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Abstract

In this paper we present a method to obtain Banach spaces of universal and almost-universal disposition
with respect to a given class 91 of normed spaces. The method produces, among others, the only separa-
ble Banach space of almost-universal disposition with respect to the class § of finite-dimensional spaces
(Gurarii space G); or the only, under CH, Banach space with density character the continuum which is of
universal disposition with respect to the class & of separable spaces (Kubis space /). We moreover show
that K is isomorphic to an ultrapower of the Gurarii space and that it is not isomorphic to a complemented
subspace of any C (K )-space. Other properties of spaces of universal disposition are also studied: separable
injectivity, partially automorphic character and uniqueness.
© 2011 Elsevier Inc. All rights reserved.

Keywords: Banach spaces; Isometric embedding; Universal disposition; Separable injectivity

* The first author was supported by MEC and FEDER (Project MTM2008-05396), Fundacién Séneca (Project
08848/P1/08) and Ramén y Cajal contract (RYC-2008-02051). The research of the other four authors was supported
in part by project MTM2010-20190. The research of authors 2, 3 and 5 is supported in part by the program Junta de
Extremadura GR10113 IV Plan Regional I+D+i, Ayudas a Grupos de Investigacion.

* Corresponding author.

E-mail addresses: avileslo@um.es (A. Avilés), fcabello@unex.es (F. Cabello Sanchez), castillo@unex.es
(J.MLFE. Castillo), manuel.gonzalez@unican.es (M. Gonzalez), ymoreno @unex.es (Y. Moreno).

0022-1236/$ — see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2011.06.011


https://core.ac.uk/display/82624745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2348 A. Avilés et al. / Journal of Functional Analysis 261 (2011) 2347-2361
1. Spaces of universal and almost-universal disposition

In [11] Gurarif introduces the notions of spaces of universal and almost-universal disposition
for a given class 91 as follows.

Definition 1.1. Let 91 be a class of Banach spaces.

(1) A Banach space U is said to be of almost universal disposition for the class 91 if, given
A, B € 9, isometric embeddings u : A — U and1: A — B, and ¢ > 0, there is a (1 + ¢)-
isometric embedding ' : B — U such that u = u'1.

(2) A Banach space U is of universal disposition for the class 901 if, given A, B € 901 and iso-
metric embeddings u : A — U and 1 : A — B, there is an isometric embedding u’: B — U
such that u = u'1.

Gurarii shows that there exists a separable Banach space of almost-universal disposition for
the class § of finite-dimensional spaces [11, Theorem 2]. We recall now the main properties of
Gurarii’s creature (see also [12, Ch. 4]). Gevorkyan shows [9] that a space of almost-universal
disposition for finite-dimensional spaces must contain isometric copies of all separable spaces;
see [10] for related results. It is also clear that two separable Banach spaces of almost-universal
disposition for finite-dimensional spaces are almost isometric — this is shown by an obvious back-
and-forth argument in [11, Theorem 4]. A different and simpler description of Gurarii space(s)
by means of triangular matrices was provided by Lazar and Lindenstrauss in [17, Theorem 5.6].
On the other hand, Petczyriski and Wojtaszczyk show in [22] that the family of separable Linden-
strauss spaces has a maximal member: there is a separable Lindenstrauss space PV having the
following property: for every separable Lindenstrauss space X and each ¢ > 0, there is an opera-
tor u : X — PW such that || x| < [lu(x)| < (14 ¢)]|lx]| and a contractive projection of PV onto
the range of u. One year later Wojtaszczyk [25] himself shows that P}V can be constructed as a
space of almost universal disposition for finite-dimensional spaces. Finally, Lusky shows in [20]
that two separable spaces of almost-universal disposition for finite-dimensional Banach spaces
are isometric. Therefore, there exists a unique separable space of almost-universal disposition for
finite-dimensional Banach spaces, that we will call the Gurarii space and denote by G.

Gurarii conjectured the existence of spaces of universal disposition for the classes § of finite-
dimensional spaces and & of separable spaces: see the footnote to Theorem 5 in [11]. We will
present a method able to effectively generate such examples, as well as other spaces of universal
or almost-universal disposition, such as the Gurarii space [11] or the Fraissé limit constructed by
Kubis [16].

2. Background

Our notation is fairly standard, as in [19]. A Banach space X is said to be an L ;-space with
A > 1 if every finite-dimensional subspace F' of X is contained in another finite-dimensional
subspace of X whose Banach—Mazur distance to the corresponding £ is at most A. A space X
is said to be a Lo-space if it is a Lo,y -space for some A > 1; we will say that it is a Lindenstrauss
space if it is a Lo, 14¢-space for all ¢ > 0. Throughout the paper, ZFC denotes the usual setting
of set theory with the Axiom of Choice, while CH denotes the continuum hypothesis (¢ = X).
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2.1. The push-out construction

The push-out construction appears naturally when one considers a couple of operators defined
on the same space, in particular in any extension problem. Let us explain why. Given operators
a:Y — Aand B:Y — B, the associated push-out diagram is

Yy —% 5 A

5| |7 (1)

/

B —2 5 PO

Here, the push-out space PO = PO(«, §) is the quotient of the direct sum A @1 B, the product
space endowed with the sum norm, by the closure of the subspace A = {(ay, —By): y € Y'}.
The map «’ is given by the inclusion of B into A @; B followed by the natural quotient map
A®; B— (A®| B)/A, so that «’(b) = (0, b) + A and, analogously, f'(a) = (a,0) + A.

The diagram (1) is commutative: 8'a = «’B. Moreover, it is ‘minimal’ in the sense of having
the following universal property: if 8”: A — C and «” : B — C are operators such that 8"« =
o B, then there is a unique operator y : PO — C such that «” = ya and B” = yp’. Clearly,
y((a,b) + A) = B’ (a) + &’ (b) and one has ||y | < max{|a”|, ||8”|l}. Regarding the behavior
of the maps in diagram (1), apart from the obvious fact that both &’ and 8’ are contractive, we
have:

Lemma 2.1.

(a) If o is an isomorphic embedding, then A is closed.

(b) If a is an isometric embedding and || 8| < 1 then o' is an isometric embedding.
(¢) If « is an isomorphic embedding then o' is an isomorphic embedding.

(@) If 1Bl € 1 and « is an isomorphism then o' is an isomorphism and

o}

(@)™ | <max{,

Proof. (a) is clear. (b) If || ]| < 1,

|’ )] = [ 0,5) + A = inf llayll + 116 = yll > inf Byl + 1 — Byll > l1B1l

as required. (c) is clear after (b). (d) To prove the assertion about (¢’ )~ !, notice that for all a € A
and b € B one has (a,b) + A = (0,b + By) + A for y € Y such that oy = a. Therefore, for all
y’' € Y one has

16+ Byl < |6+ By +BY ||+ | BY]
<o+ By + 8| +[y]
<o+ By+8Y || + ]|

from where the assertion follows. O
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A Banach space E is said to be (separably) injective if for every (separable) Banach space
X and each subspace Y C X, every operator ¢t : Y — E extends to an operator 7 : X — E. If
some extension 7T exists with || 7| < A||z]| we say that E is A-separably injective. Following [2],
a Banach space E is said to be universally separably injective if for every Banach space X and
each separable subspace Y C X, every operator ¢ : Y — E extends to an operator 7 : ¥ — X. If
some extension T exists with ||T'|| < A||z]| we say that E is universally A-separably injective.

3. The basic construction

Let us consider an isometric embedding u : A — B and an operator ¢ : A — E. We want to
extend ¢ through u, probably at the cost of replacing E by a larger space. The push-out diagram

A—2- B

1|

’

E —% 5 PO

does exactly what we ask: 'u = ut. It is important to realize that u’ is again an isometric em-
bedding and that " is a contraction (resp. an isometric embedding) if ¢ is; see Lemma 2.1. What
we need is to be able to do the same with a previously established family of embeddings. The
input data for the construction are:

e A Banach space E.
e A family J of isometric embeddings between certain Banach spaces.
o A family £ of norm one operators from certain Banach spaces to E.

Each member of J is, by definition, an isometric embedding u : A — B, where A and B
are Banach spaces. Then A = domu is the domain of # and B = codu is the codomain. Let us
remark that codu is usually larger than the image of u. This implicitly yields three families of
Banach spaces:

e domJy={domu: u €Jy},

e codJ={codu: u € J},

e dom £ = {domt: r € £}.
To avoid complications we will assume that J and £ are sets and also that dom J = dom £. Notice
that the only element of cod £ is E.

Set I' ={(u,t) € J x £: domu = dom¢} and consider the Banach spaces of summable fami-
lies £1(I",domu) and €1 (1", cod u). We have an obvious isometric embedding

@ : (I, domu) — £1(I",codu)
defined by (X)) w.ryer = (U (X@w,1)))w,ner; and a contraction

XL:0(I",domu) — E,
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given by (X(.,n)w,ner Z(w)er t(X(u,r)). (Observe that the notation is slightly imprecise
since both @3 and X' £ depend on I".) We can form their push-out diagram

€I domu) —235 ¢,(I", codu)

5o |

E —_— PO

In this way we obtain an isometric enlargement ; : £ — PO such that every operator¢: A — E in
£ can be extended to an operator ' : B — PO through any embedding u : A — B in J provided
domu = dom¢t = A. In the step « we leave the family J fixed, replace E by PO and £ by another
family £, and proceed again.

One can iterate this construction until any countable or uncountable ordinal. Moreover, a care-
ful choice of the families £, in the successive steps allows one to produce spaces of universal
disposition, as we will see now.

We pass to present some specific constructions in detail. We fix a Banach space X. We would
take J as the family of all isometric embeddings between separable Banach spaces. Avoiding the
details required to fix the inconvenient that the class of separable Banach spaces is not a set, let
G be the family all separable Banach spaces up to isometries. The initial step of the construction
is performed with the space X, the set J of all isometric embeddings acting between the elements
of G and the set £ of all norm one operators 7 : § — X, where S € G.

We are going to define Banach spaces &% = G%(X) for all ordinals « starting with & = X
and in such a way that, for o < $, there is an isometric embedding 14,5y : 6% — &P, The
embeddings must satisfy the obvious compatibility condition that 1(g ,)t(w,8) = L(a,y) if @ <
B < y. In particular, for each ordinal «, we have an embedding 10, o) : X — &“.

We use transfinite induction as follows. Suppose G# and the corresponding embeddings de-
fined for each f < . If « = B + 1 is a successor ordinal, we consider the following data:

e the Banach space G#,
o the set J of all isometric embeddings acting between the elements of G, and
o the set £4 of all norm one operators ¢ : S — &P, where S € G.

Then we set I'g = {(u, 1) € J x £g: domu = dom¢?} and we form the push-out diagram

DT
6, (I, domu) —L5 ¢,(Ig, codu)

- | @

Sh - PO

thus obtaining &% = &#+! = PO. The embedding 1(8,«) 1s the lower arrow in the above diagram
and the other embeddings are given by composition with 1(g o). If o is a limit ordinal we take &%
as the direct limit limg - &P, with the obvious embeddings. Two variations of this construction
will be considered:

e Replace G by the smaller family § generated by the finite-dimensional spaces in &. We will
call the final space §*(X).
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e We leave the initial family of Banach spaces G, but replace J by the set I of all isometric
embeddings of the spaces of G into £, so that codu = £, for every u € 3°. The choice
of £ is the same as before: all contractive operators from the spaces in G to X. Now, we
proceed as before to construct a family of Banach spaces U* = 1%(X) together with the
corresponding compatible linking embeddings. The passage from 4% to 4**! is as follows.
We set £, as the set of all norm one operators from the spaces of G to U* and Iy = {(u, ) €
J%° x £4: domu = domzt} and we form the push-out diagram

01 (T domu) —225 (T foo)

22.{ l 3)

e —_— PO

thus obtaining 4**! = PO. The embedding I(a,a+1) 18 the lower arrow in the above diagram
and the other embeddings are given by composition with 74 ¢41).

Proposition 3.1. Let X be a Banach space.

(a) The spaces G®' (X) and ' (X) are of universal disposition for separable Banach spaces.
(b) The space §°1 (X) is of universal disposition for finite-dimensional Banach spaces.

Proof. We write the proof for G“! = G®!(X). The case ! (X) is analogous and we leave it to
the reader.

We must show thatis v: A — B and £ : A — G®! are isometric embeddings and B is sep-
arable, then there is an isometric embedding L : B — &®! such that Lv = ¢. We may and do
assume A, B € G so that v is in J. On the other hand there is « < w; such that £(A) C &% and
we may consider that £ is one of the operators in £,. Therefore £ has an extension ¢’ making the
following square commutative:

A ——> B

T

S l(“*"‘“); Setl

Actually ¢’ is the composition of the inclusion j(, ¢y of B = cod v into the (v, £)-th coordinate of
£1(Iy, codu) with the right descending arrow in the diagram

€4(Fy. domu) —22 5 ¢,(Iy. codu)

2Ly J l “4)

& —— PO=6""!

We known that £’ is a contraction and we must prove it is isometric. We have

PO = (&% @1 €1(I'y, codu))/A withA:{( > .- Y ux(u,o)}.

(u,t)ely (u,t)ely
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Thus, for b € B we have £/ (b) = (0, j,¢)b) + A and
€@y = dist(0. sw0), A) = inf {[e@)| o + 6 = vi@) | s} = 5115

since both ¢ and v preserve the norm.
The proof of (b) is left to the reader. O

The spaces in (a) are the space Gurarii conjectured. We will later show that — under CH — such
space is unique and coincides with the Fraissé limit in the category of separable Banach spaces
and into isometries constructed by Kubis [16]; and also with an ultrapower of Gurarii space. For
our purposes it is enough to stop the constructions at wj, however it is not hard to believe that
a careful choice of the cardinal « can produce spaces &% with special properties. Observe that,
say, 3?11 (X) is not of universal disposition for &.

4. Properties of spaces of universal disposition

Gurarii shows in [11] that a space of universal disposition for all finite-dimensional spaces
cannot be separable since no separable Banach space can be of universal disposition for the
couple {R, R x R}: indeed, a Banach space of universal disposition for R is transitive and it is
well known that the norm of a separable transitive space must be smooth. This prevents the space
from being of universal disposition for RZ. On the other hand it is clear that, if the starting space
X is separable, then the Banach spaces appearing in Propositions 3.1 have density character ¢
since each of them is the union of an w; sequence formed by Banach spaces of density c.

Proposition 4.1. A Banach space of universal disposition for separable spaces must have density
at least ¢ and contains an isometric copy of each Banach space of density N1 or less.

Proof. The first part is a juxtaposition of forthcoming Lemma 4.2 — which asserts that a Banach
space of universal disposition for separable spaces must be 1-separably injective — and the result
in [2] asserting that a A-separably injective space with A < 2 is either finite-dimensional or has
density character at least c. To prove the second part, assume that U is a space of universal
disposition for separable Banach spaces and let X have density &;. Write X as an wj-sequence
of separable Banach spaces, beginning with Xo = 0 and use the argument given in the proof of
(1) = (v) in [18, p. 221], using norm preserving operators in every step. O

Problem 1. Must a space of universal disposition for finite-dimensional spaces contain an iso-
metric copy of each Banach space of density 8 or less? Our guess is no.

Problem 2. Does there exist consistently a Banach space of universal disposition for finite-
dimensional spaces having density character strictly smaller than ¢?

Lemma 4.2. Let E be a Banach space. Suppose there is a constant A such that for each (sepa-
rable) Banach space X and every pair of into isometries u : Y — X and v : Y — E there exists
an operator V : X — E such that Vu = v with |V | < A. Then E is A-(separably) injective. In
particular, every Banach space of universal disposition for the class G is 1-separably injective.
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Proof. Let¢:Y — E have norm one. Denote by Y’ the closure of the range of ¢ and make the
push-out of (u,1):

tl l 5)

/

Y —% 5 PO

By Lemma 2.1, u’ is an into isometry, and the hypothesis yields an operator t” : PO — E such
that t”"u’ is the inclusion of Y’ into E, with ||”|| < A. Taking T =t"t' we end the proof. O

Proposition 4.3. Let E be a space of universal disposition for separable spaces.

(a) Given a separable Banach space X and a subspace Y C X, every isomorphic embedding
t:Y — E extends to an isomorphic embedding T : X — E with |T|| = ||t|| and |T~"| =
e~ M.

(b) Consequently, if dens E < Ry, then E is separably automorphic; namely, any isomorphism
between two separable subspaces of E can be extended to an automorphism of E.

Proof. (a) Let u denote the inclusion of Y into X and assume, without loss of generality, that
lz]l = 1. We follow the same notation as in Lemma 4.2. Looking at diagram (5) we have ||| = 1
and u’ is isometric, so there is an isometric embedding ¢ : PO — E such that t”u’ is the inclusion
of Y/ =rant into E. Now T ="t is the extension of ¢ we wanted. Clearly, ||T|| = ||¢] = 1. On
the other hand, by part (d) of Lemma 2.1, ||(t")~"|| < max{1, ||z~!||} hence ||| = ||z~ "]

(b) For the second part, it suffices to show that if Y is a separable subspace of E, every iso-
morphic embedding ¢p : ¥ — E extends to an automorphism of E. This is proved through the
obvious back-and-forth argument: write £ =, _,, , Eq as an o1-sequence of separable sub-
spaces starting with Eg = Y. Consider the embedding ¢g : Eo — E. Let Y| : ¢(Eg) + E1 = E
be an extension of ¢ : ¢(Eo) — E, with |[yr1]l = llgy 'l and [y, "I = llgoll. Notice that
rany = Eg + ¥1(E1). Let ¢, be the extension of wfl to Eo + ¥1(E1) + E; provided by Part
(a) and so on. Proceeding by transfinite induction one gets a couple of endomorphisms ¢ and
such that ¥ = gy = 1, with [l¢[| = l|¢oll and [ = ll¢y ' and 9 =goon Y. O

Our next result shows that under CH there is no dependence on the initial separable space X
in the constructions appearing in Proposition 3.1.

Proposition 4.4. Under CH, there is a unique space with density character R of universal dis-
position for separable spaces, up to isometries.

Proof. Let X and Y be spaces of universal disposition for separable spaces and with density
character 8. It is obvious that they contain isometric copies of all separable spaces. Let us write
X =Uy<w Xe and Y =Jg_,, Yp as increasing w-sequences of separable subspaces. Pick g
such that there is an isometric embedding ¢ : Xo — Yg,. Let 1 : Yg, — X be an isometric
extension of ¢ L As Y1 has separable range there is oz < @ such that ranyr C X,. Let ¢ :
X, — Y be an isometric extension of v/, ! A transfinite iteration of the process produces an
isometry X — Y. O
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Let us show that there are spaces of universal disposition for all finite-dimensional Banach
spaces which are not of universal disposition for all separable Banach spaces. We need the
following observation (for separable — instead of finite-dimensional — spaces the extension to
separable superspaces can only be obtained with norm 2; see [7,26]):

Lemma 4.5. A cg-valued operator defined on a finite-dimensional Banach space admits a com-
pact extension with the same norm to any superspace.

Proof. Let F C X be a finite-dimensional subspace of a Banach space X, and let 7 : F — ¢
be a norm one operator. Assume that 7 = (t,) comes defined by a pointwise null sequence of
functionals. Since F' is finite-dimensional, the sequence (t,) is actually norm null. Thus, any
sequence of Hahn—Banach extensions will also be norm null, and the operator they define is a
compact extension of 7. O

Proposition 4.6. The space T (co) is of universal disposition for finite-dimensional spaces and
it is not of universal disposition for separable spaces.

Proof. It follows from Lemma 4.5 and the method of construction that the embedding X —
$“1(X) has the property that every operator X — co can be extended to §“!'(X). Therefore
$“(co) contains ¢y complemented, and thus it cannot be 1-separably injective since it has been
shown in [2] that 1-separably injective spaces are Grothendieck spaces (all operators into cp are
weakly compact). O

This suggests that quite plausibly there is — even under CH — a continuum of mutually non-
isomorphic spaces of universal disposition for finite-dimensional spaces. Let us show that such
is the case — outside CH, of course — for separable spaces.

Proposition 4.7. Assume that no Banach space of density character ¢ is universal for all Banach
spaces with density character ¢. Then there is at least a continuum of non-isomorphic spaces of
universal disposition for & with density c.

Proof. We proceed by transfinite induction. To make the induction start, form the space S(1) =
G“1(R). Take, by hypothesis, a Banach space X (1) with density character ¢ not contained in
G (R) and form then G(2) = G (X (1) & &(1)). Take a new Banach space X (2) with density
character ¢ not contained G(2) and continue in this way.

Let B < ¢, and assume that for each « < 8 a Banach space G(«) of universal disposition for
G has already been constructed verifying:

(1) For all «, the space G(«) has density character c.
(2) For y < « the space &(y) is isometric to a subspace of G(«).
(3) For « # y the spaces S(«) and S(y) are not isomorphic.

If =B+ 1 is not a limit ordinal, then get a Banach space X (8’) with density character ¢
not contained in &(B’) and form &(B) = & (&(B') ® X (B))).

If B is a limit ordinal, then &(B8) = &*! (Ua<ﬂ G(w)).

All this yields a continuum S(«), o < ¢, of mutually non-isomorphic spaces of universal
disposition for separable spaces. O



2356 A. Avilés et al. / Journal of Functional Analysis 261 (2011) 2347-2361

Remark 4.8. The hypothesis of Proposition 4.7 is consistent by a result of Brech and Kosz-
mider [6]. The paper [1] contains further results on the existence of spaces of universal disposi-
tion for G under different cardinality assumptions.

5. Gurarii’s space and its ultrapowers

We can construct the Gurarii space as follows. We fix a countable system of isometric em-
beddings Jo having the following density property: given an isometric embedding w : A — B
between finite-dimensional spaces, and & > 0, there is u € Jy, and surjective (1 4 ¢)-isometries
o:A— domu and 8 : B — codu making the square

A —25 B

l l,s (6)

u
domuy —— codu

commutative. Set §o = dom Jy.

Let now X be a separable Banach space. We define an increasing sequence of Banach spaces
G" = G"(X) as follows. We start with G® = X. Assuming G” has been defined we get G"*!
from the basic construction explained in Section 3 just taking as £, a countable set of G"-
valued contractions with domain in §¢ such that, for every ¢ > 0, and every (1 + ¢)-isometric
embedding s : F — G", with F € J, there is t € £, such that ||s — #|| < &. We consider the
index set I, = {(u,t) € Jp x £,,: domu = dom¢} and the push-out diagram

0Ty, domu) —22% ¢,(Iy. codu)

s, l l (7)

G" —_— PO

Then we set G"+! = PO. The linking map G” — G”*! is given by the lower arrow in the push-
out diagram.

Proposition 5.1. Let X be a separable Banach space. The space

w — 11 n __ n
G*(X)=1limG _LnJG

is a separable Banach space of almost-universal disposition for finite-dimensional spaces.

Proof. Let w: A — B and s : A — G® be isometric embeddings, with B a finite-dimensional
space and fix ¢ > 0. Choose u € Jy, as in (6). Clearly, for m large enough there is a contrac-
tive (1 + &)-isometry 7 : domu — G™ satisfying ||s — ta| < ¢. Let ¢’ : codu — G™*+! be the
extension provided by diagram (7), so that ¢ is a contractive (1 + ¢)-isometry such that 'u = ¢.
Therefore 1’8 is a contractive (1 4+ )2-isometry satisfying ||s — t’Bw]| < e. The following per-
turbation result ends the proof. O
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Lemma 5.2. A Banach space U is of almost universal disposition for finite-dimensional spaces
if and only if, given isometric embeddings u : A — U and 1 : A — B with B finite-dimensional,
and ¢ > 0, there is a (1 + ¢)-isometric embedding u' : B — U such that |u — u'1|| < e.

Since Gurarii space is unique, for all separable spaces X, one has G (X) = G. Moreover, the
embedding of X into G“(X) enjoys the following universal property:

Proposition 5.3. Every norm one operator from X into a Lindenstrauss space admits, for every
& > 0, an extension to G®(X) of norm at most 1 + ¢.

Proof. Given ¢ > 0 we fix a sequence (g,) such that [J(1 + &,) < 1 4+ ¢. Now, let £ be a
Lindenstrauss space and t : X — £ be a norm one operator. Look at the diagram

0 (I, domu) —22%% ¢,(Ip. codu)

s l

X — > PO=¢G!

g

and consider the composition 7 o X' £p. Since £ is a Lindenstrauss space, for each fixed
(u,t) € I, the restriction of T o X £( to the corresponding ‘coordinate’ maps domu = dom¢
into a finite-dimensional subspace of £ and so it is contained in a (1 + &1)-isomorph of some
finite-dimensional ¢ . Therefore, it can be extended to codu through u with norm at most
(1 4+ &1). The £;-sum of all these extensions yields thus an extension 7 : £{([p,codu) — L
of T o X €0 with norm at most (1 + &1). The push-out property of PO = G! yields therefore an
operator 17 : G! — £ that extends t with norm at most (1 4 &1). Iterating the process w times,
working with (1 + ¢,) at step n, one gets an extension 7, : G® — L of t with norm at most
[TA+e) <146 O

Therefore every separable Banach space is isometric to a subspace of G. Taking as X a sepa-
rable Lindenstrauss space, the universal property of the embedding yields:

Corollary 5.4. Every separable Lindenstrauss space is isometric to a (1 + €)-complemented
subspace of G. Hence G is not isomorphic to a complemented subspace of any C(K)-space (or,
in general, any M-space).

Recall that an M-space is a Banach lattice where ||x 4+ y|| = max{||x||, ||y||} provided x and
y are disjoint, that is, |x| A |y| = 0. Each (abstract) M-space is representable as a (concrete)
sublattice in some C(K). The second part follows from the fact, proved in [5], that there exist
separable Lindenstrauss spaces that are not complemented subspaces of any M-space. Proposi-
tion 8 in Lusky’s paper [21] shows that the above corollary is true even with ¢ = 0.

Everyone acquainted with ultraproducts will realize the obvious fact that ultrapowers of Gu-
rarii space G are of universal disposition for finite-dimensional spaces. Less obvious is that they
also are of universal disposition for separable spaces. To show that, let us briefly recall the def-
inition and some basic properties of ultraproducts of Banach spaces. For a detailed study of



2358 A. Avilés et al. / Journal of Functional Analysis 261 (2011) 2347-2361

this construction at the elementary level needed here we refer the reader to Heinrich’s survey
paper [14] or Sims’ notes [23]. Let I be a set, U be an ultrafilter on 7, and (X;);e; a family
of Banach spaces. Then £,(X;) endowed with the supremum norm, is a Banach space, and
cgl(Xi) = {(x;) € Loo(X;): limyy) [|x; || = O} is a closed subspace of £, (X;). The ultraproduct
of the spaces (X;)ics following U is defined as the quotient

[Xilu = €oo (X)) /e (Xi).

We denote by [(x;)] the element of [X;]y which has the family (x;) as a representative. It is
not difficult to show that ||[(x;)]]l = limy ;) [lx;]l. In the case X; = X for all i, we denote the
ultraproduct by Xq;, and call it the ultrapower of X following U. If 7; : X; — Y; is a uni-
formly bounded family of operators, the ultraproduct operator [7;]q : [X;]y — [Yily is given
by [T:1ul(x)] = [T; (x1)]. Quite clearly, [|[T; 1yl = limy) | T; .

Definition 5.5. An ultrafilter U on a set [ is countably incomplete if there is a decreasing se-
quence (I,) of subsets of I such that I,, € U for all n, and ﬂff’zl I, =9.

Notice that U is countably incomplete if and only if there is a function n : I — N such that
n(i) — oo along U (equivalently, there is a family (i) of strictly positive numbers converging
to zero along U). It is obvious that any countably incomplete ultrafilter is non-principal and
also that every non-principal (or free) ultrafilter on N is countably incomplete. Assuming all free
ultrafilters countably incomplete is consistent with ZFC, since the cardinal of a set supporting a
free countably complete ultrafilter should be measurable, hence strongly inaccessible.

We will need the following result (see [13, II, Theorem 2.1]).

Theorem 5.6. Let J be an M -ideal in the Banach space E and w : E — E/J the natural quotient
map. Let Y be a separable Banach space and let t : Y — E/J be an operator. Assume further
that one of the following conditions is satisfied:

(1) Y has the A-AP.
(2) J is a Lindenstrauss space.

Then t can be lifted to E, that is, there is an operator T : Y — E such that 1T =t. Moreover
one can get | T|| < M||t|| under the assumption (1) and || T || = ||t|| under (2).

One has

Proposition 5.7. Ultrapowers of the Gurarii space (or more generally, of any Banach space
almost universal disposition for finite-dimensional spaces) with respect to countably incomplete
ultrafilters are of universal disposition for separable Banach spaces.

Proof. Let U be a countably incomplete ultrafilter on the index set /. It suffices to see the
following: if S’ is a separable Banach space containing a subspace S and we are given an (into)
isometry u : S — Gy, then there is an isometry u’ : S — Gq; extending u. We can assume and do
that S has codimension 1 in S’. It is easy to check that cg’(Xi) is an M-ideal in £~,(X;); hence,
as every Lindenstrauss space, G has the 1-AP, using Theorem 5.6, the operator u can be lifted
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to an isometry u : § — £°°(I, G) which we will write as #(x) = (u; (x)) for certain operators
u; . S — G with norm at most 1. Write

—
s=J S,
k=1

where (Sy) is an increasing sequence of finite-dimensional subspaces of S. Pick s’ € '\ S and
let S, denote the subspace spanned by S; and s” in §’. Notice that for each x € S one has
llu; (x)|lg = llx|ls following U. This implies that, given a finite-dimensional £ C S and ¢ > 0,
the set

{i €l: u;isa (1 + ¢)-isometry on E}

belongs to U. Let (I,,) be a decreasing sequence of elements of U with empty intersection and
consider the sets

Jo={i €I ujisa (1+1/n)-isometry on S, } N I,,.
Then J, € U for all n, the sequence (J,) is decreasing and ﬂﬁil J, =0. Fori €I, we put
n(i) = max{n: i € J,}. Then, of course n(i) — oo with respect to U. Next notice that, for each
i € I, the operator u; : Sp;) — G is a (1 + 1/n(i))-isometry and so it can be extended to a
(1+2/n(i))-isometry u; : S; e G. Let us consider the ultraproduct operator

w=[ui]y: S ]y = Gu

and the operator j : S’ — [Sr’l(l.)]u given by 7 (y) = [(x;)], where x; is any point in S;L(i) minimiz-
ing dist(y, S/, ( l.)). The map j is a linear isometric embedding, and thus the sought-after extension
isu=woy. O

Corollary 5.8. Under CH the following Banach spaces are all isometrically isomorphic:

e Any space of universal disposition for separable spaces of density N1.

o The space S®! (R).

o The Kubis space.

o Any ultrapower of Gurarii space built over a non-trivial ultrafilter on the integers.

6. Spaces of universal disposition are not complemented in C (K)-spaces

We show now that spaces of universal disposition for separable spaces cannot be isomorphic
to complemented factors of any C(K)- or M-space. Since spaces of universal disposition for
separable spaces are 1-universally separably injective, it follows the existence of 1-universally
separably injective spaces not isomorphic to complemented subspaces of C(K)-spaces. Sepa-
rably injective spaces which are not isomorphic to complemented subspaces of C(K)-spaces
were exhibited in [8]. These last assertions remark the gap between 1-universally separably in-
jective and injective spaces, since injective spaces are complemented in some C (K )-spaces and
l-injective spaces are moreover isometric to C(K)-spaces.
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Theorem 6.1. Banach spaces of universal disposition for separable spaces are not isomorphic
to complemented subspaces of C (K)-spaces. In particular they are not injective.

Proof. Suppose U is (non-zero and) of universal disposition for separable spaces, and assume
that there is an isomorphic embedding e : U — C(K) that admits a linear continuous projection
w:C(K)— U - ie., me =1y. We know that U contains isometric copies of all separable
Banach spaces. Let G be a subspace of U isometric to G, Ag the (closed) subalgebra spanned
by e(Gg) in C(K) and By the closure of w(Ag) in U. Notice that By is a separable subspace of
U containing Go. As Bp embeds in G we can find another copy G of G inside U containing By.
Now, replace Go by G and continue inductively. This yields a diagram (unlabeled arrows are
just inclusions)

Go By G B Gy, — .-

T B

e(Go) Ao e(G1) Ay e(G2) —
The space

v={JG.=JB ®)

is of almost universal disposition for finite-dimensional spaces, therefore isometric to G. On the
other hand, e embeds V = J, B, in A = J,, A,+1 while the restriction of 7 to A is left inverse to
e and so V is (isomorphic to a subspace,) complemented in A. Finally, A is a (separable) unital
subalgebra of C(K) hence it is isometrically isomorphic to C(M) for some compact (metriz-
able) M. A contradiction with the fact that G is not a complemented subspace of any M-space
(see remark after Corollary 5.4). O

The proof is valid replacing C (K )-spaces by M-spaces (replace ‘algebra’ by ‘lattice’ every-
where in the proof and take into account Benyamini’s result in [4] that separable M-spaces are
isomorphic to C(K) spaces) and thus ultrapowers of the Gurarii space with respect to countably
incomplete ultrafilters are not direct factors in any M-space. This appears as Theorem 6.8 in
[15]. Unfortunately, the argument provided by Henson and Moore needs Stern’s Lemma [24,
Theorem 4.5(ii)], which is wrong (see [3]).
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