $r \leqslant q^{2}+1$. Let $\kappa_{i}: \Sigma B_{i}^{\rho(i, r)} \rightarrow \Sigma A_{i}^{\rho(i, r)}$ be a left homotopy inverse in Proposition 2.1. We denote the composite

$$
\Sigma \mathrm{SU}(r) \xrightarrow{\Sigma \varphi_{r}^{-1}} \Sigma\left(\prod_{i=1}^{q}\left(B_{i}^{\rho(i, r)}\right)\right) \xrightarrow{\operatorname{proj}} \bigvee_{i=1}^{q} \Sigma B_{i}^{\rho(i, r)} \xrightarrow{\bigvee_{i=1}^{q} \kappa_{i}} \bigvee_{i=1}^{q} \Sigma A_{i}^{\rho(i, r)}
$$

by κ. Then, as in [8], we deduce that there is a self homotopy equivalence $\alpha: \operatorname{SU}(r) \rightarrow \operatorname{SU}(r)$ satisfying the following homotopy commutative diagram by looking at cohomology.

Here, ad : $[X, \Omega Y] \approx[\Sigma X, Y]$ means the adjoint congruence. Since $\bigvee_{i=1}^{q} \Sigma A_{i}^{\rho(i, r)}$ is a homotopy retract of $\Sigma \operatorname{SU}(r)$, by rearranging the map $g^{\prime}: A_{i}^{\rho(i, r)} \rightarrow B_{i}^{\rho(i, r)}$, we may assume α is the identity. Then we get

$$
\begin{equation*}
\left(\operatorname{ad} \epsilon_{i}^{r}\right) \circ \kappa_{i}=\operatorname{ad} \bar{\epsilon}_{i}^{r} \tag{2.1}
\end{equation*}
$$

Now we suppose that $\left\langle\epsilon_{i}^{s}, \epsilon_{j}^{t}\right\rangle$ is trivial, where $s, t \leqslant q^{2}+1$. Equivalently, we suppose the Whitehead product [ad ϵ_{i}^{s}, ad $\left.\epsilon_{j}^{t}\right]$ is trivial. Then there is an extension $\Sigma A_{i}^{\rho(i, s)} \times \Sigma A_{j}^{\rho(j, t)} \rightarrow B \operatorname{SU}(n)$ of ad $\epsilon_{i}^{s} \vee \operatorname{ad} \epsilon_{j}^{t}$. Then it follows from (2.1) that there exists an extension $\Sigma B_{i}^{\rho(i, s)} \times \Sigma B_{j}^{\rho(j, t)} \rightarrow B S U(n)$ of $\operatorname{ad} \bar{\epsilon}_{i}^{s} \vee \operatorname{ad} \bar{\epsilon}_{j}^{t}$. This shows that the Whitehead product [ad $\bar{\epsilon}_{i}^{s}$, ad $\left.\bar{\epsilon}_{j}^{t}\right]$ is trivial, which is equivalent to that the Samelson product $\left\langle\bar{\epsilon}_{i}^{s}, \bar{\epsilon}_{j}^{t}\right\rangle$ is trivial. Thus we complete the proof of the if part. The only if part is trivial.

3. Review of unstable \boldsymbol{K}-theory

We give a brief review of p-local unstable K-theory which is a group [$X, \mathrm{U}(n)$]. See [3] and [4] for details. Apply the functor $[X,-]$ to a fibre sequence

$$
\Omega \mathrm{U}(\infty) \xrightarrow{\Omega \pi} \Omega W_{n} \xrightarrow{\delta} \mathrm{U}(n) \xrightarrow{i} \mathrm{U}(\infty) \xrightarrow{\pi}\left(W_{n}\right),
$$

where $W_{n}=\mathrm{U}(\infty) / \mathrm{U}(n)$. Then we get an exact sequence of groups

$$
\widetilde{K}^{0}(X) \xrightarrow{\Theta}\left[X, \Omega W_{n}\right] \xrightarrow{\delta_{*}}[X, U(n)] \xrightarrow{i_{*}} \widetilde{K}^{-1}(X),
$$

where Θ is the composite of $(\Omega q)_{*}$ and the Bott map $\beta: \widetilde{K}^{0}(X) \stackrel{\cong}{\Longrightarrow} \widetilde{K}^{-2}(X)$. In order to compute [$X, \mathrm{U}(n)$]. Hamanaka and Kono [4,3] make use of the above exact sequence by comparing the group [$X, \Omega W_{n}$] with the cohomology of X as follows. Looking at the p-component of the homotopy groups of spheres, we see that there is a p-local homotopy equivalence:

$$
W_{n} \simeq{ }_{(p)}\left(S^{2 n+1} \vee S^{2 n+3} \vee \cdots \vee S^{2 n+2 p-3}\right) \cup(\text { higher dimensional cells })
$$

The cohomology of W_{n} is given as

$$
H^{*}\left(W_{n}\right)=\Lambda\left(y_{2 n+1}, y_{2 n+3}, \ldots\right), \quad \pi^{*}\left(y_{i}\right)=x_{i}
$$

Then the map

$$
\prod_{i=0}^{q-1} y_{2 n+2 i+1}: W_{n} \rightarrow \prod_{i=0}^{q-1} K\left(\mathbf{Z}_{(p)}, 2 n+2 i+1\right)
$$

is a $(2 n+2 q)$-equivalence. Put $a_{i-1}=\sigma\left(y_{i}\right)$ for the cohomology suspension σ. It follows that the map

$$
\prod_{i=0}^{q-1} a_{2 n+2 i}: \Omega W_{n} \rightarrow \prod_{i=0}^{q-1} K\left(\mathbf{Z}_{(p)}, 2 n+2 i\right)
$$

is a loop map which is a $(2 n+2 q-1)$-equivalence. Then if X is a CW-complex of dimension $\leqslant 2 n+2 q-2$, we get a natural isomorphism of groups

$$
\left[X, \Omega W_{n}\right] \cong \bigoplus_{i=0}^{q-1} H^{2 n+2 i}(X)
$$

by assigning $\alpha \in\left[X, \Omega W_{n}\right]$ to $\left(\alpha^{*}\left(a_{2 n}\right), \ldots, \alpha^{*}\left(a_{2 n+2 q}\right)\right)$. Moreover, we can easily describe the map Θ via this isomorphism using Chern character. Summarizing, we have established:

Theorem 3.1. (Hamanaka and Kono [4], Hamanaka [3]) For a CW-complex X of dimension $\leqslant 2 n+2 q-2$, there is an exact sequence of groups

$$
\begin{equation*}
\widetilde{K}^{0}(X) \xrightarrow{\Theta} \bigoplus_{i=0}^{q-1} H^{2 n+2 i}(X) \rightarrow[X, \mathrm{U}(n)] \xrightarrow{i_{*}} \widetilde{K}^{1}(X) \tag{3.1}
\end{equation*}
$$

in which Θ is given by

$$
\Theta(\xi)=\left(n!\operatorname{ch}_{n}(\xi), \ldots,(n+q-1)!\operatorname{ch}_{n+q-1}(\xi)\right)
$$

for $\xi \in \widetilde{K}^{0}(X)$, where ch_{k} means the $2 k$-dimensional part of the Chern character.
In order to see the group structure of $[X, \mathrm{U}(n)]$, we look at commutators in $[X, \mathrm{U}(n)]$. Let $\bar{\gamma}: \mathrm{U}(n) \wedge \mathrm{U}(n) \rightarrow \mathrm{U}(n)$ be the reduced commutator map. Since $\mathrm{U}(\infty)$ is homotopy abelian, $i \circ \bar{\gamma}$ is null homotopic so that it lifts to ΩW_{n} through $\delta: \Omega W_{n} \rightarrow \mathrm{U}(n)$. By looking carefully at the Whitehead product of the inclusion $\Sigma \mathrm{U}(n) \rightarrow B \mathrm{U}(n)$, we can choose a good lift as:

Theorem 3.2. (Hamanaka and Kono [4], Hamanaka [3]) There is a lift $\tilde{\gamma}: \mathrm{U}(n) \wedge \mathrm{U}(n) \rightarrow \Omega W_{n}$ of $\bar{\gamma}$ such that, for $k \geqslant n$,

$$
\tilde{\gamma}\left(a_{2 k}\right)=\sum_{\substack{i+j+1=k \\ 0 \leqslant i, j \leqslant n-1}} x_{2 i+1} \otimes x_{2 j+1}
$$

Corollary 3.1. Let X be a CW-complex of dimension $\leqslant 2 n+2 q-2$. For $\alpha, \beta \in[X, U(n)]$, we put

$$
\theta_{k}=\sum_{\substack{i+j+1=k \\ 0 \leqslant i, j \leqslant n-1}} \alpha^{*}\left(x_{2 i+1}\right) \beta^{*}\left(x_{2 j+1}\right)
$$

Then the commutator $[\alpha, \beta]$ comes from

$$
\left(\theta_{n}, \ldots, \theta_{n+q-1}\right)
$$

in the exact sequence (3.1).

4. Calculation of the Samelson product $\left\langle\boldsymbol{\epsilon}_{\boldsymbol{i}}^{\boldsymbol{s}}, \boldsymbol{\epsilon}_{\boldsymbol{j}}^{\boldsymbol{t}}\right\rangle$

We calculate the Samelson product $\left\langle\epsilon_{i}^{S}, \epsilon_{j}^{t}\right\rangle$ by using results in the previous section. When X is simply connected, we may identify $[X, S U(n)]$ and $[X, \mathrm{U}(n)]$ since they are naturally isomorphic. By Corollary 3.1 , we have:

Proposition 4.1. Put

$$
\chi_{k}=\sum_{\substack{0 \leqslant a \leqslant \rho(\ell, s)-1 \\ 0 \leqslant b \leqslant \rho(m, t)-1 \\ \ell+m+(a+b) q+1=k}} v_{2 \ell+2 a q+1} \otimes v_{2 m+2 b q+1}
$$

Then if $\ell+m+(\rho(\ell, s)+\rho(m, t)-2) q+1 \leqslant n+q-1$, the commutator $\left[\epsilon_{\ell}^{s} \circ \pi_{\ell}^{s}, \epsilon_{m}^{t} \circ \pi_{m}^{t}\right]$ comes from $\left(\chi_{n}, \ldots, \chi_{n+q-2}\right)$ in the exact sequence of Theorem 3.1 with $X=A_{\ell}^{\rho(\ell, s)} \times A_{m}^{\rho(m, t)}$, where π_{k}^{r} is the projection $A_{\ell}^{\rho(\ell, s)} \times A_{m}^{\rho(m, t)} \rightarrow A_{k}^{\rho(k, r)}$ for $(k, r)=(\ell, s),(m, t)$.

We denote the canonical line bundle over CPr by η. Put $\xi_{2 k+1}=e_{m}(r)^{*}\left(\beta\left(\eta^{k}-1\right)\right) \in \widetilde{K}^{-1}\left(A_{m}^{\rho(m, r)}\right)$, where β is the Bott map as above and 1 means the rank one trivial line bundle. Then it is easy to see that

$$
\widetilde{K}^{-1}\left(A_{m}^{\rho(m, r)}\right)=\left\langle\xi_{2 m+1}, \xi_{2 m+2 q+1}, \ldots, \xi_{2 m+2(\rho(m, r)-1) q+1}\right\rangle
$$

and

$$
\operatorname{ch}\left(\xi_{2 m+2 i q+1}\right)=\sum_{a=0}^{\rho(m, r)-1} \frac{(m+i q)^{m+a q}}{(m+a q)!} \Sigma v_{2 m+2 a q+1} .
$$

In particular, we obtain:
Proposition 4.2. $\widetilde{K}^{0}\left(A_{\ell}^{\rho(\ell, s)} \wedge A_{m}^{\rho(m, t)}\right)$ is a free $\mathbf{Z}_{(p)}$-module generated by $\beta^{-1}\left(\xi_{2 \ell+2 i q+1} \wedge \xi_{2 m+2 j q+1}\right)$ for $0 \leqslant i \leqslant \rho(\ell, s)-1$ and $0 \leqslant j \leqslant \rho(m, t)-1$, and we have

$$
\operatorname{ch}_{k}\left(\beta^{-1}\left(\xi_{2 \ell+2 i q+1} \wedge \xi_{2 m+2 j q+1}\right)\right)=\sum_{\substack{0 \leqslant a \leqslant \rho(\ell, s)-1 \\ 0 \leqslant b \leqslant \rho(m, t)-1 \\ \ell+m+1+(a+b) q=k}} \frac{(\ell+i q)^{\ell+a q}(m+j q)^{m+b q}}{(\ell+a q)!(m+b q)!} v_{2 \ell+2 a q+1} \otimes v_{2 m+2 b q+1} .
$$

Applying the above results, we obtain a criterion for the triviality of $\left\langle i^{s}, i^{t}\right\rangle$.
Theorem 4.1. Suppose that $s, t \leqslant q^{2}+1$ and $n+1 \leqslant s+t \leqslant n+q$. The Samelson product $\left\langle i^{s}, i^{t}\right\rangle$ is trivial if and only if for all (c, d) satisfying conditions

$$
\begin{equation*}
1 \leqslant c \leqslant s-1, \quad 1 \leqslant d \leqslant t-1, \quad n \leqslant c+d+1 \leqslant n+q-1, \tag{4.1}
\end{equation*}
$$

it holds that

$$
(c+d+1)\binom{c+d}{c} \not \equiv 0
$$

Proof. As in the proof of Theorem 2.1, we have

$$
\left[\epsilon_{i}^{s} \circ \pi_{i}^{s}, \epsilon_{j}^{t} \circ \pi_{j}^{t}\right]=\pi^{*}\left(\left\langle\epsilon_{i}^{s}, \epsilon_{j}^{t}\right\rangle\right)
$$

in the group $\left[A_{i}^{\rho(i, s)} \times A_{j}^{\rho(j, t)}, \mathrm{SU}(n)\right]$ and π^{*} is injective, where π is as in the proof of Theorem 2.1 and π_{k}^{r} is as in Proposition 4.1. Then we check the triviality of the commutator $\left[\epsilon_{i}^{s} \circ \pi_{i}^{s}, \epsilon_{j}^{t} \circ \pi_{j}^{t}\right]$.

Put $c_{i}=i+(\rho(i, s)-1) q$ and $d_{j}=j+(\rho(j, t)-1) q$ for $1 \leqslant i, j \leqslant q$. If c_{i} and d_{j} satisfy $n \leqslant c_{i}+d_{j} \leqslant n+q-1$, the commutator $\left[\epsilon_{i}^{s} \circ \pi_{i}^{s}, \epsilon_{j}^{t} \circ \pi_{j}^{t}\right]$ comes from $H^{2 c_{i}+2 d_{j}}\left(A_{i}^{\rho(i, s)} \times A_{j}^{\rho(j, t)}\right)$ in the exact sequence of 3.1. Then by Theorem 3.1, Propositions 4.1 and 4.2, $\left[\epsilon_{i}^{s} \circ \pi_{i}^{s}, \epsilon_{j}^{t} \circ \pi_{j}^{t}\right]$ is trivial if and only if $\frac{\left(c_{i}+d_{j}+1\right)!}{c_{i}\left(d_{j}!\right.} \not \equiv 0$ (p). Since the set of all pairs $\left(c_{i}, d_{j}\right)$ for $1 \leqslant i, j \leqslant q$ is exactly the same as that of pairs (c, d) satisfying the above condition (4.1), the proof is completed.

Proof of Theorem 1.2. We assume $s+t \leqslant n+q$ from which together with the fact that the nontriviality of $\left\langle i^{s}, i^{t}\right\rangle$ implies that of $\left\langle i^{u}, i^{\nu}\right\rangle$ for $s \leqslant u$ and $t \leqslant v$, we can deduce the result for $s+t \geqslant n+q+1$. Note, in particular, that we have $s+t<p^{2}$ under this assumption.

First, we suppose $s^{\prime}+t^{\prime} \geqslant p+1$. If $s+t \leqslant n$, then $\left\langle i^{s}, i^{t}\right\rangle$ is trivial, obviously. Then we suppose further that $s+t \geqslant n+1$. Put $c=s-1$ and $d=t-1$. Then (c, d) satisfies the condition (4.1). When $s^{\prime}+t^{\prime}=p+1$, we have $c+d+1 \equiv 0(p)$ and then $\left\langle i^{s}, i^{t}\right\rangle$ is nontrivial by Theorem 4.1. Suppose $s^{\prime}+t^{\prime} \geqslant p+2$. Then we have $c+d+1 \not \equiv 0$ (p). By Lucas' theorem and $c+d<p^{2}$, we get $\binom{c+d}{c} \equiv 0(p)$ if and only if $\binom{\overline{c+d}}{\bar{c}}=0$, where \bar{m} is the remainder of a positive integer m divided by p. By definition, we have $\overline{c+d}=s^{\prime}+t^{\prime}-2-p$ and $\bar{c}=s^{\prime}-1$, and thus $\overline{c+d}<\bar{c}$ which implies $\binom{\overline{c+d}}{\bar{c}}=0$. Therefore we have established the first part of Theorem 1.2.

Next, we suppose $s^{\prime}+t^{\prime} \leqslant p$. Choose (c, d) to satisfy the condition (4.1). Then, as above, we have $\binom{c+d}{c} \equiv 0(p)$ if and only if $\overline{c+d}<\bar{c}$. One can easily see that $\overline{c+d}<\bar{c}$ if and only if $\bar{c}+\bar{d} \geqslant p$. Suppose $s-s^{\prime} \leqslant c$ and $t-t^{\prime} \leqslant d$. Then we have $\bar{c}+\bar{d} \leqslant p-2$ since $\bar{c} \leqslant s^{\prime}-1, \bar{d} \leqslant t^{\prime}-1$ and $s^{\prime}+t^{\prime} \leqslant p$. Thus we have obtained that $\binom{c+d}{c} \equiv 0(p)$ implies

$$
c+d+1 \leqslant \max \left\{s+t-s^{\prime}-1, s+t-t^{\prime}-1\right\}=s+t-\min \left\{s^{\prime}, t^{\prime}\right\}-1 .
$$

Now, for $n \leqslant c+d+1$, we get $\binom{c+d}{c} \equiv 0(p)$ implies $n+1 \leqslant s+t-\min \left\{s^{\prime}, t^{\prime}\right\}$. We also have that $c+d+1 \equiv 0(p)$ implies $n \leqslant s+t-s^{\prime}-t^{\prime} \leqslant s+t-\min \left\{s^{\prime}, t^{\prime}\right\}-1$. Then it follows from Theorem 4.1 that if $\left\langle i^{s}, i^{t}\right\rangle$ is nontrivial, then $n+1 \leqslant$
$s+t-\min \left\{s^{\prime}, t^{\prime}\right\}$. Conversely, if $n+1 \leqslant s+t-\min \left\{s^{\prime}, t^{\prime}\right\}$, we may put $(c, d)=\left(s-s^{\prime}-1, t-1\right)$ or $\left(s-1, t-t^{\prime}-1\right)$ to get $\overline{c+d}<\bar{c}$, where (c, d) satisfies the condition (4.1). Thus, by Theorem 4.1, we obtain if $n+1 \leqslant s+t-\min \left\{s^{\prime}, t^{\prime}\right\}$, then $\left\langle i^{s}, i^{t}\right\rangle$ is nontrivial. This completes the proof.

References

[1] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960) 249-256.
[2] F. Cohen, Splitting certain suspensions via self-maps, Illinois J. Math. 20 (2) (1976) 336-347.
[3] H. Hamanaka, On Samelson products in p-localized unitary groups, Topology Appl. 154 (2007) 573-583.
[4] H. Hamanaka, A. Kono, On [X, $\mathrm{U}(n)$] when $\operatorname{dim} X$ is $2 n$, J. Math. Kyoto Univ. 43 (2003) 333-348.
[5] P. Hilton, G. Mislin, J. Roitberg, Localization of nilpotent groups and spaces, in: North-Holland Mathematics Studies, vol. 15, Notas de Matemática (Notes on Mathematics), vol. 55, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam, Oxford/New York, 1975.
[6] S. Kaji, D. Kishimoto, Homotopy nilpotency in p-regular loop spaces, Math. Z. 264 (1) (2010) 209-224.
[7] D. Kishimoto, Homotopy nilpotency in localized SU(n), Homology, Homotopy Appl. 11 (1) (2009) 61-79.
[8] C.A. McGibbon, Homotopy commutativity in localized groups, Amer. J. Math. 106 (3) (1984) 665-687.
[9] M. Mimura, G. Nishida, H. Toda, Mod p decomposition of compact Lie groups, Publ. Res. Inst. Math. Sci. 13 (3) (1977/1978) 627-680.

[^0]: * Corresponding author.

 E-mail address: tnagao@math.kyoto-u.ac.jp (T. Nagao).

