CORE

TOPOLOGY and Its Applications 157 (2010) 1949–1954

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Commutativity in special unitary groups at odd primes

Daisuke Kishimoto, Tomoaki Nagao*

Department of Mathematics, Kyoto University, Kyoto, Japan

ARTICLE INFO

ABSTRACT

Article history: Received 22 January 2010 Received in revised form 11 April 2010 Accepted 12 April 2010

Keywords: Samelson product Homotopy commutativity It is a classical result by Bott that SU(s) and SU(t) homotopy commute in SU(n) if and only if $s + t \leq n$. We consider the *p*-localization analog of this problem and give an answer at odd primes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fix a positive integer $n \ge 2$, and let i^s denote the inclusion $SU(s) \rightarrow SU(n)$ for $s \le n$. We say that for $s, t \le n$, SU(s) and SU(t) commute in SU(n) up to homotopy if the Samelson product $\langle i^s, i^t \rangle$ is trivial. It is a naive question for which values of s, t, SU(s) and SU(t) homotopy commute in SU(n), and Bott [1] gave a complete answer to this:

Theorem 1.1. (Bott [1]) SU(s) and SU(t) homotopy commute in SU(n) if and only if $s + t \le n$.

Localize SU(n) at a prime p in the sense of Hilton, Mislin and Roitberg [5], and denote the p-localization by $-_{(p)}$. We say that $SU(s)_{(p)}$ and $SU(t)_{(p)}$ homotopy commute in $SU(n)_{(p)}$ if the Samelson product $\langle i_{(p)}^{s}, i_{(p)}^{t} \rangle$ is trivial as well as the usual case, where the multiplicative structure of $SU(n)_{(p)}$ is inherited from SU(n). As is seen in [8,7,6], the above multiplicative structure on $SU(n)_{(p)}$ depends on the prime p. Then it is worth considering the p-localization analog of the above question, that is, for which values of s, t, $SU(s)_{(p)}$ and $SU(t)_{(p)}$ homotopy commute in $SU(n)_{(p)}$.

For a positive integer m, we define m' by $m \equiv m'$ (p) and $1 \leq m' \leq p$. Hereafter, let p denote an odd prime, and put q = p - 1.

Theorem 1.2. For positive integers *s*, *t*, *n* satisfying $2 \le s$, $t \le n \le q^2 + 1$, we have:

- 1. Under the condition $s' + t' \ge p + 1$, $SU(s)_{(p)}$ and $SU(t)_{(p)}$ homotopy commute in $SU(n)_{(p)}$ if and only if $s + t \le n$.
- 2. Under the condition $s' + t' \leq p$, SU(s)(p) and SU(t)(p) homotopy commute in SU(n)(p) if and only if $s + t \min\{s', t'\} \leq n$.

Outline of the proof is as follows. We first decompose the Samelson product $\langle i_{(p)}^{s}, i_{(p)}^{t} \rangle$ into easier ones using the mod p decomposition of SU(n). We next calculate these Samelson products by applying unstable K-theory of Hamanaka and Kono [4,3], and determine the triviality of the Samelson product $\langle i_{(p)}^{s}, i_{(p)}^{t} \rangle$.

Corresponding author.

E-mail address: tnagao@math.kyoto-u.ac.jp (T. Nagao).

^{0166-8641/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2010.04.008

2. Decomposition of the Samelson product $\langle i_{(p)}^{s}, i_{(p)}^{t} \rangle$

Hereafter, everything will be localized at the odd prime p. Then, in particular, the coefficients of cohomology will be $\mathbf{Z}_{(p)}$. We will often make no distinction between maps and their homotopy classes.

As in the introduction, we fix a positive integer $n \ge 2$. For $1 \le m \le q$, we set:

$$\rho(m,n) = \begin{cases} \lfloor \frac{n-2}{q} \rfloor + 1, & 1 \leq m \leq n - \lfloor \frac{n-2}{q} \rfloor q - 1 \\ \lfloor \frac{n-2}{q} \rfloor, & n - \lfloor \frac{n-2}{q} \rfloor q \leq m \leq q. \end{cases}$$

Let us recall the mod p decomposition of SU(n). Recall that the cohomology of SU(n) is given as

 $H^*(SU(n)) = \Lambda(x_3, x_5, \dots, x_{2n-1}),$

where x_{2i-1} is the suspension of the universal Chern class c_i . For $1 \le m \le q$, Mimura, Nishida and Toda [9] constructed a simply connected finite complex B_m^k (or $B_m^k(p)$) having the following properties:

- 1. $H^*(B_m^k) = \Lambda(u_{2m+1}, u_{2m+2q+1}, \dots, u_{2m+2(k-1)q+1}), |u_i| = i.$
- 2. There exists a map $\bar{e}_m(n): B_m^{\rho(m,n)} \to SU(n)$ such that $(\bar{e}_m(n))^*(x_{2m+2iq+1}) = u_{2m+2iq+1}$ for $i = 0, ..., \rho(m, n)$.

Then, in particular, the map

$$\varphi_n = \mu_q \circ \left(\bar{e}_1(n) \times \cdots \times \bar{e}_q(n) \right) : B_1^{\rho(1,n)} \times \cdots \times B_q^{\rho(q,n)} \to \mathrm{SU}(n)$$

is a *p*-local homotopy equivalence, where μ_q is the *q*-fold multiplication of SU(*n*). This mod *p* decomposition of SU(*n*) corresponds to that of $\Sigma \mathbb{C}P^{n-1}$ via the inclusion $g: \Sigma \mathbb{C}P^{n-1} \to SU(n)$ as follows. As is seen in [2] and [9], for $1 \leq m \leq q$, there is a simply connected finite complex A_m^k having the following properties:

- 1. $H^*(A_m^k) = \langle v_{2m+1}, v_{2m+2q+1}, \dots, v_{2m+2(k-1)q+1} \rangle, |v_i| = i.$ 2. There exists a map $g': A_m^k \to B_m^k$ such that $g'^*(u_{2m+2iq+1}) = v_{2m+2iq+1}$ for $i = 0, \dots, k-1$. 3. There exists a map $e_m(n): A_m^{\rho(m,n)} \to \Sigma \mathbb{C}P^{n-1}$ satisfying a homotopy commutative diagram:

$$\begin{array}{c|c}
A_{m}^{\rho(m,n)} & \stackrel{e_{m}(n)}{\longrightarrow} \Sigma \mathbb{C}P^{n-1} \\
g' & g \\
B_{m}^{\rho(m,n)} & g' \\
\hline e_{m}(n) & SU(n)
\end{array}$$

We have an additional property of the map $g': A_m^k \to B_m^k$.

Proposition 2.1. (Cohen [2]) If $k \leq q$, then $\Sigma g' : \Sigma A_m^k \to \Sigma B_m^k$ admits a left homotopy inverse.

For $s \leq n$, we put $\epsilon_m^s = i^s \circ g \circ e_m(s)$ and $\bar{\epsilon}_m^s = i^s \circ \bar{e}_m(s)$.

Theorem 2.1. Suppose $s, t \leq q^2 + 1$. Then (i^s, i^t) is trivial if and only if so is $(\epsilon_i^s, \epsilon_i^t)$ for each $1 \leq i, j \leq q$.

Proof. For the pinch map $\pi: X \times Y \to X \wedge Y$, we notice that the induced map $\pi^*: [X \wedge Y, SU(n)] \to [X \times Y, SU(n)]$ is

injective. Then the triviality of $\pi^*(\langle i^s, i^n \rangle)$ is equivalent to that of $\langle i^s, i^t \rangle$. Denote the projection $\prod_{i=1}^q B_i^{\rho(i,r)} \to B_m^{\rho(m,r)}$ and the diagonal map $X \to X^n$ by p_m and Δ_X^n , respectively. Note that the composite of maps

$$\mathrm{SU}(r) \xrightarrow{\Delta^q_{\mathrm{SU}(r)}} \prod_{i=1}^q \mathrm{SU}(r) \xrightarrow{\prod_{i=1}^q \varphi_r^{-1}} \prod_{i=1}^q \prod_{j=1}^q B_j^{\rho(j,r)} \xrightarrow{\prod_{i=1}^q p_i} \prod_{i=1}^q B_i^{\rho(i,r)} \xrightarrow{\varphi_r} \mathrm{SU}(r)$$

is equal to the identity of SU(*r*). Then, in particular, the product $(\bar{\epsilon}_1^r \circ p_1 \circ \varphi_r^{-1}) \cdots (\bar{\epsilon}_q^r \circ p_q \circ \varphi_r^{-1})$ in the group [SU(*s*), SU(*n*)] is the map i^s . Let $q_r : SU(s) \times SU(r) \to SU(r)$ be the projection for r = s, t. We put $\lambda_i^r = \overline{\epsilon}_i^r \circ p_i \circ \varphi_r^{-1} \circ q_r$ for r = s, t. Then, for $(q_s \times q_t) \circ \Delta^2_{SU(s) \times SU(t)} = \mathbf{1}_{SU(s) \times SU(t)}$, we obtain an equality

 $\left[\lambda_1^s \cdots \lambda_a^s, \lambda_1^t \cdots \lambda_a^t\right] = \pi^*(\langle i^s, i^t \rangle)$

where the left-hand side is the commutator in the group $[SU(s) \times SU(t), SU(n)]$.

Let *G* be a group, and let x^y stand for yxy^{-1} for $x, y \in G$. Then obviously we have

$$[x, yz] = [x, y][x, z]^{y}$$

for $x, y, z \in G$. It follows that $[\lambda_1^s \cdots \lambda_q^s, \lambda_1^t \cdots \lambda_q^t]$ is equal to a product of $[\lambda_i^s, \lambda_j^t]^{\alpha_{ij}}$ for some $\alpha_{ij} \in [SU(s) \times SU(t), SU(n)]$. Then we get $\langle i^s, i^t \rangle$ is trivial if so is $[\lambda_i^s, \lambda_i^t]$ for each i, j. On the other hand, we have

$$\left[\lambda_{i}^{s},\lambda_{j}^{t}\right] = (q_{s} \times q_{t})^{*} \circ \pi^{*}\left(\left\langle \bar{\epsilon}_{i}^{s}, \bar{\epsilon}_{j}^{t}\right\rangle\right)$$

as well as above. Thus we obtain $\langle i^s, i^t \rangle$ is trivial if so is $\langle \bar{\epsilon}_i^s, \bar{\epsilon}_i^t \rangle$ for each *i*, *j*.

Assume $r \leq q^2 + 1$. Let $\kappa_i : \Sigma B_i^{\rho(i,r)} \to \Sigma A_i^{\rho(i,r)}$ be a left homotopy inverse in Proposition 2.1. We denote the composite

$$\Sigma \operatorname{SU}(r) \xrightarrow{\Sigma \varphi_r^{-1}} \Sigma \left(\prod_{i=1}^q (B_i^{\rho(i,r)}) \right) \xrightarrow{\operatorname{proj}} \bigvee_{i=1}^q \Sigma B_i^{\rho(i,r)} \xrightarrow{\bigvee_{i=1}^q \kappa_i} \bigvee_{i=1}^q \Sigma A_i^{\rho(i,r)}$$

by κ . Then, as in [8], we deduce that there is a self homotopy equivalence α : SU(r) \rightarrow SU(r) satisfying the following homotopy commutative diagram by looking at cohomology.

$$\begin{split} \Sigma \operatorname{SU}(r) & \xrightarrow{\operatorname{ad} 1_{\operatorname{SU}(r)}} & B \operatorname{SU}(r) \\ & & & & \\ & & & \\ & &$$

Here, ad : $[X, \Omega Y] \approx [\Sigma X, Y]$ means the adjoint congruence. Since $\bigvee_{i=1}^{q} \Sigma A_i^{\rho(i,r)}$ is a homotopy retract of $\Sigma SU(r)$, by rearranging the map $g' : A_i^{\rho(i,r)} \to B_i^{\rho(i,r)}$, we may assume α is the identity. Then we get

$$(\operatorname{ad} \epsilon_i^r) \circ \kappa_i = \operatorname{ad} \bar{\epsilon}_i^r.$$
 (2.1)

Now we suppose that $\langle \epsilon_i^s, \epsilon_j^t \rangle$ is trivial, where $s, t \leq q^2 + 1$. Equivalently, we suppose the Whitehead product $[ad \epsilon_i^s, ad \epsilon_j^t]$ is trivial. Then there is an extension $\Sigma A_i^{\rho(i,s)} \times \Sigma A_j^{\rho(j,t)} \to BSU(n)$ of $ad \epsilon_i^s \lor ad \epsilon_j^t$. Then it follows from (2.1) that there exists an extension $\Sigma B_i^{\rho(i,s)} \times \Sigma B_j^{\rho(j,t)} \to BSU(n)$ of $ad \overline{\epsilon}_i^s \lor ad \overline{\epsilon}_j^t$. This shows that the Whitehead product $[ad \overline{\epsilon}_i^s, ad \overline{\epsilon}_j^t]$ is trivial, which is equivalent to that the Samelson product $\langle \overline{\epsilon}_i^s, \overline{\epsilon}_j^t \rangle$ is trivial. Thus we complete the proof of the if part. The only if part is trivial. \Box

3. Review of unstable K-theory

We give a brief review of *p*-local unstable *K*-theory which is a group [X, U(n)]. See [3] and [4] for details. Apply the functor [X, -] to a fibre sequence

$$\Omega \mathsf{U}(\infty) \xrightarrow{\Omega \pi} \Omega W_n \xrightarrow{\delta} \mathsf{U}(n) \xrightarrow{i} \mathsf{U}(\infty) \xrightarrow{\pi} (W_n).$$

where $W_n = U(\infty)/U(n)$. Then we get an exact sequence of groups

$$\widetilde{K}^{0}(X) \xrightarrow{\Theta} [X, \Omega W_{n}] \xrightarrow{\delta_{*}} [X, U(n)] \xrightarrow{i_{*}} \widetilde{K}^{-1}(X),$$

where Θ is the composite of $(\Omega q)_*$ and the Bott map $\beta : \widetilde{K}^0(X) \xrightarrow{\cong} \widetilde{K}^{-2}(X)$. In order to compute [X, U(n)], Hamanaka and Kono [4,3] make use of the above exact sequence by comparing the group $[X, \Omega W_n]$ with the cohomology of X as follows. Looking at the *p*-component of the homotopy groups of spheres, we see that there is a *p*-local homotopy equivalence:

$$W_n \simeq_{(p)} (S^{2n+1} \lor S^{2n+3} \lor \cdots \lor S^{2n+2p-3}) \cup (\text{higher dimensional cells})$$

The cohomology of W_n is given as

$$H^*(W_n) = \Lambda(y_{2n+1}, y_{2n+3}, \ldots), \quad \pi^*(y_i) = x_i.$$

Then the map

$$\prod_{i=0}^{q-1} y_{2n+2i+1} : W_n \to \prod_{i=0}^{q-1} K(\mathbf{Z}_{(p)}, 2n+2i+1)$$

is a (2n + 2q)-equivalence. Put $a_{i-1} = \sigma(y_i)$ for the cohomology suspension σ . It follows that the map

$$\prod_{i=0}^{q-1} a_{2n+2i} : \Omega W_n \to \prod_{i=0}^{q-1} K(\mathbf{Z}_{(p)}, 2n+2i)$$

is a loop map which is a (2n + 2q - 1)-equivalence. Then if X is a CW-complex of dimension $\leq 2n + 2q - 2$, we get a natural isomorphism of groups

$$[X, \Omega W_n] \cong \bigoplus_{i=0}^{q-1} H^{2n+2i}(X)$$

by assigning $\alpha \in [X, \Omega W_n]$ to $(\alpha^*(a_{2n}), \ldots, \alpha^*(a_{2n+2q}))$. Moreover, we can easily describe the map Θ via this isomorphism using Chern character. Summarizing, we have established:

Theorem 3.1. (Hamanaka and Kono [4], Hamanaka [3]) For a CW-complex X of dimension $\leq 2n + 2q - 2$, there is an exact sequence of groups

$$\widetilde{K}^{0}(X) \xrightarrow{\Theta} \bigoplus_{i=0}^{q-1} H^{2n+2i}(X) \to \left[X, \mathsf{U}(n)\right] \xrightarrow{i_{*}} \widetilde{K}^{1}(X)$$
(3.1)

in which Θ is given by

$$\Theta(\xi) = \left(n! \mathrm{ch}_n(\xi), \dots, (n+q-1)! \mathrm{ch}_{n+q-1}(\xi)\right)$$

for $\xi \in \widetilde{K}^0(X)$, where ch_k means the 2k-dimensional part of the Chern character.

In order to see the group structure of [X, U(n)], we look at commutators in [X, U(n)]. Let $\bar{\gamma} : U(n) \land U(n) \rightarrow U(n)$ be the reduced commutator map. Since $U(\infty)$ is homotopy abelian, $i \circ \bar{\gamma}$ is null homotopic so that it lifts to ΩW_n through $\delta : \Omega W_n \rightarrow U(n)$. By looking carefully at the Whitehead product of the inclusion $\Sigma U(n) \rightarrow BU(n)$, we can choose a good lift as:

Theorem 3.2. (Hamanaka and Kono [4], Hamanaka [3]) There is a lift $\tilde{\gamma}$: U(n) \wedge U(n) $\rightarrow \Omega W_n$ of $\tilde{\gamma}$ such that, for $k \ge n$,

$$\tilde{\gamma}(a_{2k}) = \sum_{\substack{i+j+1=k\\0\leqslant i,j\leqslant n-1}} x_{2i+1} \otimes x_{2j+1}.$$

Corollary 3.1. Let X be a CW-complex of dimension $\leq 2n + 2q - 2$. For $\alpha, \beta \in [X, U(n)]$, we put

$$\theta_k = \sum_{\substack{i+j+1=k\\0\leqslant i,j\leqslant n-1}} \alpha^*(x_{2i+1})\beta^*(x_{2j+1}).$$

Then the commutator $[\alpha, \beta]$ comes from

 $(\theta_n,\ldots,\theta_{n+q-1})$

in the exact sequence (3.1).

4. Calculation of the Samelson product $\langle \epsilon_i^s, \epsilon_j^t \rangle$

We calculate the Samelson product $\langle \epsilon_i^s, \epsilon_j^t \rangle$ by using results in the previous section. When X is simply connected, we may identify [X, SU(n)] and [X, U(n)] since they are naturally isomorphic. By Corollary 3.1, we have:

Proposition 4.1. Put

$$\chi_k = \sum_{\substack{0 \leqslant a \leqslant \rho(\ell,s) - 1\\ 0 \leqslant b \leqslant \rho(m,t) - 1\\ \ell + m + (a+b)q + 1 = k}} \nu_{2\ell+2aq+1} \otimes \nu_{2m+2bq+1}.$$

 $\begin{array}{l} \text{Then if } \ell + m + (\rho(\ell,s) + \rho(m,t) - 2)q + 1 \leqslant n + q - 1, \text{ the commutator } [\epsilon^s_\ell \circ \pi^s_\ell, \epsilon^t_m \circ \pi^t_m] \text{ comes from } (\chi_n, \ldots, \chi_{n+q-2}) \text{ in the exact sequence of Theorem 3.1 with } X = A_\ell^{\rho(\ell,s)} \times A_m^{\rho(m,t)}, \text{ where } \pi^r_k \text{ is the projection } A_\ell^{\rho(\ell,s)} \times A_m^{\rho(m,t)} \to A_k^{\rho(k,r)} \text{ for } (k,r) = (\ell,s), (m,t). \end{array}$

We denote the canonical line bundle over $\mathbb{C}P^r$ by η . Put $\xi_{2k+1} = e_m(r)^*(\beta(\eta^k - 1)) \in \widetilde{K}^{-1}(A_m^{\rho(m,r)})$, where β is the Bott map as above and 1 means the rank one trivial line bundle. Then it is easy to see that

$$\widetilde{K}^{-1}(A_m^{\rho(m,r)}) = \langle \xi_{2m+1}, \xi_{2m+2q+1}, \dots, \xi_{2m+2(\rho(m,r)-1)q+1} \rangle$$

and

ch(
$$\xi_{2m+2iq+1}$$
) = $\sum_{a=0}^{\rho(m,r)-1} \frac{(m+iq)^{m+aq}}{(m+aq)!} \Sigma v_{2m+2aq+1}.$

In particular, we obtain:

Proposition 4.2. $\widetilde{K}^0(A_{\ell}^{\rho(\ell,s)} \wedge A_m^{\rho(m,t)})$ is a free $\mathbf{Z}_{(p)}$ -module generated by $\beta^{-1}(\xi_{2\ell+2iq+1} \wedge \xi_{2m+2jq+1})$ for $0 \leq i \leq \rho(\ell, s) - 1$ and $0 \leq j \leq \rho(m, t) - 1$, and we have

$$\operatorname{ch}_{k}\left(\beta^{-1}(\xi_{2\ell+2iq+1} \wedge \xi_{2m+2jq+1})\right) = \sum_{\substack{0 \leqslant a \leqslant \rho(\ell,s) - 1\\ 0 \leqslant b \leqslant \rho(m,t) - 1\\ \ell+m+1+(a+b)q = k}} \frac{(\ell+iq)^{\ell+aq}(m+jq)^{m+bq}}{(\ell+aq)!(m+bq)!} v_{2\ell+2aq+1} \otimes v_{2m+2bq+1}$$

Applying the above results, we obtain a criterion for the triviality of $\langle i^s, i^t \rangle$.

Theorem 4.1. Suppose that $s, t \leq q^2 + 1$ and $n + 1 \leq s + t \leq n + q$. The Samelson product $\langle i^s, i^t \rangle$ is trivial if and only if for all (c, d) satisfying conditions

$$1 \le c \le s - 1, \qquad 1 \le d \le t - 1, \qquad n \le c + d + 1 \le n + q - 1, \tag{4.1}$$

it holds that

$$(c+d+1)\binom{c+d}{c} \neq 0$$
 (p).

Proof. As in the proof of Theorem 2.1, we have

$$\left[\epsilon_i^s \circ \pi_i^s, \epsilon_j^t \circ \pi_j^t\right] = \pi^* \left(\left<\epsilon_i^s, \epsilon_j^t\right>\right)$$

in the group $[A_i^{\rho(i,s)} \times A_j^{\rho(j,t)}, SU(n)]$ and π^* is injective, where π is as in the proof of Theorem 2.1 and π_k^r is as in Proposition 4.1. Then we check the triviality of the commutator $[\epsilon_i^s \circ \pi_i^s, \epsilon_i^t \circ \pi_i^t]$.

Put $c_i = i + (\rho(i, s) - 1)q$ and $d_j = j + (\rho(j, t) - 1)q$ for $1 \le i, j \le q$. If c_i and d_j satisfy $n \le c_i + d_j \le n + q - 1$, the commutator $[\epsilon_i^s \circ \pi_i^s, \epsilon_j^t \circ \pi_j^t]$ comes from $H^{2c_i+2d_j}(A_i^{\rho(i,s)} \times A_j^{\rho(j,t)})$ in the exact sequence of 3.1. Then by Theorem 3.1, Propositions 4.1 and 4.2, $[\epsilon_i^s \circ \pi_i^s, \epsilon_j^t \circ \pi_j^t]$ is trivial if and only if $\frac{(c_i+d_j+1)!}{c_i!d_j!} \ne 0$ (*p*). Since the set of all pairs (c_i, d_j) for $1 \le i, j \le q$ is exactly the same as that of pairs (c, d) satisfying the above condition (4.1), the proof is completed. \Box

Proof of Theorem 1.2. We assume $s + t \le n + q$ from which together with the fact that the nontriviality of $\langle i^s, i^t \rangle$ implies that of $\langle i^u, i^v \rangle$ for $s \le u$ and $t \le v$, we can deduce the result for $s + t \ge n + q + 1$. Note, in particular, that we have $s + t < p^2$ under this assumption.

First, we suppose $s' + t' \ge p + 1$. If $s + t \le n$, then $\langle i^s, i^t \rangle$ is trivial, obviously. Then we suppose further that $s + t \ge n + 1$. Put c = s - 1 and d = t - 1. Then (c, d) satisfies the condition (4.1). When s' + t' = p + 1, we have $c + d + 1 \equiv 0$ (p) and then $\langle i^s, i^t \rangle$ is nontrivial by Theorem 4.1. Suppose $s' + t' \ge p + 2$. Then we have $c + d + 1 \ne 0$ (p). By Lucas' theorem and $c + d < p^2$, we get $\binom{c+d}{c} \equiv 0$ (p) if and only if $\binom{\overline{c+d}}{\overline{c}} = 0$, where \overline{m} is the remainder of a positive integer m divided by p. By definition, we have $\overline{c + d} = s' + t' - 2 - p$ and $\overline{c} = s' - 1$, and thus $\overline{c + d} < \overline{c}$ which implies $\binom{\overline{c+d}}{\overline{c}} = 0$. Therefore we have established the first part of Theorem 1.2.

Next, we suppose $s' + t' \leq p$. Choose (c, d) to satisfy the condition (4.1). Then, as above, we have $\binom{c+d}{c} \equiv 0$ (p) if and only if $\overline{c+d} < \overline{c}$. One can easily see that $\overline{c+d} < \overline{c}$ if and only if $\overline{c} + \overline{d} \geq p$. Suppose $s - s' \leq c$ and $t - t' \leq d$. Then we have $\overline{c} + \overline{d} \leq p - 2$ since $\overline{c} \leq s' - 1$, $\overline{d} \leq t' - 1$ and $s' + t' \leq p$. Thus we have obtained that $\binom{c+d}{c} \equiv 0$ (p) implies

$$c+d+1 \leq \max\{s+t-s'-1, s+t-t'-1\} = s+t-\min\{s',t'\}-1.$$

Now, for $n \leq c + d + 1$, we get $\binom{c+d}{c} \equiv 0$ (*p*) implies $n + 1 \leq s + t - \min\{s', t'\}$. We also have that $c + d + 1 \equiv 0$ (*p*) implies $n \leq s + t - s' - t' \leq s + t - \min\{s', t'\} - 1$. Then it follows from Theorem 4.1 that if $\langle i^s, i^t \rangle$ is nontrivial, then $n + 1 \leq s + t - s' - t' \leq s + t - \min\{s', t'\} = 0$.

 $\underline{s+t} - \min\{s', t'\}$. Conversely, if $n+1 \leq s+t - \min\{s', t'\}$, we may put (c, d) = (s-s'-1, t-1) or (s-1, t-t'-1) to get $\overline{c+d} < \overline{c}$, where (c, d) satisfies the condition (4.1). Thus, by Theorem 4.1, we obtain if $n+1 \leq s+t - \min\{s', t'\}$, then $\langle i^s, i^t \rangle$ is nontrivial. This completes the proof. \Box

References

- [1] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960) 249-256.
- [2] F. Cohen, Splitting certain suspensions via self-maps, Illinois J. Math. 20 (2) (1976) 336-347.
- [3] H. Hamanaka, On Samelson products in p-localized unitary groups, Topology Appl. 154 (2007) 573-583.
- [4] H. Hamanaka, A. Kono, On [*X*, U(*n*)] when dim *X* is 2*n*, J. Math. Kyoto Univ. 43 (2003) 333–348.
- [5] P. Hilton, G. Mislin, J. Roitberg, Localization of nilpotent groups and spaces, in: North-Holland Mathematics Studies, vol. 15, Notas de Matemática (Notes on Mathematics), vol. 55, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam, Oxford/New York, 1975.
- [6] S. Kaji, D. Kishimoto, Homotopy nilpotency in *p*-regular loop spaces, Math. Z. 264 (1) (2010) 209–224.
- [7] D. Kishimoto, Homotopy nilpotency in localized SU(n), Homology, Homotopy Appl. 11 (1) (2009) 61–79.
- [8] C.A. McGibbon, Homotopy commutativity in localized groups, Amer. J. Math. 106 (3) (1984) 665-687.
- [9] M. Mimura, G. Nishida, H. Toda, Mod p decomposition of compact Lie groups, Publ. Res. Inst. Math. Sci. 13 (3) (1977/1978) 627-680.