
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 19, 50-62 (1979) 

Parameter Passing in Nondeterministic Recursive Programs* 

DAVID B. BENSON 

Computer Science Department, Washington State University, Pullman, Washington 99164 

Received January 4, 1978; revised December 8, 1978 

Call by value and call by name have some subtleties when used in a nondeterministic 
programming language. A common formalism is used to establish the denotational 
semantics of recursive programs called by name and called by value. Ashcroft and 
Hennessy introduced the idea of differentiating between selecting arguments from a set of 
arguments at the point of invocation and selecting arguments during the run of the 
procedure. This distinction is shown to be independent of the evaluation according to 
value or name, giving rise to four possible parameter passing methods, all of which have a 
suitable least fixed point semantics. 

INTRODUCTION 

W ith the current interest in nondeterministic programs [l, 4, $6, 8, lo], the question 
of formulating the denotational semantics of such programs naturally arises. One question 
in formulating denotational semantics is the parameter passing problem. Hennessy [4] and 
Hennessy and Ashcroft [5, 61 have formulated one approach to such a study. We  offer 
another approach which seems both clearer and simpler. Indeed, we just follow Manna [9] 
to obtain the proofs in a strictly denotational semantics style. Hennessy and Ashcroft [6] 
use reduction sequences and some rather complex operators therein. 

In this study, we explore denotational semantics for a  variety of parameter passing 
mechanisms, using only sets of basic values as parameters. The problem is the expression 
of when particular arguments are to be chosen from sets of arguments. We  show that 
this choice is independent of the choice of call by name or call by value. Indeed, the 
approach here gives a hierarchy of call mechanisms, which suggests that designers of 
nondeterministic programming languages give considerable attention to the issue of 
parameter passing so as to give flexibility without chaos. 

The issues involved in passing programs as parameters will require a rather more 
intricate study using the most general form of a power domain construction. We  believe 
that this would detract from the central issue of the variety of parameter passing mecha- 
nisms possible, and leave it for study after the best formulation for general power domains 
has been found. See [8, 10, 121. 

Our notation differs slightly from other authors. The symbol = denotes equality in 
the extended setting in which undefined, 1 ,is a  value, while = denotes the test for 

* Research supported in part by NSF Grants MCS73-03497AOl and MCS77-08486. 

50 
0022-0000/79/040050-13$02.00/O 
Copyright 0 1979 by AcademicPress, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82624755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NONDETERMINISTIC RECURSIVE PROGRAMS 51 

equality. So = is always defined to be either true orfalse, whereas = results in 1 whenever 
at least one of its arguments is 1. See [9]. When we are thinking of a program, the key- 
words are in boldface, viz: if, or. If the expression is better thought of as a function, 
the keywords are in Roman face. rm is the least fixed point of the functional -r[F] over 
the totally undefined function. If (Ai : i E 1’} is an indexed family of sets, the union of the 
family is denoted by {A, : i E I> or Uiel Ai , and in the more complex situations both 
symbolisms are used in a single formula to keep the depth of set nesting correct, and 
also hopefully clear. Toward the end of the paper, we become rather careless about the 
distinction between the element x and the singleton set (x}, under the assumption that 
by that time the developed intuition makes the situation clear to the reader, and that the 
less messy notation is preferable. 

An apology. Objections are frequently raised to the terminology “call by name” 
and “call by value” as used in theoretical studies such as [4, 5, 6, 9, 111, since the full 
impact of the ALGOL 60 distinctions are not modeled. It is standard in science to select 
what appear to be the crucial features of some phenomenon for abstract study and use the 
same name for the abstraction. The fact that ALGOL 60 implementations use procedures, 
the thunks of P. 2. Ingerman [7], to implement call by name is simply not modeled in 
these studies of semantics. The readers upset by this lack of detail will please prefix 
“theoretical” or “abstract” in front of each use of the phrases call by name and call b! 
value. 

NONDETERMINISTIC FUNCTIONS 

As is usual in studies of denotational semantics, each domain of values is a cpo A, r, 1 j 
where E partially orders A, 1 is the least element in A, and every E-chain in A has a least 
upper bound in A. Our interest lies in passing sets of basic values as parameters, so the 
domains of values are taken to be flat cpos, i.e., in (A, C, JJ A is denumerable and 
Vx, y E A, x r= y implies x EE y or x = 1. A power domain in this case, [lo], is a system 
<PA, c, C, LLD inwhichPA={XCA/X+ Q and(XfiniteoriEX)j, 

XcYiff(Vx~X3yEY xEy)&(vyEYk’xEX x c y). 

from which one sees that (PA, r, (I}) is a cpo, that unions are continuous with respect 
to C, and that C preserves least upper bounds with respect to C. 

As a first approximation, a nondeterministic function is a function from a flat cpo 
{A, C, JJ to a power domain (PB, &, C, (I}) over a flat cpo, which is (z, I=)-mono- - 
tonic and therefore (c, I)-continuous. This idea is in strict analogy to nondeterministic - 
automata and appears to capture the ideas of nondeterministic programming as expressed 
in, e.g., Dijkstra [l]. In order to compose nondeterministic functions, extend each 
f: A ---f PB tofi PA --f PB by!(X) = Usexf(x). Th ese extensions have all the properties 
one could desire for denotational semantics except for the ability to properly treat functions 
of more than one argument. If we followed the above notion of extension with multi- 



52 DAVID B. BENSON 

argument functions, say g: A x B -+ PC, the construction g: P(A x B) --f PC fails to 
have desired properties. For one, A x B is not flat so P(A x B) requires a much more 
complex construction [lo]. Other difficulties arise. Intuitively, the failure is due to the 
fact that each element of P(A x B) is a relation, giving coupling between the arguments. 
Such couplings should only occur explicitly by the action of the functions making up 
the program, and not by default. Therefore, we have the following definitions. 

1. DEFINITION. A nondeterministic function of n arguments fi A, x -.a x A, -+ PB 
is a (c, C)-homomorphism from a product of flat cpos (Ai , C, 1) to the power domain 
Q’B, I=.c> C!J) over a flat cpo (B, C, I). The extension offisfi PA, x ..* x PA,-+ 
PB such that for Xi E PA, , 1 < i < n, 

An extended nondeterministic function is termed an end function. 
To relate these definitions to programming, consider the usual monotonic deterministic 

base functions: conditional, boolean tests, and arithmetic. Each is easily turned into a 
nondeterministic function by the use of singletons. For example, nondeterministic 
addition is 

a+b={a+b} 

while nondeterministic conditional is 

{l}ifa= I, 
if a then b else c = {b) if a = true, 

(c} if a G false. 

The only strictly nondeterministic base function considered is union: a or b = {a, b}, 
with extension X or Y = X U Y. The nondeterministic programs we model are con- 
structed over these conditional, boolean test, arithmetic, and union operations. This 
suffices for Dijkstra’s guarded commands and it is difficult to conceive of another strictly 
nondeterministic function which could not be constructed with the collection of base 
functions given. 

The end functions have some pleasant properties which substantially reduce the 
effort required to study parameter passing methods. 

2. DEFINITION. Let A, B be collections of sets. A function f: A + B is uniformly 
additive if for every subset {Ai} of A such that u Ai E A, f (u Ai) = u f (AJ. 

3. PROPOSITION. End functions are uniformly additive in each v&able separately. 



NONDETERMINISTIC RECURSIVE PROGRAMS 53 

4. PROPOSITION. Let f be an end function de$ned over the base functions. f may be written 
in “conjunctive normal form” 

f = fi or fi or ..’ fn 

where each fi may involve the composition of any base functions except union. 

5. THEOREM. End functions are continuous. 

Proof. By the properties of the Milner ordering used in the power domains, any 
chain {Xi} either terminates or else I E X, , k > 2, in which case Xi C Xj implies 
Xi C Xj . Thus lub{Xi} = u Xi . We now treat the case of two variable end functions. 
f(lub{X,}, lub{Yj}) =j(u Xi, u YJ = ui u&X,, Y,), so f(lub(Xi}, lub{YJ) C 
lubf{(Xi , Yj)). Now any w E lub{ f (X, , Yj)} is a member of somef(X, , Yr). 1 

CALL BY NAME 

To compute a nondeterministic program of one argument, called by name, an obvious 
strategy is to select an argument from the single set of arguments, compute the value, 
select another to compute the value at that point, and accumulate these values via union. 
Continue this process until all arguments have been exhausted. This strategy shows that 
there is nothing more here than the definition of an end function. The situation is only 
slightly more complicated for a recursive nondeterministic program called by name. 
We give an example before proceeding to the general case in Definition (6). 

Example (deRoever [l 11, Morris [9, p. 3891). Th e ro p g ram is written as though it were 
deterministic, but we intend for it to be called on sets of arguments. 

integer procedure fn(x, y); integer x, y; 
fn: = if x = 0 then 0 else fn(x - 1, fn(x, y)) 

From the computational idea of calculating on one pair of arguments x, y (drawn 
from the input sets X and Y) at a time, we see that the conditional will be calculated for 
each triple x, y, z where z E fn({x - l}, fn((x}, {y))). Thereby the end functional for 
this nondeterministic program is: 

T[F](X, Y) L u u {if {x> = (0) then (0) else {z}: z EF({x - l},F({xj, {y}))] 
XEX 
?/EY 

which may be written 

7[F](X, Y) = u {if x = 0 th en 0 else z: .z EF((x - l}, F({x}, {y}))} 
XEX 
%EY 

since the conditional is actually used deterministically. The least fixed point solution is 
easily shown to be 

T”(X, Y)={0:3xEX,X~O}u(~: iEXV 3XEX,X<O} 

when the underlying arithmetic is on the integers. 



54 DAVID B. BENSON 

6. DEFINITION. The general form for end functionals called by name is the system 
for 1 <l<m, 

G’I ,a..,FmI(& ,..., .&) 
= .I? f&l ,..., x, , T,[F1 ,...J,l(x, ,..., xn), 

1 1 
2”s dF1 ,...,K,zl(x~ 9..., ~1) 

where the fi are end functions of n + K variables over the nondeterministic base functions 
and the 7ri are end functionals called by name. For clarity, we have avoided writing the 
brackets around the singleton sets {x,} which are the arguments of the fz and the rzi . The 
domain and codomain of the system {TV} are the m-tuples of end functions in [PA, x *a* x 
PA,, + PB]“‘. 

Note that each functional in the system may be written as 

dF1 ,...,FmI(X, ,..-, -%a) 
= .g lJ uz(x1 >..*, x, > Yl ,..., Y& 

1 1 yi E Q’, , . . . . Fml(x1 ,..., x,>> 
%I% 

due to uniform additivity. 

7. PROPOSITION. End functahals called by name are monotonic. 

8. THEOREM. End functionals called by name are continuous. 

Proof. For simplicity of presentation, we consider only end functionals of one 
argument over one function variable. The proof technique easily extends to end functionals 
of n arguments with m function variables. Consider the end functional 

~[Fl(x) = u f (ix>, ~‘[Fl({x))) 
XEX 

where 7’ is continuous. Let {hi} be any chain of end functionals. 

~bWi~I({X~) f zE$l f ({XI, ~‘PWi~I({~~)) 

E zL,f({xl~ lub{T’[hil~({x~)) 

as 7’ is continuous. Now y E lub(T’[hi]} ({x}) implies there exists k such that y E T’[hk+j] 

({x}), for all j > 0. Consider the minimum K which has this property for ally E lub(T’[&]} 
({x}), if it exists. Then 



NONDETERMINISTIC RECURSIVE PROGRAMS 55 

If no such minimum K exists, then for all K > 0 there is a y E lub{-r’[hJ) ({xl) such that 
Y $ +hl WI. As ~‘hl Kx>) C lW+ill W) an d as the power domain is over a flat 
CPO, I E ~‘[~kl (64), f or all K 3 0. Obviously lub{r’[hi]} ((x}) is an infinite set, so J- E 
lub{T’[hJ) ({xl). With these facts in hand, Iub{+$]> ((~1) = &>,, T’[&] ((x>) is easy to 
demonstrate. Then 

By these two cases and uniform additivity, T[lub{h+)] (X) c lub{T[h,]} (X). The other 
direction follows directly from monotonicity, so T[lub{hi)] (X) = lub{7[h,]} (X). b 

EXAMPLE. G computes values in Pascal’s triangle, H computes all combinations of n 
objects taken K, k - l,..., 1,O at a time as a nondeterministic program, whileF computes, 
nondeterministically, a row of Pascal’s triangle. 

G(n, k) := if R = 0 then 1 
else if K = n + 1 then 0 
else G(n - 1, k - 1) + G(n - 1, k) 

H(n,k):=ifk=Othenl 
else G(n, k) or H(n, k - 1) 

F(n) := H(n, n) 

For instance, F(4) = {1,4,6> and F({2,4}) = {1,2,4,6). The readers may convince 
themselves that the least fixed point for G(n, K) is (z) whenever n >, K, 0 if 71 + 1 = K, 
and 1 if 1z + 1 < k. This last is an artifice to make a point later on. Safer programming 
technique would be to guard the second leg of G by (K > n) rather than (K = 12 + l), 
in which case G would be totally defined on all pairs of natural numbers. 

CALL BY VALUE 

Call by value requires evaluating the parameters to something defined (not I) before 
calling the program. This technique requires the following definition for end functions, 
essentially due to Hennessy [4]. 



56 DAVID B. BENSON 

9. DEFINITION. Let fi PA, x *.. x PA, -+ PB be an end function over the non- 
deterministic function f: A, x **a x A, + PB. The value offl called by value, is 

We follow this general plan of explicitly checking for I in the definition of end 
functionals called by value. 

10. DEFINITION. The general form for end functionals called by value on one function 
variable is 

where f is a nondeterministic function of n + k variables over the base functions and 
the pi are end functionals called by value. These end functionals are again over the end 
functions in [PA, x 1.. x PA, + PB]. 

The general form for m  function variables may be obtained by analogy with the 
previous case of end functionals called by name. The end functionals called by value are 
also obviously monotonic. 

11. THEOREM. End functionals called by value are continuous. 

Proof. Variations on the theme of the previous theorem. 1 

EXAMPLE (deRoever) [ 111. 

integer procedure fv(x, y); value x, y; integer x, y; 

fv : = if x = 0 then 0 else fv(x - 1, fv(x, y)) 

becomes the end functional 

p[lpI(X, Y) E ,I? [u {if {x} = {0} then (0) else {z}: 

YEY x + LY + I9 zEF({x - ll~~({x~?{Y~))l 

(J{l:xs Ivy= 4 
= &$ if x = 0 then 0 else z: x + 1, y f 1, z EF({~ - l},F({x}, {y}))} 

YEY 
(J{l:x= iv-y= I} 1 



NONDETERMINISTIC RECURSIVE PROGRAMS 57 

since the conditional is used deterministically. The least fixed point solution is 

A pressing question for nondeterministic recursive programs called by value is whether 
the leftmost-innermost computation rule will obtain the least fixed point solution of this 
class of end functionals. Leftmost-innermost replaces, at each substitution step, the 
leftmost occurrence of the function variable F which has all its arguments free of F. 

A computation sequence for the leftmost-innermost computation rule is a tree. Each 
branch of the tree is a substitution-simplification pair for each tuple of arguments in the 
input sets of arguments. Using the previous “Pascal row” example, the computation 
sequence for F((2, 3)) is: 

F((2,31) 

/\ 
F(2) F(3) 

I 
H(2.2) H(3,3) 

/\ /L G(2,2) H(2,1)=1 G(3,3) H(3,2) 

I I G (l,l)+G (l.2) G(2.2)+G(2.3) G(3,2) H(3,1)=1 

I I 
l+G(1,2) I 

G(l,l)+G(1,2)+G(2,3) 

I 

G(2,l)+G(2,2) 

I I 
1 l+G(1,2)+G(2,3) l+G(l,l)+G(3,2) 

I 
2tG(l,O)tG(2,2) 

I 
l+G(2,3) 2+G(2,2) 

I I 
1 2+G(l,l)+G(1,2) 

I 

3+G(1,2) 

The value of the computation tree is the union of all leaves, together with 1 if there 
are any infinite paths. 

12. THEOREM. The leftmost-innermost computation rule computes the least fixed point 
of those end functionals called by value which are de$ned over conditional, naturally extended 
(with respect to 1) base functions, and union. 



58 DAVID B. BENSON 

Proof. The terminology is from [9, p. 375ff]. Consider a term occurring in any 
computation substitution step of an end functional called by value, g(F(t,),..., F(Q) where 
g is an end function and the ti are terms. In particular, t, = g,(F(...F(ti,)...),...), whereg, is 
an end function and F(ol,) is the lefmost-innermost occurrence of the function variable F. 

If F(a,) is replaced by 1, the form of end functionals called by value guarantees that 
the 1 propagates to g,( I,.. .). Now g, is defined over conditional, naturally extended base 
functionqandunion, so I Egi(l,...). Bythesameargument, 1 cg(l, F(t,),...,F(t,)) = 
g(KL),..., Wn)) C g(F(g,(l~-))~ F(t,)>-, Wnb 

This gives a slight variant on the notion of safe computation rule, and making minor 
modifications to Vuillemin’s proof [13] that a deterministic safe computation rule is a 
fixed point rule proves the theorem. 1 

While deRoever [ll] pointed out that call by value has a fixed point semantics of its 
own, no previous proof exists of the-by now fairly obvious-fact that lefmost-innermost 
does indeed compute the call by value least fixed point. As deterministic programs are 
just our nondeterministic programs without union, this gap in the semantical theory of 
programs is closed. 

RUN TIME CHOICE 

Hennessy and Ashcroft [6] introduce the idea of letting the particular values used in 
each branch of the computation tree be chosen during the computation rather than have 
them selected in the call, as we did in call by name. The apparent result of this late choosing 
is to select different values from the set of arguments for each occurrence of the variable 
in the program. Suppose F is a nondeterministic program with corresponding non- 
deterministic function f: A, x . .. x A, + PB, when called by name. In computing 
this function, some variables may be duplicated, rearranged, or not used at all. 

EXAMPLE. 

if-then-else 

Afn = 

A 

0 

0 /\ 

/\I /I 

\w 



NONDETERMINISTIC RECURSIVE PROGRAMS 59 

In the deRoever-Morris example, x appears three distinct times in the definition of fn 
while y appears once. This is immediately clear from looking at the computation “tree”- 
actually a doag-drawn above. In linear form, we may write 

if x1 = 0 then 0 else fn(xz - 1, fn(x, , y)) 

where xi , .Q , and xa indicate the three occurrences of x in the definition of fn. Consider 
such a function fn’ with arguments fn’(x, , x2 , x3 , y). The computation tree for fn’ 
actually is a tree. We may identify the first three arguments to obtain fn(x, y) again by 
pre-composing fn’ with the map (x, x, x, y): .P + Z4. In the diagram, fn’ is the tree at 
the top where lines are drawn without arrows while the map (x, x, s, y) is the drawing 
with arrows at the bottom. 

Returning to the general nondeterministic program F, we want to divide it into the 
‘computation tree’ part and the ‘rearrangement of variables’ part. Let f ‘: ATT(i) x ... ;< 
A,o.) - PB be the nondeterministic function in which all variable occurrences are 
explicitly in the same order as in the definition of F and such that 

Thusf’ is the ‘computation tree’ part and rr is the ‘rearrangement of variables’ part. 
Inf’: a4n(lj X .‘. X A,(k) --f PB there are now distinct variables for each occurrence 

of variables in F. In making the run time choice then, it is possible to choose independently 
from each of the k copied arguments. The value of F called with run time choice on 
argument sets Xi ,..., X, depends on the rearrangement x taking -4, >< *.* x & into 
A n(l) x ... :< -ilTtk) . The value is 

EXAMPLE. Consider the previous Morris-deRoever example, 

fn((2, 4}, 6) = {if 2 = 0 then 0 else fn(l, fn(2, 6)), 
if 2 = 0 then 0 else fn( 1, fn(4, 6)), 
if 2 = 0 then 0 else fn(3, fn(2, 6)), 
if 2 = 0 then 0 else fn(3, fn(4, 6)), 
if 4 = 0 then 0 else fn(1, fn(2, 6)), 
if 4 = 0 then 0 else fn(l , fn(4, 6)), 
if 4 = 0 then 0 else fn(3, fn(2, 6)), 
if 4 = 0 then 0 else fn(3, fn(4, 6))) 

E if (2, 4) = 0 then 0 elsefn({l, 3}, fn({2,4}, 6)) 

E (0). 



60 DAVID B. BENSON 

Call by value nondeterministic programs can be handled the same way. The value of F 
called by value with run time choice is 

EXAMPLE. Continuing the deRoever example, 

fv({O, 2}, 4) E {if 0 = 0 then 0 elsefv(-l,f$O, 4)), 
if 0 = 0 then 0 elsefu(-1, fv(2, 4)), 
if 0 = 0 then 0 elsefv(1, fv(0, 4)), 
if 0 = 0 then 0 elsefu(1, fv(2,4)), 
if 2 = 0 then 0 else fw(- 1, @(O, 4)), 
if 2 = 0 then 0 elsefw(- 1, fv(2,4)), 
if 2 = 0 then 0 elsefu(1, fv(0, 4)), 
if 2 = 0 then 0 elsefw( 1, fv(2, 4))) 

z if (0,2} = 0 thenfu({- 1, I}, fv{(O, 2}, 4)) 

= to, I>. 

The form of the functionals in these two cases is now clear: 

13. DEFINITION. Run time choice call by name end functionals. 

where f is a nondeterministic function of k + p variables which are not further duplicated 
or deleted, but may be permuted, and each 7ri is a run time choice call by name end 
functional. 

The proof of continuity is as easy as before and it is clear that 7m C 7,” . 

EXAMPLE. The Pascal row as computed with run time choice gives for F,({2, 4}), 

F&2, 4)) = H(2, 2) u H(2, 4) U H(4, 2) U H(4, 4) 
= {I, 2) u (0, I) u {1,4,61 u {1,4,6) 
= {I, 0, 1, 2, 4, 6), 



NONDETERMINISTIC RECURSIVE PROGRAMS 61 

which was perhaps not what was intended, due to the spurious results included by the 
H(2, 4) term. Even if the guard on the second leg in the definition of G is changed to 
(K > n), we would still have F,.((2, 4)) = (0, 1, 2,4, 6}, with the zero results included 
by the H(2, 4) term. I draw the conclusion that run time choice is dangerous. 

14. DEFINITION. Run time choice call by value end functionals. 

wheref is a nondeterministic function of k + p variables which are not further duplicated 
or deleted, but may be permuted, and each pri is a run time choice call by value end 
functional. 

Again the proof of continuity follows from the previous proofs and again p5 C pp . 
The run time choice end functional forms may not, at first glance, appear to satisfy 

the intuitive idea of passing the arguments as sets with choice of value made subsequent 
to the call, But as the functionals are uniformly additive, the choice may be accomplished 
as shown above, giving the same results as if the choice is made after the call. 

FINAL REMARKS 

Hennessy and Ashcroft [5, 61 treat call time choice and run time choice as subdivisions 
of call by name. As the definitions here show, either call time choice or run time choice 
can be used with either call by value or call by name, Just as a single procedure may 
combine arguments called by value and called by name, so may some arguments be used 
as call time choice and others used as run time choice. Indeed, a single argument may 
occur as both a run time and a call time argument, by constraining some, but not all, 
occurrences of the argument to be identical during the selection process. For example, 
in the Morris-deRoever function, fn, the first and third occurrences of x may be so 
constrained to form 

fn(X, Y) = (J {if xi = 0 then 0 else ,fn(x, - I, ,fn(x, , y))}. 
XIPX 
xc@- 
lJEY 

Thus one obtains a lattice of possible evaluation mechanisms, with “all arguments 
chosen at the call” as the lattice zero and “all arguments chosen at run time” as the lattice 
one. Crosscombining this with comparable structures for the range from all arguments 
called by value to all arguments called by name should produce a rather rich algebra of 
call mechanisms and their associated least fixed point values. 



62 DAVID B. BENSON 

One strongly suspects that all of the results herein are universal in the sense that they 
could be developed in an appropriate iterative or rational algebraic theory [2, 3, 141 
equipped with an appropriate notion of subset. The intuition is that these results do not 
begin to use the richness of power domain constructions in [8, 10, 121, and thus the 
structure of nondeterministic programs called only on basic values may well be best 
exposed in an algebraic theory setting. 

Perhaps more interesting to the language designer engaged in attempting to specify a 
nondeterministic programming language are the following two observations: First, run 
time choice gives surprising and non-intuitive values to functions called on perfectly 
reasonable arguments. Further, since run time choice differs from the usual call time 
choice only in the automatic duplication and selection of arguments, a programmer who 
actually needed this effect could readily produce it by doing the argument manipulations 
himself. Second, call by value is available as a semantically respectable programming 
construct for nondeterministic languages and the usual mechanism to evaluate it pro- 
duces the semantically expected value. 

ACKNOWLEDGMENT 

I appreciate the care exercised by a referee in keeping my lapses from being printed. 

REFERENCES 

1. E. D. DIJKSTRA, “A Discipline of Programming,” Prentice-Hall, Englewood Cliffs, N. J., 1976. 
2. C. C. ELGOT, Monadic computation and iterative algebraic theories, in “Proc. Logic Colloq., 

Bristol, 1973” (Rose and Shperdson, Eds.), North-Holland, Amsterdam, 1975. 
3. C. C. ELGOT, Matricial theories, J. Algebra 42 (1976), 391-422. 
4. M. HENNESSY, “The Semantics of Call-by-Value and Call-by-Name in a Nondeterministic 

Environment,” Tech. Report CS-77-13, Univ. of Waterloo. 
5. M. HENNE~SY AND E. A. ASHCROFT, The semantics of nondeterminism, in “Third International 

Colloq. on Automata, Languages and Programming, Edinburgh, 1976.” 
6. M. HENNFSSY AND E. A. ASHCROFT, Parameter-passing mechanicms and non-determinism, in 

Proc. 9th ACM Symp. Theory of Computing, Boulder, 1977,” pp. 306-311. 
7. P. 2. INGERMAN, Thunks, Comm. ACM 4 (1961), 55-58. 
8. D. J. LEHMANN, Categories for fix point semantics, in “Proc. 17th IEEE Symp. on Foundations 

of Computer Science, Houston, 1976,” pp. 122-126. 
9. Z. MANNA, “Mathematical Theory of Computation,” McGraw-Hill, New York, 1974. 

10. G. D. PLOTKIN, A powerdomain construction, SIAM J. Comput. 5 (1976), 452-487. 
11. W. P. DEROEVER, Call-by-value versus call-by-name: A proof theoretic comparison, pp. 451-463, 

Lecture Notes in Computer Science No. 28, Springer-Verlag, New York, 1975. 
12. M. B. SMYTH, Power Domains, j. Comput. System Sci. 16 (1978), 23-36. 
13. J. VUILLEMIN, “Proof Techniques for Recursive Programs,” Ph. D. thesis, Stanford University, 

1973. 
14. J. B. WRIGHT, J. A. GOGUEN, J. W. THATCHER, AND E. G. WAGNER, Rational algebraic theories 

and tied-point solutions, in “Proc. 17th IEEE Symp. on Foundations of Computer Science, 
Houston, 1976,” pp. 147-158. 


