
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Functional Analysis 261 (2011) 2347–2361

www.elsevier.com/locate/jfa

Banach spaces of universal disposition ✩

Antonio Avilés a, Félix Cabello Sánchez b, Jesús M.F. Castillo b,∗,
Manuel González c, Yolanda Moreno d

a Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
b Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain

c Departamento de Matemáticas, Universidad de Cantabria, Avenida los Castros s/n, 39071 Santander, Spain
d Escuela Politécnica, Universidad de Extremadura, Avenida de la Universidad s/n, 10071 Cáceres, Spain

Received 29 April 2011; accepted 18 June 2011

Available online 30 July 2011

Communicated by G. Schechtman

Abstract

In this paper we present a method to obtain Banach spaces of universal and almost-universal disposition
with respect to a given class M of normed spaces. The method produces, among others, the only separa-
ble Banach space of almost-universal disposition with respect to the class F of finite-dimensional spaces
(Gurariı̆ space G); or the only, under CH, Banach space with density character the continuum which is of
universal disposition with respect to the class S of separable spaces (Kubis space K). We moreover show
that K is isomorphic to an ultrapower of the Gurariı̆ space and that it is not isomorphic to a complemented
subspace of any C(K)-space. Other properties of spaces of universal disposition are also studied: separable
injectivity, partially automorphic character and uniqueness.
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1. Spaces of universal and almost-universal disposition

In [11] Gurariı̆ introduces the notions of spaces of universal and almost-universal disposition
for a given class M as follows.

Definition 1.1. Let M be a class of Banach spaces.

(1) A Banach space U is said to be of almost universal disposition for the class M if, given
A,B ∈ M, isometric embeddings u : A → U and ı : A → B , and ε > 0, there is a (1 + ε)-
isometric embedding u′ : B → U such that u = u′ı.

(2) A Banach space U is of universal disposition for the class M if, given A,B ∈ M and iso-
metric embeddings u : A → U and ı : A → B , there is an isometric embedding u′ : B → U

such that u = u′ı.

Gurariı̆ shows that there exists a separable Banach space of almost-universal disposition for
the class F of finite-dimensional spaces [11, Theorem 2]. We recall now the main properties of
Gurariı̆’s creature (see also [12, Ch. 4]). Gevorkyan shows [9] that a space of almost-universal
disposition for finite-dimensional spaces must contain isometric copies of all separable spaces;
see [10] for related results. It is also clear that two separable Banach spaces of almost-universal
disposition for finite-dimensional spaces are almost isometric – this is shown by an obvious back-
and-forth argument in [11, Theorem 4]. A different and simpler description of Gurariı̆ space(s)
by means of triangular matrices was provided by Lazar and Lindenstrauss in [17, Theorem 5.6].
On the other hand, Pełczyński and Wojtaszczyk show in [22] that the family of separable Linden-
strauss spaces has a maximal member: there is a separable Lindenstrauss space P W having the
following property: for every separable Lindenstrauss space X and each ε > 0, there is an opera-
tor u : X → P W such that ‖x‖ � ‖u(x)‖ � (1 + ε)‖x‖ and a contractive projection of P W onto
the range of u. One year later Wojtaszczyk [25] himself shows that P W can be constructed as a
space of almost universal disposition for finite-dimensional spaces. Finally, Lusky shows in [20]
that two separable spaces of almost-universal disposition for finite-dimensional Banach spaces
are isometric. Therefore, there exists a unique separable space of almost-universal disposition for
finite-dimensional Banach spaces, that we will call the Gurariı̆ space and denote by G .

Gurariı̆ conjectured the existence of spaces of universal disposition for the classes F of finite-
dimensional spaces and S of separable spaces: see the footnote to Theorem 5 in [11]. We will
present a method able to effectively generate such examples, as well as other spaces of universal
or almost-universal disposition, such as the Gurariı̆ space [11] or the Fraïssé limit constructed by
Kubis [16].

2. Background

Our notation is fairly standard, as in [19]. A Banach space X is said to be an L∞,λ-space with
λ � 1 if every finite-dimensional subspace F of X is contained in another finite-dimensional
subspace of X whose Banach–Mazur distance to the corresponding �n∞ is at most λ. A space X

is said to be a L∞-space if it is a L∞,λ-space for some λ � 1; we will say that it is a Lindenstrauss
space if it is a L∞,1+ε-space for all ε > 0. Throughout the paper, ZFC denotes the usual setting
of set theory with the Axiom of Choice, while CH denotes the continuum hypothesis (c = ℵ1).
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2.1. The push-out construction

The push-out construction appears naturally when one considers a couple of operators defined
on the same space, in particular in any extension problem. Let us explain why. Given operators
α : Y → A and β : Y → B , the associated push-out diagram is

Y
α−−−−→ A

β

⏐⏐�
⏐⏐�β ′

B
α′−−−−→ PO

(1)

Here, the push-out space PO = PO(α,β) is the quotient of the direct sum A ⊕1 B , the product
space endowed with the sum norm, by the closure of the subspace � = {(αy,−βy): y ∈ Y }.
The map α′ is given by the inclusion of B into A ⊕1 B followed by the natural quotient map
A ⊕1 B → (A ⊕1 B)/�, so that α′(b) = (0, b) + � and, analogously, β ′(a) = (a,0) + �.

The diagram (1) is commutative: β ′α = α′β . Moreover, it is ‘minimal’ in the sense of having
the following universal property: if β ′′ : A → C and α′′ : B → C are operators such that β ′′α =
α′′β , then there is a unique operator γ : PO → C such that α′′ = γ α′ and β ′′ = γβ ′. Clearly,
γ ((a, b) + �) = β ′′(a) + α′′(b) and one has ‖γ ‖ � max{‖α′′‖,‖β ′′‖}. Regarding the behavior
of the maps in diagram (1), apart from the obvious fact that both α′ and β ′ are contractive, we
have:

Lemma 2.1.

(a) If α is an isomorphic embedding, then � is closed.
(b) If α is an isometric embedding and ‖β‖ � 1 then α′ is an isometric embedding.
(c) If α is an isomorphic embedding then α′ is an isomorphic embedding.
(d) If ‖β‖ � 1 and α is an isomorphism then α′ is an isomorphism and

∥∥(
α′)−1∥∥ � max

{
1,

∥∥α−1
∥∥}

.

Proof. (a) is clear. (b) If ‖β‖ � 1,

∥∥α′(b)
∥∥ = ∥∥(0, b) + �

∥∥ = inf
y∈Y

‖αy‖ + ‖b − βy‖ � inf
y

‖βy‖ + ‖b − βy‖ � ‖b‖,

as required. (c) is clear after (b). (d) To prove the assertion about (α′)−1, notice that for all a ∈ A

and b ∈ B one has (a, b) + � = (0, b + βy) + � for y ∈ Y such that αy = a. Therefore, for all
y′ ∈ Y one has

‖b + βy‖ �
∥∥b + βy + βy′∥∥ + ∥∥βy′∥∥

�
∥∥b + βy + βy′∥∥ + ∥∥y′∥∥

�
∥∥b + βy + βy′∥∥ + ∥∥α−1

∥∥∥∥αy′∥∥
from where the assertion follows. �
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A Banach space E is said to be (separably) injective if for every (separable) Banach space
X and each subspace Y ⊂ X, every operator t : Y → E extends to an operator T : X → E. If
some extension T exists with ‖T ‖ � λ‖t‖ we say that E is λ-separably injective. Following [2],
a Banach space E is said to be universally separably injective if for every Banach space X and
each separable subspace Y ⊂ X, every operator t : Y → E extends to an operator T : Y → X. If
some extension T exists with ‖T ‖ � λ‖t‖ we say that E is universally λ-separably injective.

3. The basic construction

Let us consider an isometric embedding u : A → B and an operator t : A → E. We want to
extend t through u, probably at the cost of replacing E by a larger space. The push-out diagram

A
u−−−−→ B

t

⏐⏐� ⏐⏐�t ′

E
u′−−−−→ PO

does exactly what we ask: t ′u = u′t . It is important to realize that u′ is again an isometric em-
bedding and that t ′ is a contraction (resp. an isometric embedding) if t is; see Lemma 2.1. What
we need is to be able to do the same with a previously established family of embeddings. The
input data for the construction are:

• A Banach space E.
• A family J of isometric embeddings between certain Banach spaces.
• A family L of norm one operators from certain Banach spaces to E.

Each member of J is, by definition, an isometric embedding u : A → B , where A and B

are Banach spaces. Then A = domu is the domain of u and B = codu is the codomain. Let us
remark that codu is usually larger than the image of u. This implicitly yields three families of
Banach spaces:

• domJ = {domu: u ∈ J},
• codJ = {codu: u ∈ J},
• domL = {dom t : t ∈ L}.

To avoid complications we will assume that J and L are sets and also that domJ = domL. Notice
that the only element of codL is E.

Set Γ = {(u, t) ∈ J × L: domu = dom t} and consider the Banach spaces of summable fami-
lies �1(Γ,domu) and �1(Γ, codu). We have an obvious isometric embedding

⊕J : �1(Γ,domu) → �1(Γ, codu)

defined by (x(u,t))(u,t)∈Γ �→ (u(x(u,t)))(u,t)∈Γ ; and a contraction

ΣL : �1(Γ,domu) → E,
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given by (x(u,t))(u,t)∈Γ �→ ∑
(u,t)∈Γ t (x(u,t)). (Observe that the notation is slightly imprecise

since both ⊕J and ΣL depend on Γ .) We can form their push-out diagram

�1(Γ,domu)
⊕J−−−−→ �1(Γ, codu)

ΣL

⏐⏐� ⏐⏐�
E −−−−→ PO

In this way we obtain an isometric enlargement ı : E → PO such that every operator t : A → E in
L can be extended to an operator t ′ : B → PO through any embedding u : A → B in J provided
domu = dom t = A. In the step α we leave the family J fixed, replace E by PO and L by another
family Lα and proceed again.

One can iterate this construction until any countable or uncountable ordinal. Moreover, a care-
ful choice of the families Lα in the successive steps allows one to produce spaces of universal
disposition, as we will see now.

We pass to present some specific constructions in detail. We fix a Banach space X. We would
take J as the family of all isometric embeddings between separable Banach spaces. Avoiding the
details required to fix the inconvenient that the class of separable Banach spaces is not a set, let
S be the family all separable Banach spaces up to isometries. The initial step of the construction
is performed with the space X, the set I of all isometric embeddings acting between the elements
of S and the set L of all norm one operators t : S → X, where S ∈ S.

We are going to define Banach spaces Sα = Sα(X) for all ordinals α starting with S0 = X

and in such a way that, for α < β , there is an isometric embedding ı(α,β) : Sα → Sβ . The
embeddings must satisfy the obvious compatibility condition that ı(β,γ )ı(α,β) = ı(α,γ ) if α <

β < γ . In particular, for each ordinal α, we have an embedding ı(0,α) : X → Sα .
We use transfinite induction as follows. Suppose Sβ and the corresponding embeddings de-

fined for each β < α. If α = β + 1 is a successor ordinal, we consider the following data:

• the Banach space Sβ ,
• the set I of all isometric embeddings acting between the elements of S, and
• the set Lβ of all norm one operators t : S → Sβ , where S ∈ S.

Then we set Γβ = {(u, t) ∈ I × Lβ : domu = dom t} and we form the push-out diagram

�1(Γβ,domu)
⊕Iβ−−−−→ �1(Γβ, codu)

ΣLβ

⏐⏐� ⏐⏐�
Sβ −−−−→ PO

(2)

thus obtaining Sα = Sβ+1 = PO. The embedding ı(β,α) is the lower arrow in the above diagram
and the other embeddings are given by composition with ı(β,α). If α is a limit ordinal we take Sα

as the direct limit limβ<α Sβ , with the obvious embeddings. Two variations of this construction
will be considered:

• Replace S by the smaller family F generated by the finite-dimensional spaces in S. We will
call the final space Fα(X).
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• We leave the initial family of Banach spaces S, but replace I by the set I∞ of all isometric
embeddings of the spaces of S into �∞, so that codu = �∞ for every u ∈ I∞. The choice
of L is the same as before: all contractive operators from the spaces in S to X. Now, we
proceed as before to construct a family of Banach spaces Uα = Uα(X) together with the
corresponding compatible linking embeddings. The passage from Uα to Uα+1 is as follows.
We set Lα as the set of all norm one operators from the spaces of S to Uα and Γα = {(u, t) ∈
I∞ × Lα: domu = dom t} and we form the push-out diagram

�1(Γα,domu)
⊕I∞−−−−→ �1(Γα, �∞)

ΣLα

⏐⏐�
⏐⏐�

Uα −−−−→ PO

(3)

thus obtaining Uα+1 = PO. The embedding ı(α,α+1) is the lower arrow in the above diagram
and the other embeddings are given by composition with ı(α,α+1).

Proposition 3.1. Let X be a Banach space.

(a) The spaces Sω1(X) and Uω1(X) are of universal disposition for separable Banach spaces.
(b) The space Fω1(X) is of universal disposition for finite-dimensional Banach spaces.

Proof. We write the proof for Sω1 = Sω1(X). The case Uω1(X) is analogous and we leave it to
the reader.

We must show that is v : A → B and � : A → Sω1 are isometric embeddings and B is sep-
arable, then there is an isometric embedding L : B → Sω1 such that Lv = �. We may and do
assume A,B ∈ S so that v is in I. On the other hand there is α < ω1 such that �(A) ⊂ Sα and
we may consider that � is one of the operators in Lα . Therefore � has an extension �′ making the
following square commutative:

A
v−−−−→ B

�

⏐⏐� ⏐⏐��′

Sα
ı(α,α+1)−−−−→ Sα+1

Actually �′ is the composition of the inclusion j(v,�) of B = codv into the (v, �)-th coordinate of
�1(Γα, codu) with the right descending arrow in the diagram

�1(Γα,domu)
⊕I−−−−→ �1(Γα, codu)

ΣLα

⏐⏐� ⏐⏐�
Sα −−−−→ PO = Sα+1

(4)

We known that �′ is a contraction and we must prove it is isometric. We have

PO = (
Sα ⊕1 �1(Γα, codu)

)
/� with � =

{( ∑
tx(u,t),−

∑
ux(u,t)

)}
.

(u,t)∈Γα (u,t)∈Γα
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Thus, for b ∈ B we have �′(b) = (0, j(v,�)b) + � and

∥∥�′(b)
∥∥

PO = dist
(
(0, j(v,�)b),�

) = inf
a∈A

{∥∥�(a)
∥∥

Sα + ∥∥b − v(a)
∥∥

B

} = ‖b‖B

since both � and v preserve the norm.
The proof of (b) is left to the reader. �
The spaces in (a) are the space Gurariı̆ conjectured. We will later show that – under CH – such

space is unique and coincides with the Fraïssé limit in the category of separable Banach spaces
and into isometries constructed by Kubis [16]; and also with an ultrapower of Gurariı̆ space. For
our purposes it is enough to stop the constructions at ω1, however it is not hard to believe that
a careful choice of the cardinal α can produce spaces Sα with special properties. Observe that,
say, Sω1+1(X) is not of universal disposition for S.

4. Properties of spaces of universal disposition

Gurariı̆ shows in [11] that a space of universal disposition for all finite-dimensional spaces
cannot be separable since no separable Banach space can be of universal disposition for the
couple {R,R × R}: indeed, a Banach space of universal disposition for R is transitive and it is
well known that the norm of a separable transitive space must be smooth. This prevents the space
from being of universal disposition for R

2. On the other hand it is clear that, if the starting space
X is separable, then the Banach spaces appearing in Propositions 3.1 have density character c

since each of them is the union of an ω1 sequence formed by Banach spaces of density c.

Proposition 4.1. A Banach space of universal disposition for separable spaces must have density
at least c and contains an isometric copy of each Banach space of density ℵ1 or less.

Proof. The first part is a juxtaposition of forthcoming Lemma 4.2 – which asserts that a Banach
space of universal disposition for separable spaces must be 1-separably injective – and the result
in [2] asserting that a λ-separably injective space with λ < 2 is either finite-dimensional or has
density character at least c. To prove the second part, assume that U is a space of universal
disposition for separable Banach spaces and let X have density ℵ1. Write X as an ω1-sequence
of separable Banach spaces, beginning with X0 = 0 and use the argument given in the proof of
(i) ⇒ (v) in [18, p. 221], using norm preserving operators in every step. �
Problem 1. Must a space of universal disposition for finite-dimensional spaces contain an iso-
metric copy of each Banach space of density ℵ1 or less? Our guess is no.

Problem 2. Does there exist consistently a Banach space of universal disposition for finite-
dimensional spaces having density character strictly smaller than c?

Lemma 4.2. Let E be a Banach space. Suppose there is a constant λ such that for each (sepa-
rable) Banach space X and every pair of into isometries u : Y → X and v : Y → E there exists
an operator V : X → E such that V u = v with ‖V ‖ � λ. Then E is λ-(separably) injective. In
particular, every Banach space of universal disposition for the class S is 1-separably injective.
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Proof. Let t : Y → E have norm one. Denote by Y ′ the closure of the range of t and make the
push-out of (u, t):

Y
u−−−−→ X

t

⏐⏐� ⏐⏐�t ′

Y ′ u′−−−−→ PO

(5)

By Lemma 2.1, u′ is an into isometry, and the hypothesis yields an operator t ′′ : PO → E such
that t ′′u′ is the inclusion of Y ′ into E, with ‖t ′′‖ � λ. Taking T = t ′′t ′ we end the proof. �
Proposition 4.3. Let E be a space of universal disposition for separable spaces.

(a) Given a separable Banach space X and a subspace Y ⊂ X, every isomorphic embedding
t : Y → E extends to an isomorphic embedding T : X → E with ‖T ‖ = ‖t‖ and ‖T −1‖ =
‖t−1‖.

(b) Consequently, if densE � ℵ1, then E is separably automorphic; namely, any isomorphism
between two separable subspaces of E can be extended to an automorphism of E.

Proof. (a) Let u denote the inclusion of Y into X and assume, without loss of generality, that
‖t‖ = 1. We follow the same notation as in Lemma 4.2. Looking at diagram (5) we have ‖t ′‖ = 1
and u′ is isometric, so there is an isometric embedding t ′′ : PO → E such that t ′′u′ is the inclusion
of Y ′ = ran t into E. Now T = t ′′t ′ is the extension of t we wanted. Clearly, ‖T ‖ = ‖t‖ = 1. On
the other hand, by part (d) of Lemma 2.1, ‖(t ′)−1‖ � max{1,‖t−1‖} hence ‖T −1‖ = ‖t−1‖.

(b) For the second part, it suffices to show that if Y is a separable subspace of E, every iso-
morphic embedding ϕ0 : Y → E extends to an automorphism of E. This is proved through the
obvious back-and-forth argument: write E = ⋃

α<ω1
Eα as an ω1-sequence of separable sub-

spaces starting with E0 = Y . Consider the embedding ϕ0 : E0 → E. Let ψ1 : ϕ(E0) + E1 → E

be an extension of ϕ−1
0 : ϕ(E0) → E, with ‖ψ1‖ = ‖ϕ−1

0 ‖ and ‖ψ−1
1 ‖ = ‖ϕ0‖. Notice that

ranψ1 = E0 + ψ1(E1). Let ϕ2 be the extension of ψ−1
1 to E0 + ψ1(E1) + E2 provided by Part

(a) and so on. Proceeding by transfinite induction one gets a couple of endomorphisms ϕ and ψ

such that ψϕ = ϕψ = 1E , with ‖ϕ‖ = ‖ϕ0‖ and ‖ψ‖ = ‖ϕ−1
0 ‖ and ϕ = ϕ0 on Y . �

Our next result shows that under CH there is no dependence on the initial separable space X

in the constructions appearing in Proposition 3.1.

Proposition 4.4. Under CH, there is a unique space with density character ℵ1 of universal dis-
position for separable spaces, up to isometries.

Proof. Let X and Y be spaces of universal disposition for separable spaces and with density
character ℵ1. It is obvious that they contain isometric copies of all separable spaces. Let us write
X = ⋃

α<ω1
Xα and Y = ⋃

β<ω1
Yβ as increasing ω1-sequences of separable subspaces. Pick β1

such that there is an isometric embedding ϕ0 : X0 → Yβ1 . Let ψ1 : Yβ1 → X be an isometric
extension of ϕ−1

0 . As ψ1 has separable range there is α2 < ω1 such that ranψ1 ⊂ Xα2 . Let ϕ2 :
Xα2 → Y be an isometric extension of ψ−1

1 . A transfinite iteration of the process produces an
isometry X → Y . �
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Let us show that there are spaces of universal disposition for all finite-dimensional Banach
spaces which are not of universal disposition for all separable Banach spaces. We need the
following observation (for separable – instead of finite-dimensional – spaces the extension to
separable superspaces can only be obtained with norm 2; see [7,26]):

Lemma 4.5. A c0-valued operator defined on a finite-dimensional Banach space admits a com-
pact extension with the same norm to any superspace.

Proof. Let F ⊂ X be a finite-dimensional subspace of a Banach space X, and let τ : F → c0
be a norm one operator. Assume that τ = (τn) comes defined by a pointwise null sequence of
functionals. Since F is finite-dimensional, the sequence (τn) is actually norm null. Thus, any
sequence of Hahn–Banach extensions will also be norm null, and the operator they define is a
compact extension of T . �
Proposition 4.6. The space Fω1(c0) is of universal disposition for finite-dimensional spaces and
it is not of universal disposition for separable spaces.

Proof. It follows from Lemma 4.5 and the method of construction that the embedding X →
Fω1(X) has the property that every operator X → c0 can be extended to Fω1(X). Therefore
Fω1(c0) contains c0 complemented, and thus it cannot be 1-separably injective since it has been
shown in [2] that 1-separably injective spaces are Grothendieck spaces (all operators into c0 are
weakly compact). �

This suggests that quite plausibly there is – even under CH – a continuum of mutually non-
isomorphic spaces of universal disposition for finite-dimensional spaces. Let us show that such
is the case – outside CH, of course – for separable spaces.

Proposition 4.7. Assume that no Banach space of density character c is universal for all Banach
spaces with density character c. Then there is at least a continuum of non-isomorphic spaces of
universal disposition for S with density c.

Proof. We proceed by transfinite induction. To make the induction start, form the space S(1) =
Sω1(R). Take, by hypothesis, a Banach space X(1) with density character c not contained in
S(R) and form then S(2) = Sω1(X(1) ⊕ S(1)). Take a new Banach space X(2) with density
character c not contained S(2) and continue in this way.

Let β < c, and assume that for each α < β a Banach space S(α) of universal disposition for
S has already been constructed verifying:

(1) For all α, the space S(α) has density character c.
(2) For γ � α the space S(γ ) is isometric to a subspace of S(α).
(3) For α 
= γ the spaces S(α) and S(γ ) are not isomorphic.

If β = β ′ + 1 is not a limit ordinal, then get a Banach space X(β ′) with density character c

not contained in S(β ′) and form S(β) = Sω1(S(β ′) ⊕ X(β ′)).
If β is a limit ordinal, then S(β) = Sω1(

⋃
α<β S(α)).

All this yields a continuum S(α), α < c, of mutually non-isomorphic spaces of universal
disposition for separable spaces. �
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Remark 4.8. The hypothesis of Proposition 4.7 is consistent by a result of Brech and Kosz-
mider [6]. The paper [1] contains further results on the existence of spaces of universal disposi-
tion for S under different cardinality assumptions.

5. Gurariı̆’s space and its ultrapowers

We can construct the Gurariı̆ space as follows. We fix a countable system of isometric em-
beddings I0 having the following density property: given an isometric embedding w : A → B

between finite-dimensional spaces, and ε > 0, there is u ∈ I0, and surjective (1 + ε)-isometries
α : A → domu and β : B → codu making the square

A
w−−−−→ B

α

⏐⏐� ⏐⏐�β

domu
u−−−−→ codu

(6)

commutative. Set F0 = domI0.
Let now X be a separable Banach space. We define an increasing sequence of Banach spaces

Gn = Gn(X) as follows. We start with G0 = X. Assuming Gn has been defined we get Gn+1

from the basic construction explained in Section 3 just taking as Ln a countable set of Gn-
valued contractions with domain in F0 such that, for every ε > 0, and every (1 + ε)-isometric
embedding s : F → Gn, with F ∈ F0, there is t ∈ Ln such that ‖s − t‖ < ε. We consider the
index set Γn = {(u, t) ∈ I0 × Ln: domu = dom t} and the push-out diagram

�1(Γn,domu)
⊕I0−−−−→ �1(Γn, codu)

ΣLn

⏐⏐� ⏐⏐�
Gn −−−−→ PO

(7)

Then we set Gn+1 = PO. The linking map Gn → Gn+1 is given by the lower arrow in the push-
out diagram.

Proposition 5.1. Let X be a separable Banach space. The space

Gω(X) = lim
n

Gn =
⋃
n

Gn

is a separable Banach space of almost-universal disposition for finite-dimensional spaces.

Proof. Let w : A → B and s : A → Gω be isometric embeddings, with B a finite-dimensional
space and fix ε > 0. Choose u ∈ I0, as in (6). Clearly, for m large enough there is a contrac-
tive (1 + ε)-isometry t : domu → Gm satisfying ‖s − tα‖ < ε. Let t ′ : codu → Gm+1 be the
extension provided by diagram (7), so that t is a contractive (1 + ε)-isometry such that t ′u = t .
Therefore t ′β is a contractive (1 + ε)2-isometry satisfying ‖s − t ′βw‖ � ε. The following per-
turbation result ends the proof. �
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Lemma 5.2. A Banach space U is of almost universal disposition for finite-dimensional spaces
if and only if, given isometric embeddings u : A → U and ı : A → B with B finite-dimensional,
and ε > 0, there is a (1 + ε)-isometric embedding u′ : B → U such that ‖u − u′ı‖ � ε.

Since Gurariı̆ space is unique, for all separable spaces X, one has Gω(X) = G . Moreover, the
embedding of X into Gω(X) enjoys the following universal property:

Proposition 5.3. Every norm one operator from X into a Lindenstrauss space admits, for every
ε > 0, an extension to Gω(X) of norm at most 1 + ε.

Proof. Given ε > 0 we fix a sequence (εn) such that
∏

(1 + εn) � 1 + ε. Now, let L be a
Lindenstrauss space and τ : X → L be a norm one operator. Look at the diagram

�1(Γ0,domu)
⊕I0−−−−→ �1(Γ0, codu)

ΣL0

⏐⏐� ⏐⏐�
X −−−−→ PO = G1

τ

⏐⏐�
L

and consider the composition τ ◦ ΣL0. Since L is a Lindenstrauss space, for each fixed
(u, t) ∈ Γ0, the restriction of τ ◦ ΣL0 to the corresponding ‘coordinate’ maps domu = dom t

into a finite-dimensional subspace of L and so it is contained in a (1 + ε1)-isomorph of some
finite-dimensional �n∞. Therefore, it can be extended to codu through u with norm at most
(1 + ε1). The �1-sum of all these extensions yields thus an extension T : �1(Γ0, codu) → L
of τ ◦ ΣL0 with norm at most (1 + ε1). The push-out property of PO = G1 yields therefore an
operator τ1 : G1 → L that extends τ with norm at most (1 + ε1). Iterating the process ω times,
working with (1 + εn) at step n, one gets an extension τω : Gω → L of τ with norm at most∏

(1 + εn) � 1 + ε. �
Therefore every separable Banach space is isometric to a subspace of G . Taking as X a sepa-

rable Lindenstrauss space, the universal property of the embedding yields:

Corollary 5.4. Every separable Lindenstrauss space is isometric to a (1 + ε)-complemented
subspace of G . Hence G is not isomorphic to a complemented subspace of any C(K)-space (or,
in general, any M-space).

Recall that an M-space is a Banach lattice where ‖x + y‖ = max{‖x‖,‖y‖} provided x and
y are disjoint, that is, |x| ∧ |y| = 0. Each (abstract) M-space is representable as a (concrete)
sublattice in some C(K). The second part follows from the fact, proved in [5], that there exist
separable Lindenstrauss spaces that are not complemented subspaces of any M-space. Proposi-
tion 8 in Lusky’s paper [21] shows that the above corollary is true even with ε = 0.

Everyone acquainted with ultraproducts will realize the obvious fact that ultrapowers of Gu-
rariı̆ space G are of universal disposition for finite-dimensional spaces. Less obvious is that they
also are of universal disposition for separable spaces. To show that, let us briefly recall the def-
inition and some basic properties of ultraproducts of Banach spaces. For a detailed study of
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this construction at the elementary level needed here we refer the reader to Heinrich’s survey
paper [14] or Sims’ notes [23]. Let I be a set, U be an ultrafilter on I , and (Xi)i∈I a family
of Banach spaces. Then �∞(Xi) endowed with the supremum norm, is a Banach space, and
cU

0 (Xi) = {(xi) ∈ �∞(Xi): limU(i) ‖xi‖ = 0} is a closed subspace of �∞(Xi). The ultraproduct
of the spaces (Xi)i∈I following U is defined as the quotient

[Xi]U = �∞(Xi)/c
U
0 (Xi).

We denote by [(xi)] the element of [Xi]U which has the family (xi) as a representative. It is
not difficult to show that ‖[(xi)]‖ = limU(i) ‖xi‖. In the case Xi = X for all i, we denote the
ultraproduct by XU, and call it the ultrapower of X following U. If Ti : Xi → Yi is a uni-
formly bounded family of operators, the ultraproduct operator [Ti]U : [Xi]U → [Yi]U is given
by [Ti]U[(xi)] = [Ti(xi)]. Quite clearly, ‖[Ti]U‖ = limU(i) ‖Ti‖.

Definition 5.5. An ultrafilter U on a set I is countably incomplete if there is a decreasing se-
quence (In) of subsets of I such that In ∈ U for all n, and

⋂∞
n=1 In = ∅.

Notice that U is countably incomplete if and only if there is a function n : I → N such that
n(i) → ∞ along U (equivalently, there is a family ε(i) of strictly positive numbers converging
to zero along U). It is obvious that any countably incomplete ultrafilter is non-principal and
also that every non-principal (or free) ultrafilter on N is countably incomplete. Assuming all free
ultrafilters countably incomplete is consistent with ZFC, since the cardinal of a set supporting a
free countably complete ultrafilter should be measurable, hence strongly inaccessible.

We will need the following result (see [13, II, Theorem 2.1]).

Theorem 5.6. Let J be an M-ideal in the Banach space E and π : E → E/J the natural quotient
map. Let Y be a separable Banach space and let t : Y → E/J be an operator. Assume further
that one of the following conditions is satisfied:

(1) Y has the λ-AP.
(2) J is a Lindenstrauss space.

Then t can be lifted to E, that is, there is an operator T : Y → E such that πT = t . Moreover
one can get ‖T ‖ � λ‖t‖ under the assumption (1) and ‖T ‖ = ‖t‖ under (2).

One has

Proposition 5.7. Ultrapowers of the Gurariı̆ space (or more generally, of any Banach space
almost universal disposition for finite-dimensional spaces) with respect to countably incomplete
ultrafilters are of universal disposition for separable Banach spaces.

Proof. Let U be a countably incomplete ultrafilter on the index set I . It suffices to see the
following: if S′ is a separable Banach space containing a subspace S and we are given an (into)
isometry u : S → GU, then there is an isometry u′ : S′ → GU extending u. We can assume and do
that S has codimension 1 in S′. It is easy to check that cU

0 (Xi) is an M-ideal in �∞(Xi); hence,
as every Lindenstrauss space, G has the 1-AP, using Theorem 5.6, the operator u can be lifted
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to an isometry ũ : S → �∞(I, G) which we will write as ũ(x) = (ui(x)) for certain operators
ui : S → G with norm at most 1. Write

S =
∞⋃

k=1

Sk,

where (Sk) is an increasing sequence of finite-dimensional subspaces of S. Pick s′ ∈ S′\S and
let S′

k denote the subspace spanned by Sk and s′ in S′. Notice that for each x ∈ S one has
‖ui(x)‖G → ‖x‖S following U. This implies that, given a finite-dimensional E ⊂ S and ε > 0,
the set

{
i ∈ I : ui is a (1 + ε)-isometry on E

}

belongs to U. Let (In) be a decreasing sequence of elements of U with empty intersection and
consider the sets

Jn = {
i ∈ I : ui is a (1 + 1/n)-isometry on Sn

} ∩ In.

Then Jn ∈ U for all n, the sequence (Jn) is decreasing and
⋂∞

n=1 Jn = ∅. For i ∈ I , we put
n(i) = max{n: i ∈ Jn}. Then, of course n(i) → ∞ with respect to U. Next notice that, for each
i ∈ I , the operator ui : Sn(i) → G is a (1 + 1/n(i))-isometry and so it can be extended to a
(1 + 2/n(i))-isometry u′

i : S′
n(i) → G . Let us consider the ultraproduct operator

w = [
u′

i

]
U :

[
S′

n(i)

]
U → GU

and the operator j : S′ → [S′
n(i)]U given by j (y) = [(xi)], where xi is any point in S′

n(i) minimiz-
ing dist(y, S′

n(i)). The map j is a linear isometric embedding, and thus the sought-after extension
is u′ = w ◦ j . �
Corollary 5.8. Under CH the following Banach spaces are all isometrically isomorphic:

• Any space of universal disposition for separable spaces of density ℵ1.
• The space Sω1(R).
• The Kubis space.
• Any ultrapower of Gurariı̆ space built over a non-trivial ultrafilter on the integers.

6. Spaces of universal disposition are not complemented in C(K)-spaces

We show now that spaces of universal disposition for separable spaces cannot be isomorphic
to complemented factors of any C(K)- or M-space. Since spaces of universal disposition for
separable spaces are 1-universally separably injective, it follows the existence of 1-universally
separably injective spaces not isomorphic to complemented subspaces of C(K)-spaces. Sepa-
rably injective spaces which are not isomorphic to complemented subspaces of C(K)-spaces
were exhibited in [8]. These last assertions remark the gap between 1-universally separably in-
jective and injective spaces, since injective spaces are complemented in some C(K)-spaces and
1-injective spaces are moreover isometric to C(K)-spaces.



2360 A. Avilés et al. / Journal of Functional Analysis 261 (2011) 2347–2361
Theorem 6.1. Banach spaces of universal disposition for separable spaces are not isomorphic
to complemented subspaces of C(K)-spaces. In particular they are not injective.

Proof. Suppose U is (non-zero and) of universal disposition for separable spaces, and assume
that there is an isomorphic embedding e : U → C(K) that admits a linear continuous projection
π : C(K) → U – i.e., πe = 1U . We know that U contains isometric copies of all separable
Banach spaces. Let G0 be a subspace of U isometric to G , A0 the (closed) subalgebra spanned
by e(G0) in C(K) and B0 the closure of π(A0) in U . Notice that B0 is a separable subspace of
U containing G0. As B0 embeds in G we can find another copy G1 of G inside U containing B0.
Now, replace G0 by G1 and continue inductively. This yields a diagram (unlabeled arrows are
just inclusions)

G0 −−−−→ B0 −−−−→ G1 −−−−→ B1 −−−−→ G2 −−−−→ · · ·
e

⏐⏐� π

�⏐⏐ e

⏐⏐� π

�⏐⏐ e

⏐⏐�
e(G0) −−−−→ A0 −−−−→ e(G1) −−−−→ A1 −−−−→ e(G2) −−−−→ · · ·

The space

V =
⋃
n

Gn =
⋃
n

Bn (8)

is of almost universal disposition for finite-dimensional spaces, therefore isometric to G . On the
other hand, e embeds V = ⋃

n Bn in A = ⋃
n An+1 while the restriction of π to A is left inverse to

e and so V is (isomorphic to a subspace,) complemented in A. Finally, A is a (separable) unital
subalgebra of C(K) hence it is isometrically isomorphic to C(M) for some compact (metriz-
able) M . A contradiction with the fact that G is not a complemented subspace of any M-space
(see remark after Corollary 5.4). �

The proof is valid replacing C(K)-spaces by M-spaces (replace ‘algebra’ by ‘lattice’ every-
where in the proof and take into account Benyamini’s result in [4] that separable M-spaces are
isomorphic to C(K) spaces) and thus ultrapowers of the Gurariı̆ space with respect to countably
incomplete ultrafilters are not direct factors in any M-space. This appears as Theorem 6.8 in
[15]. Unfortunately, the argument provided by Henson and Moore needs Stern’s Lemma [24,
Theorem 4.5(ii)], which is wrong (see [3]).

References

[1] A. Avilés, C. Brech, A Boolean algebra and a Banach space obtained by push-out iteration, arXiv:1012.5051v1.
[2] A. Avilés, F. Cabello, J.M.F. Castillo, M. González, Y. Moreno, On separably injective Banach spaces, preprint,

arXiv:1103.6064, 2011.
[3] A. Avilés, F. Cabello, J.M.F. Castillo, M. González, Y. Moreno, On ultrapowers of L∞-spaces, preprint, 2011.
[4] Y. Benyamini, Separable G spaces are isomorphic to C(K) spaces, Israel J. Math. 14 (1973) 287–293.
[5] Y. Benyamini, J. Lindenstrauss, A predual of l1 which is not isomorphic to a C(K) space, Israel J. Math. 13 (1972)

(1973) 246–254.
[6] C. Brech, P. Koszmider, On universal Banach spaces of density continuum, Israel J. Math., in press.
[7] F. Cabello Sánchez, J.M.F. Castillo, D.T. Yost, Sobczyk’s theorems from A to B, Extracta Math. 15 (2000) 391–420.
[8] J.M.F. Castillo, Y. Moreno, J. Suárez, On Lindenstrauss–Pelczyński spaces, Studia Math. 174 (2006) 213–231.
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