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if s + t � n. We consider the p-localization analog of this problem and give an answer at
odd primes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fix a positive integer n � 2, and let is denote the inclusion SU(s) → SU(n) for s � n. We say that for s, t � n, SU(s) and
SU(t) commute in SU(n) up to homotopy if the Samelson product 〈is, it〉 is trivial. It is a naive question for which values
of s, t , SU(s) and SU(t) homotopy commute in SU(n), and Bott [1] gave a complete answer to this:

Theorem 1.1. (Bott [1]) SU(s) and SU(t) homotopy commute in SU(n) if and only if s + t � n.

Localize SU(n) at a prime p in the sense of Hilton, Mislin and Roitberg [5], and denote the p-localization by −(p) . We say
that SU(s)(p) and SU(t)(p) homotopy commute in SU(n)(p) if the Samelson product 〈is

(p)
, it

(p)
〉 is trivial as well as the usual

case, where the multiplicative structure of SU(n)(p) is inherited from SU(n). As is seen in [8,7,6], the above multiplicative
structure on SU(n)(p) depends on the prime p. Then it is worth considering the p-localization analog of the above question,
that is, for which values of s, t , SU(s)(p) and SU(t)(p) homotopy commute in SU(n)(p) .

For a positive integer m, we define m′ by m ≡ m′ (p) and 1 � m′ � p. Hereafter, let p denote an odd prime, and put
q = p − 1.

Theorem 1.2. For positive integers s, t,n satisfying 2 � s, t � n � q2 + 1, we have:

1. Under the condition s′ + t′ � p + 1, SU(s)(p) and SU(t)(p) homotopy commute in SU(n)(p) if and only if s + t � n.
2. Under the condition s′ + t′ � p, SU(s)(p) and SU(t)(p) homotopy commute in SU(n)(p) if and only if s + t − min{s′, t′} � n.

Outline of the proof is as follows. We first decompose the Samelson product 〈is
(p), it

(p)〉 into easier ones using the mod p

decomposition of SU(n). We next calculate these Samelson products by applying unstable K -theory of Hamanaka and Kono
[4,3], and determine the triviality of the Samelson product 〈is

(p), it
(p)〉.
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2. Decomposition of the Samelson product 〈is
(p), it

(p)〉

Hereafter, everything will be localized at the odd prime p. Then, in particular, the coefficients of cohomology will be Z(p) .
We will often make no distinction between maps and their homotopy classes.

As in the introduction, we fix a positive integer n � 2. For 1 � m � q, we set:

ρ(m,n) =
{ �n−2

q 	 + 1, 1 � m � n − �n−2
q 	q − 1,

�n−2
q 	, n − �n−2

q 	q � m � q.

Let us recall the mod p decomposition of SU(n). Recall that the cohomology of SU(n) is given as

H∗(SU(n)
) = Λ(x3, x5, . . . , x2n−1),

where x2i−1 is the suspension of the universal Chern class ci . For 1 � m � q, Mimura, Nishida and Toda [9] constructed a
simply connected finite complex Bk

m (or Bk
m(p)) having the following properties:

1. H∗(Bk
m) = Λ(u2m+1, u2m+2q+1, . . . , u2m+2(k−1)q+1), |ui | = i.

2. There exists a map ēm(n) : Bρ(m,n)
m → SU(n) such that (ēm(n))∗(x2m+2iq+1) = u2m+2iq+1 for i = 0, . . . , ρ(m,n).

Then, in particular, the map

ϕn = μq ◦ (
ē1(n) × · · · × ēq(n)

) : Bρ(1,n)

1 × · · · × Bρ(q,n)
q → SU(n)

is a p-local homotopy equivalence, where μq is the q-fold multiplication of SU(n). This mod p decomposition of SU(n)

corresponds to that of ΣCPn−1 via the inclusion g : ΣCPn−1 → SU(n) as follows. As is seen in [2] and [9], for 1 � m � q,
there is a simply connected finite complex Ak

m having the following properties:

1. H∗(Ak
m) = 〈v2m+1, v2m+2q+1, . . . , v2m+2(k−1)q+1〉, |vi | = i.

2. There exists a map g′ : Ak
m → Bk

m such that g′ ∗(u2m+2iq+1) = v2m+2iq+1 for i = 0, . . . ,k − 1.

3. There exists a map em(n) : Aρ(m,n)
m → ΣCPn−1 satisfying a homotopy commutative diagram:

Aρ(m,n)
m

em(n)

g′

ΣCPn−1

g

Bρ(m,n)
m ēm(n)

SU(n)

We have an additional property of the map g′ : Ak
m → Bk

m .

Proposition 2.1. (Cohen [2]) If k � q, then Σ g′ :Σ Ak
m → Σ Bk

m admits a left homotopy inverse.

For s � n, we put εs
m = is ◦ g ◦ em(s) and ε̄s

m = is ◦ ēm(s).

Theorem 2.1. Suppose s, t � q2 + 1. Then 〈is, it〉 is trivial if and only if so is 〈εs
i , ε

t
j〉 for each 1 � i, j � q.

Proof. For the pinch map π : X × Y → X ∧ Y , we notice that the induced map π∗ : [X ∧ Y ,SU(n)] → [X × Y ,SU(n)] is
injective. Then the triviality of π∗(〈is, in〉) is equivalent to that of 〈is, it〉.

Denote the projection
∏q

i=1 Bρ(i,r)
i → Bρ(m,r)

m and the diagonal map X → Xn by pm and �n
X , respectively. Note that the

composite of maps

SU(r)
�

q
SU(r)−−−→

q∏
i=1

SU(r)
∏q

i=1 ϕ−1
r−−−−−→

q∏
i=1

q∏
j=1

Bρ( j,r)
j

∏q
i=1 pi−−−−→

q∏
i=1

Bρ(i,r)
i

ϕr−→ SU(r)

is equal to the identity of SU(r). Then, in particular, the product (ε̄r
1 ◦ p1 ◦ϕ−1

r ) · · · (ε̄r
q ◦ pq ◦ϕ−1

r ) in the group [SU(s),SU(n)]
is the map is . Let qr : SU(s)× SU(t) → SU(r) be the projection for r = s, t . We put λr

i = ε̄r
i ◦ pi ◦ϕ−1

r ◦ qr for r = s, t . Then, for
(qs × qt) ◦ �2

SU(s)×SU(t) = 1SU(s)×SU(t) , we obtain an equality[
λs

1 · · ·λs
q, λ

t
1 · · ·λt

q

] = π∗(〈is, it 〉)
where the left-hand side is the commutator in the group [SU(s) × SU(t),SU(n)].
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Let G be a group, and let xy stand for yxy−1 for x, y ∈ G . Then obviously we have

[x, yz] = [x, y][x, z]y

for x, y, z ∈ G . It follows that [λs
1 · · ·λs

q, λ
t
1 · · ·λt

q] is equal to a product of [λs
i , λ

t
j]αi j for some αi j ∈ [SU(s) × SU(t),SU(n)].

Then we get 〈is, it〉 is trivial if so is [λs
i , λ

t
j] for each i, j. On the other hand, we have[

λs
i , λ

t
j

] = (qs × qt)
∗ ◦ π∗(〈ε̄s

i , ε̄
t
j

〉)
as well as above. Thus we obtain 〈is, it〉 is trivial if so is 〈ε̄s

i , ε̄
t
j〉 for each i, j.

Assume r � q2 + 1. Let κi : Σ Bρ(i,r)
i → Σ Aρ(i,r)

i be a left homotopy inverse in Proposition 2.1. We denote the composite

ΣSU(r)
Σϕ−1

r−−−→
 Σ

( q∏
i=1

(
Bρ(i,r)

i

)) proj−−→
q∨

i=1

Σ Bρ(i,r)
i

∨q
i=1 κi−−−−→

q∨
i=1

Σ Aρ(i,r)
i

by κ . Then, as in [8], we deduce that there is a self homotopy equivalence α : SU(r) → SU(r) satisfying the following
homotopy commutative diagram by looking at cohomology.

ΣSU(r)
ad 1SU(r)

κ◦Σα

BSU(r)

∨q
i=1 Σ Aρ(i,r)

i ∨q
i=1 adεr

i

BSU(r)

Here, ad : [X,ΩY ] ≈ [Σ X, Y ] means the adjoint congruence. Since
∨q

i=1 Σ Aρ(i,r)
i is a homotopy retract of ΣSU(r), by rear-

ranging the map g′ : Aρ(i,r)
i → Bρ(i,r)

i , we may assume α is the identity. Then we get(
adεr

i

) ◦ κi = ad ε̄r
i . (2.1)

Now we suppose that 〈εs
i , ε

t
j〉 is trivial, where s, t � q2 + 1. Equivalently, we suppose the Whitehead product [adεs

i ,adεt
j] is

trivial. Then there is an extension Σ Aρ(i,s)
i × Σ Aρ( j,t)

j → BSU(n) of adεs
i ∨ adεt

j . Then it follows from (2.1) that there exists

an extension Σ Bρ(i,s)
i × Σ Bρ( j,t)

j → BSU(n) of ad ε̄s
i ∨ ad ε̄t

j . This shows that the Whitehead product [ad ε̄s
i ,ad ε̄t

j] is trivial,

which is equivalent to that the Samelson product 〈ε̄s
i , ε̄

t
j〉 is trivial. Thus we complete the proof of the if part. The only if

part is trivial. �
3. Review of unstable K -theory

We give a brief review of p-local unstable K -theory which is a group [X,U(n)]. See [3] and [4] for details. Apply the
functor [X,−] to a fibre sequence

ΩU(∞)
Ωπ−−→ ΩWn

δ−→ U(n)
i−→ U(∞)

π−→ (Wn),

where Wn = U(∞)/U(n). Then we get an exact sequence of groups

K̃ 0(X)
Θ−→ [X,ΩWn] δ∗−→ [

X,U(n)
] i∗−→ K̃ −1(X),

where Θ is the composite of (Ωq)∗ and the Bott map β : K̃ 0(X)
∼=−→ K̃ −2(X). In order to compute [X,U(n)], Hamanaka and

Kono [4,3] make use of the above exact sequence by comparing the group [X,ΩWn] with the cohomology of X as follows.
Looking at the p-component of the homotopy groups of spheres, we see that there is a p-local homotopy equivalence:

Wn 
(p)

(
S2n+1 ∨ S2n+3 ∨ · · · ∨ S2n+2p−3) ∪ (higher dimensional cells).

The cohomology of Wn is given as

H∗(Wn) = Λ(y2n+1, y2n+3, . . .), π∗(yi) = xi .

Then the map

q−1∏
y2n+2i+1 : Wn →

q−1∏
K (Z(p),2n + 2i + 1)
i=0 i=0
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is a (2n + 2q)-equivalence. Put ai−1 = σ(yi) for the cohomology suspension σ . It follows that the map

q−1∏
i=0

a2n+2i : ΩWn →
q−1∏
i=0

K (Z(p),2n + 2i)

is a loop map which is a (2n + 2q − 1)-equivalence. Then if X is a CW-complex of dimension � 2n + 2q − 2, we get a natural
isomorphism of groups

[X,ΩWn] ∼=
q−1⊕
i=0

H2n+2i(X)

by assigning α ∈ [X,ΩWn] to (α∗(a2n), . . . ,α∗(a2n+2q)). Moreover, we can easily describe the map Θ via this isomorphism
using Chern character. Summarizing, we have established:

Theorem 3.1. (Hamanaka and Kono [4], Hamanaka [3]) For a CW-complex X of dimension � 2n + 2q − 2, there is an exact sequence
of groups

K̃ 0(X)
Θ−→

q−1⊕
i=0

H2n+2i(X) → [
X,U(n)

] i∗−→ K̃ 1(X) (3.1)

in which Θ is given by

Θ(ξ) = (
n!chn(ξ), . . . , (n + q − 1)!chn+q−1(ξ)

)
for ξ ∈ K̃ 0(X), where chk means the 2k-dimensional part of the Chern character.

In order to see the group structure of [X,U(n)], we look at commutators in [X,U(n)]. Let γ̄ : U(n) ∧ U(n) → U(n) be
the reduced commutator map. Since U(∞) is homotopy abelian, i ◦ γ̄ is null homotopic so that it lifts to ΩWn through
δ : ΩWn → U(n). By looking carefully at the Whitehead product of the inclusion ΣU(n) → BU(n), we can choose a good lift
as:

Theorem 3.2. (Hamanaka and Kono [4], Hamanaka [3]) There is a lift γ̃ : U(n) ∧ U(n) → ΩWn of γ̄ such that, for k � n,

γ̃ (a2k) =
∑

i+ j+1=k
0�i, j�n−1

x2i+1 ⊗ x2 j+1.

Corollary 3.1. Let X be a CW-complex of dimension � 2n + 2q − 2. For α,β ∈ [X,U(n)], we put

θk =
∑

i+ j+1=k
0�i, j�n−1

α∗(x2i+1)β
∗(x2 j+1).

Then the commutator [α,β] comes from

(θn, . . . , θn+q−1)

in the exact sequence (3.1).

4. Calculation of the Samelson product 〈εs
i , ε

t
j〉

We calculate the Samelson product 〈εs
i , ε

t
j〉 by using results in the previous section. When X is simply connected, we

may identify [X,SU(n)] and [X,U(n)] since they are naturally isomorphic. By Corollary 3.1, we have:

Proposition 4.1. Put

χk =
∑

0�a�ρ(�,s)−1
0�b�ρ(m,t)−1

�+m+(a+b)q+1=k

v2�+2aq+1 ⊗ v2m+2bq+1.

Then if �+m+ (ρ(�, s)+ρ(m, t)−2)q +1 � n+q −1, the commutator [εs
� ◦π s

� , ε
t
m ◦π t

m] comes from (χn, . . . ,χn+q−2) in the exact

sequence of Theorem 3.1 with X = Aρ(�,s) × Aρ(m,t)
m , where π r is the projection Aρ(�,s) × Aρ(m,t)

m → Aρ(k,r) for (k, r) = (�, s), (m, t).
� k � k
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We denote the canonical line bundle over CP r by η. Put ξ2k+1 = em(r)∗(β(ηk − 1)) ∈ K̃ −1(Aρ(m,r)
m ), where β is the Bott

map as above and 1 means the rank one trivial line bundle. Then it is easy to see that

K̃ −1(Aρ(m,r)
m

) = 〈ξ2m+1, ξ2m+2q+1, . . . , ξ2m+2(ρ(m,r)−1)q+1〉
and

ch(ξ2m+2iq+1) =
ρ(m,r)−1∑

a=0

(m + iq)m+aq

(m + aq)! Σ v2m+2aq+1.

In particular, we obtain:

Proposition 4.2. K̃ 0(Aρ(�,s)
� ∧ Aρ(m,t)

m ) is a free Z(p)-module generated by β−1(ξ2�+2iq+1 ∧ ξ2m+2 jq+1) for 0 � i � ρ(�, s) − 1 and
0 � j � ρ(m, t) − 1, and we have

chk
(
β−1(ξ2�+2iq+1 ∧ ξ2m+2 jq+1)

) =
∑

0�a�ρ(�,s)−1
0�b�ρ(m,t)−1

�+m+1+(a+b)q=k

(� + iq)�+aq(m + jq)m+bq

(� + aq)!(m + bq)! v2�+2aq+1 ⊗ v2m+2bq+1.

Applying the above results, we obtain a criterion for the triviality of 〈is, it〉.

Theorem 4.1. Suppose that s, t � q2 + 1 and n + 1 � s + t � n + q. The Samelson product 〈is, it〉 is trivial if and only if for all (c,d)

satisfying conditions

1 � c � s − 1, 1 � d � t − 1, n � c + d + 1 � n + q − 1, (4.1)

it holds that

(c + d + 1)

(
c + d

c

)
�≡ 0 (p).

Proof. As in the proof of Theorem 2.1, we have[
εs

i ◦ π s
i , εt

j ◦ π t
j

] = π∗(〈εs
i , ε

t
j

〉)
in the group [Aρ(i,s)

i × Aρ( j,t)
j ,SU(n)] and π∗ is injective, where π is as in the proof of Theorem 2.1 and π r

k is as in

Proposition 4.1. Then we check the triviality of the commutator [εs
i ◦ π s

i , εt
j ◦ π t

j ].
Put ci = i + (ρ(i, s) − 1)q and d j = j + (ρ( j, t) − 1)q for 1 � i, j � q. If ci and d j satisfy n � ci + d j � n + q − 1, the

commutator [εs
i ◦ π s

i , εt
j ◦ π t

j ] comes from H2ci+2d j (Aρ(i,s)
i × Aρ( j,t)

j ) in the exact sequence of 3.1. Then by Theorem 3.1,

Propositions 4.1 and 4.2, [εs
i ◦ π s

i , εt
j ◦ π t

j ] is trivial if and only if
(ci+d j+1)!

ci !d j ! �≡ 0 (p). Since the set of all pairs (ci,d j) for

1 � i, j � q is exactly the same as that of pairs (c,d) satisfying the above condition (4.1), the proof is completed. �
Proof of Theorem 1.2. We assume s + t � n + q from which together with the fact that the nontriviality of 〈is, it〉 implies
that of 〈iu, iv〉 for s � u and t � v , we can deduce the result for s + t � n +q + 1. Note, in particular, that we have s + t < p2

under this assumption.
First, we suppose s′ + t′ � p + 1. If s + t � n, then 〈is, it〉 is trivial, obviously. Then we suppose further that s + t � n + 1.

Put c = s − 1 and d = t − 1. Then (c,d) satisfies the condition (4.1). When s′ + t′ = p + 1, we have c + d + 1 ≡ 0 (p) and
then 〈is, it〉 is nontrivial by Theorem 4.1. Suppose s′ + t′ � p + 2. Then we have c + d + 1 �≡ 0 (p). By Lucas’ theorem and

c + d < p2, we get
(c+d

c

) ≡ 0 (p) if and only if
(c+d

c

) = 0, where m is the remainder of a positive integer m divided by p.

By definition, we have c + d = s′ + t′ − 2 − p and c = s′ − 1, and thus c + d < c which implies
(c+d

c

) = 0. Therefore we have
established the first part of Theorem 1.2.

Next, we suppose s′ + t′ � p. Choose (c,d) to satisfy the condition (4.1). Then, as above, we have
(c+d

c

) ≡ 0 (p) if and

only if c + d < c. One can easily see that c + d < c if and only if c + d � p. Suppose s − s′ � c and t − t′ � d. Then we have
c + d � p − 2 since c � s′ − 1, d � t′ − 1 and s′ + t′ � p. Thus we have obtained that

(c+d
c

) ≡ 0 (p) implies

c + d + 1 � max
{

s + t − s′ − 1, s + t − t′ − 1
} = s + t − min

{
s′, t′} − 1.

Now, for n � c + d + 1, we get
(c+d

c

) ≡ 0 (p) implies n + 1 � s + t − min{s′, t′}. We also have that c + d + 1 ≡ 0 (p) implies
n � s + t − s′ − t′ � s + t − min{s′, t′} − 1. Then it follows from Theorem 4.1 that if 〈is, it〉 is nontrivial, then n + 1 �
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s + t − min{s′, t′}. Conversely, if n + 1 � s + t − min{s′, t′}, we may put (c,d) = (s − s′ − 1, t − 1) or (s − 1, t − t′ − 1) to get
c + d < c, where (c,d) satisfies the condition (4.1). Thus, by Theorem 4.1, we obtain if n + 1 � s + t − min{s′, t′}, then 〈is, it〉
is nontrivial. This completes the proof. �
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