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1. Introduction

Fix a positive integer n > 2, and let i* denote the inclusion SU(s) — SU(n) for s < n. We say that for s, t <n, SU(s) and
SU(t) commute in SU(n) up to homotopy if the Samelson product (i, i) is trivial. It is a naive question for which values
of s,t, SU(s) and SU(t) homotopy commute in SU(n), and Bott [1] gave a complete answer to this:

Theorem 1.1. (Bott [1]) SU(s) and SU(t) homotopy commute in SU(n) if and only if s +t < n.

Localize SU(n) at a prime p in the sense of Hilton, Mislin and Roitberg [5], and denote the p-localization by — ;). We say

that SU(s)(p) and SU(t)(py homotopy commute in SU(n)p) if the Samelson product (i? it ) is trivial as well as the usual

case, where the multiplicative structure of SU(n)(p) is inherited from SU(n). As is see(rlr)l) irfp[)8,7,6], the above multiplicative
structure on SU(n)(p) depends on the prime p. Then it is worth considering the p-localization analog of the above question,
that is, for which values of s, t, SU(s)(py and SU(t)») homotopy commute in SU(1)p).

For a positive integer m, we define m’ by m=m’ (p) and 1 < m’ < p. Hereafter, let p denote an odd prime, and put

q=p-—1.
Theorem 1.2. For positive integers s, t, n satisfying 2 <s,t <n < q2 + 1, we have:

1. Under the condition s’ +t' > p + 1, SU(s)(p) and SU(t)py homotopy commute in SU(n)p) if and only if s+t < n.
2. Under the condition s’ 4+ t' < p, SU(s)(py and SU(t)p) homotopy commute in SU(n)p) if and only if s + t — min{s’, t'} < n.

Outline of the proof is as follows. We first decompose the Samelson product (ifp), iip)) into easier ones using the mod p

decomposition of SU(n). We next calculate these Samelson products by applying unstable K-theory of Hamanaka and Kono
[4,3], and determine the triviality of the Samelson product (ifp), iﬁp)).
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2. Decomposition of the Samelson product (i »)? l(p))

Hereafter, everything will be localized at the odd prime p. Then, in particular, the coefficients of cohomology will be Z ).
We will often make no distinction between maps and their homotopy classes.
As in the introduction, we fix a positive integer n > 2. For 1 <m < g, we set:

521 +1 1<m<n—["2]g -1,
12=2],  n-|"2Jjg<m<aq.

Let us recall the mod p decomposition of SU(n). Recall that the cohomology of SU(n) is given as

p(m,n) = {

H*(SU(n)) = A(X3, X5, ..., Xon—1).
where xi_1 is the suspension of the universal Chern class c;. For 1 <m < ¢, Mimura, Nishida and Toda [9] constructed a
simply connected finite complex B’,‘n (or B’; (p)) having the following properties:

1. H*(BX) = A(Uam+1, Uami2g+1, - - -, Uams2e—1)g+1)» 1Uil = 1.
2. There exists a map ém(n) : B2™™ — SU(n) such that Em(M)* (X2m+2ig+1) = Uzm2ig+1 for i =0,..., p(m,n).

Then, in particular, the map

On=Hgo (E1(n) x -~ x eg(m) : BY"™ x ... x BEC™ s su(m)

is a p-local homotopy equivalence, where 4 is the g-fold multiplication of SU(n). This mod p decomposition of SU(n)
corresponds to that of XCP"! via the inclusion g: XCP"~! — SU(n) as follows. As is seen in [2] and [9], for 1 <m <q,
there is a simply connected finite complex A’,§1 having the following properties:

1 H*(AR) = (Vams1, Vam42g4+1s - > Vamgage—g+1)s Vil = 1.
2. There exists a map g’ : Ak, — Bk such that g'* (uam-2ig+1) = Vam2ig+1 for i=0,...,k—1.
3. There exists a map en(n) : AL™™ — $CP"1 satisfying a homotopy commutative diagram:

apmm 0 s cpnt

q )

p(m.n)
B —— = SU)

We have an additional property of the map g’: A’n‘1 — B{;.
Proposition 2.1. (Cohen [2]) Ifk < q, then X g’ : Z‘A’,§1 — 23’,; admits a left homotopy inverse.
For s <n, we put €, =i o goen(s) and €5, =i° o ep(s).
Theorem 2.1. Suppose s, t < q? + 1. Then (i%, it} is trivial if and only if so is (€} )for each 1 < <q.

Proof. For the pinch map 7 : X x Y — X A Y, we notice that the induced map 7*: [X A Y,SUn)] — [X x Y,SUn)] is
injective. Then the triviality of *({i*,i")) is equivalent to that of (i*, ity.

Denote the projection []}_, Bf("r) — B2™") and the diagonal map X — X" by pm and A%, respectively. Note that the
composite of maps

SU(r) Bun, HSU(r) ML o ]_[]_[B"“ n M p ]_[B”“ D2 Ssuer)

i=1 j=1 i=1
is equal to the identity of SU(r). Then, in particular, the product (€] o p ogor_l) cee (Eg opgo gor‘l) in the group [SU(s), SU(n)]
is the map i°. Let g, : SU(s) x SU(t) — SU(r) be the projection for r =s,t. We put )Llf = 6{ o pi o(p;1 oqy for r=s,t. Then, for
(ds X Ge) © Adiys)wsuq = 15U xsu(), We obtain an equality
t s ot
(M- 2g 21 2g] =7 ([, 1))

where the left-hand side is the commutator in the group [SU(s) x SU(t), SU(n)].
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Let G be a group, and let x¥ stand for yxy~! for x, y € G. Then obviously we have

[x, yz] = [x, y1[x, z]¥

for x,y,z € G. It follows that [A] -~A§,)J1 ~~-Ag] is equal to a product of [xf,xg]%‘ for some «;jj € [SU(s) x SU(t), SUMm)].
Then we get (i°,i') is trivial if so is (A, A?] for each i, j. On the other hand, we have

(1 45] = @s x g * o w*((€, €))
as well as above. Thus we obtain (i, i) is trivial if so is (€7, é;) for each i, j.

Assume r < g%+ 1. Let «; : EBf(i’r) — Z‘Af’(i’r) be a left homotopy inverse in Proposition 2.1. We denote the composite

1 g ) . a ) qa . 4 )
2Su() Eé‘j E(H(Bf(z,r))) proj \/EB:.o(l’r) Vi i \/ EA{?(I,I’)
B i=1 i=1 i=1
by k. Then, as in [8], we deduce that there is a self homotopy equivalence « : SU(r) — SU(r) satisfying the following
homotopy commutative diagram by looking at cohomology.

ad ]SU(r)

2SU(r)

ko):al

q p(ir)
L DAL > BSU()
i=1 i

BSU(r)

Here, ad: [X, 2Y]~[X X, Y] means the adjoint congruence. Since \/{_, EAf(i’r) is a homotopy retract of XSU(r), by rear-
ranging the map g': A’ — B?"" we may assume « is the identity. Then we get
(ad€]) o ki = ad €. (2.1)

Now we suppose that (€}, 6;) is trivial, where s, t < g2 4 1. Equivalently, we suppose the Whitehead product [ad €, ad 6;] is
trivial. Then there is an extension EAf(i'S) X Z‘A';.)(j’[) — BSU(n) of ad€; v ad 6;. Then it follows from (2.1) that there exists

an extension EBf(i‘s) X EB';(]"[) — BSU(n) of ad Ef v ad é;. This shows that the Whitehead product [ad Eis, ad éj] is trivial,
which is equivalent to that the Samelson product (€7, é;) is trivial. Thus we complete the proof of the if part. The only if
part is trivial. O

3. Review of unstable K -theory

We give a brief review of p-local unstable K-theory which is a group [X, U(n)]. See [3] and [4] for details. Apply the
functor [X, —] to a fibre sequence

QU(c0) 2% QW, S Um) 4> Uoo) &> (W),
where W, = U(oc0)/U(n). Then we get an exact sequence of groups
KOx) & (X, 2W,1 2 [X, Um)] L R-10x0,

where ® is the composite of (£2q), and the Bott map S : RO(X) = E‘Z(X). In order to compute [X, U(n)], Hamanaka and
Kono [4,3] make use of the above exact sequence by comparing the group [X, 2W,] with the cohomology of X as follows.
Looking at the p-component of the homotopy groups of spheres, we see that there is a p-local homotopy equivalence:

Wh ~p) (ST v §2143 v ... v §22P73) U (higher dimensional cells).

The cohomology of W, is given as

H*(Wp) = A(Yant1, Yan43,--)s T (Vi) = Xi.
Then the map

q—1 q—1
1_[ Yont2it1 : Wy — l—[ K(Zpy,2n+2i41)
i=0 i=0
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is a (2n + 2q)-equivalence. Put a;_1 = o (y;) for the cohomology suspension o. It follows that the map

q—1 q—1
[ [aznsai: @Wa — [ [ K(@p). 20+ 2i)
i=0 i=0

is a loop map which is a (2n+ 2q — 1)-equivalence. Then if X is a CW-complex of dimension < 2n+ 2q — 2, we get a natural
isomorphism of groups
q—1
[X, QW] = @D H" 2 (X)
i=0
by assigning « € [X, 2W;] to (a*(az), ..., a*(ant+2q)). Moreover, we can easily describe the map © via this isomorphism
using Chern character. Summarizing, we have established:

Theorem 3.1. (Hamanaka and Kono [4], Hamanaka [3]) For a CW-complex X of dimension < 2n + 2q — 2, there is an exact sequence
of groups

q-1 )
KO(X) & P H™ 2 (X) > [X.Um)] = K'(X) (3.1)
i=0
in which @ is given by
O&) = (nlchy(§), ..., (n+q—Dichyyq1(5))
for& e KO(X), where chy means the 2k-dimensional part of the Chern character.
In order to see the group structure of [X,U(n)], we look at commutators in [X,U(n)]. Let y : U(n) A U(n) — U(n) be
the reduced commutator map. Since U(oco) is homotopy abelian, i o ¥ is null homotopic so that it lifts to 2W, through

8 : 2W, — U(n). By looking carefully at the Whitehead product of the inclusion XU(n) — BU(n), we can choose a good lift
as:

Theorem 3.2. (Hamanaka and Kono [4], Hamanaka [3]) There is a lift y : U(n) A U(n) — 2 W, of y such that, fork >n,

Y (ax) = E X2i41 ® X2j41.
i+j+1=k
0<i,j<n—1

Corollary 3.1. Let X be a CW-complex of dimension < 2n+ 2q — 2. For o, 8 € [X, U(n)], we put

=Y (i) ).

i+j+1=k
0<i, j<n—1

Then the commutator [o, B] comes from

(0117 ) 9n+q—1)

in the exact sequence (3.1).
4. Calculation of the Samelson product (eis R e;)

We calculate the Samelson product (ef,e§) by using results in the previous section. When X is simply connected, we

may identify [X, SU(n)] and [X, U(n)] since they are naturally isomorphic. By Corollary 3.1, we have:
Proposition 4.1. Put

Xk = Z V2042aq+1 ® Vom42bg+1-
0<agp,s)—1
0<h<Lp(m,t)—1
£+m+(a+b)q+1=k
Thenif£+m+(p(L,s)+ p(m, t) —2)q+1 <n+q— 1, the commutator [} o7}, €l ot ] comes from (xn, ..., Xn+q—2) in the exact

sequence of Theorem 3.1 with X = AP“" x AR™Y, where nt] is the projection A7 x AR™" — A,f(k’r) for (k, 1) = (£,5), (m, t).
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We denote the canonical line bundle over CPT by 1. Put &1 = em()* (B(* — 1)) € K~1(AL™"), where B is the Bott
map as above and 1 means the rank one trivial line bundle. Then it is easy to see that

K (Aﬁ(m’r)) = (&om+1, E2ma2q41s - - -5 Eom2(p(m,r)—1)g+1)
and
p@m,r)—1 .
(m + lq)eraq
ch i = - 3y )
(&E2m2ig+1) ag{; m+ag)! 2m+2aq+1

In particular, we obtain:

Proposition 4.2. RO(AQ’“’S) A AT s q free Z,,)-module generated by B~ (&2 2ig+1 A Eami2jgi1) for 0 <i < p(€,s) — 1 and
0< j< p@m,t)—1, and we have

3 (€ +ig)“ 9 (m + jqm+ba

Chl<(ﬂ_1(§2£+2iq+1 A Eamt2jg+1)) = @+ aq)l(m + bq)!

V20+2aq+1 @ Vam+2bg+1-

0<agp(l,s)—1
0<b<p(m,t)—1
L+m+1+(a+b)g=k

Applying the above results, we obtain a criterion for the triviality of (i%, i).

Theorem 4.1. Suppose that s, t <q? +1and n+ 1 < s+t <n + q. The Samelson product (i, it} is trivial if and only if for all (c, d)
satisfying conditions

1<c<s—1, 1<d<t-1, n<c+d+1<n+q-1, (41)
it holds that

(c+d+1)<ctd> £0 (p).

Proof. As in the proof of Theorem 2.1, we have

e o jomnf] = (et <)

in the group [Af(i’s) X Af(j’t),SU(n)] and 7* is injective, where s is as in the proof of Theorem 2.1 and 7 is as in

Proposition 4.1. Then we check the triviality of the commutator [eiS o 711.5, Gg o 7'(;].
Put ¢; =i+ (p(i,s) —1)g and dj = j+ (o(j,t) — g for 1 <1i,j <q.If ¢; and d; satisfy n <c¢;+dj <n+q—1, the
commutator [eis o 7'[,-5,65 o mt] comes from H2Ci+2d; (Af(l’s) X A;’(J‘t)) in the exact sequence of 3.1. Then by Theorem 3.1,

j
Propositions 4.1 and 4.2, [€] o nis,e§ o n;] is trivial if and only if %&jw #0 (p). Since the set of all pairs (c;,d;) for

1 <1, j <q is exactly the same as that of pairs (c, d) satisfying the above condition (4.1), the proof is completed. O

Proof of Theorem 1.2. We assume s +t < n + q from which together with the fact that the nontriviality of (i%,i’) implies
that of (i%,iV) for s <u and t < v, we can deduce the result for s+t >n+q+ 1. Note, in particular, that we have s+t < p2
under this assumption.

First, we suppose s’ +t' > p + 1. If s+t <n, then (i, i) is trivial, obviously. Then we suppose further that s+t >n+1.
Put c=s—1 and d =t — 1. Then (c, d) satisfies the condition (4.1). When s’ +t'=p + 1, we have c+d+1=0 (p) and
then (i%,i') is nontrivial by Theorem 4.1. Suppose s’ 4+t > p 4+ 2. Then we have ¢ +d + 10 (p). By Lucas’ theorem and

c+d < p?, we get (“’d) =0 (p) if and only if (CJgd) =0, where m is the remainder of a positive integer m divided by p.

Cc
c+d

By definition, we have c+d=s'+t'—2—p and ¢ =s"— 1, and thus ¢ +d < ¢ which implies ( :

established the first part of Theorem 1.2.
Next, we suppose s’ +t’ < p. Choose (c,d) to satisfy the condition (4.1). Then, as above, we have (Cﬁd) =0 (p) if and
only if c +d < C. One can easily see that c +d < ¢ if and only if +d > p. Suppose s —s’ < ¢ and t —t’ < d. Then we have

c+d<p-2since ¢<s' —1,d<t'—1and s+t < p. Thus we have obtained that (") =0 (p) implies

) = 0. Therefore we have

c+d+1<max{s+t—s —1,s+t—t'—1}=s+t—min{s’, t'} — 1.

Now, for n <c+d+ 1, we get (Ctd) =0 (p) implies n+ 1 < s+t — min{s’, t'}. We also have that c +d +1=0 (p) implies
n<s+t—s —t' <s+t—min{s’,t'} — 1. Then it follows from Theorem 4.1 that if (i, i) is nontrivial, then n + 1 <
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s+t —min{s’, t'}. Conversely, if n +1 < s+t — min{s’,t'}, we may put (c,d)=(s—s'—1,t—1) or (s—1,t —t' —1) to get
c +d < ¢, where (c,d) satisfies the condition (4.1). Thus, by Theorem 4.1, we obtain if n 41 < s+t — min{s’, t'}, then (i%, i)
is nontrivial. This completes the proof. O
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