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1. INTRODUCTION AND STATEMENT OF THE
MAIN THEOREM

Ž .In this paper, we describe the embeddings of groups G L in orthogo-2
nal groups such that the long root elements act as Siegel transvections. For

w xfinite orthogonal groups, this is contained in the results of Kantor K on
subgroups of finite classical groups generated by a class of long root
elements. The problem stated above is part of the determination of the
subgroups G generated by long root elements in algebraic groups Y over

w xarbitrary fields. For the case where Y and G are classical groups, see S .
To state the Main Theorem, we introduce some notation.

1.1

Let K be a commutative field, let V be a finite-dimensional vector
Žspace over K, and let Q: V ª K be a quadratic form with associated

. Ž .bilinear form b . A subspace U of V is called singular, if Q u s 0 for all
Ž Ž .u g U. We assume that Q is nondegenerate i.e., if ¨ g Rad V, b with

Ž . . ŽQ ¨ s 0, then ¨ s 0 and that Q has Witt index at least 3 i.e., V contains
.three-dimensional singular subspaces .

� 4Let ll be a singular line of V with basis x, y . For c g K, the mapping

t : ¨ ¬ ¨ y cb ¨ , x y q cb ¨ , y x for ¨ g VŽ . Ž .c

Ž w x w Ž .x. �is called a Siegel transvection see T, Th. 5 , S, 1.1.3 . The set T [ t Nll c
4 Ž .c g K is the Siegel transvection group corresponding to ll . Let V V, Q
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² :[ S , where

S [ T N ll a singular line in V� 4ll

is the class of Siegel transvection groups, be the associated orthogonal
group.

Ž .Let G be a subgroup of Y [ V V, Q which is generated by Siegel
0 0 � 0 0transvections. For A g S, we set A [ A l G, S [ A N A g S, A /

4 w x 01 and further V [ V, G . We assume that G and S satisfy the0
following hypothesis:

Ž .G G is quasi-simple and there exists a commutative field L such2
0 0 0 0Ž . Ž . Ž Ž . . � 4that G [ GrZ G , G L resp. G 2 9 and S [ A N A g S is the2 2

class of long root subgroups of G.

Ž .We regard G L as the subgroup S of a seven-dimensional orthogonal2
Ž . Žgroup V W, B which preserves the Dickson form as suggested by

w x .Aschbacher A ; see Section 2 . We say that W is the natural module for
Ž .G L .2
The Main Theorem of this paper is:

Ž . Ž .1.2. MAIN THEOREM. Let Y s V V, Q , let G and G L , S F2
Ž . Ž .V W, B be as in 1.1 . Then the following hold:

Ž .a We ha¨e dim V s 7.0

Ž .b There exists an embedding of fields a : L ª K, an injectï e semi-
Ž . ² :linear with respect to a mapping w : W ª V with V s Ww , and anK0 0

Ž . Ž Ž .. Ž .isomorphism x : G ª S , G L such that w g x w s ww g for all w g2
W, g g G.

˜ ˜ aŽ . Ž . Ž .c The quadratic form B on V defined by B ww [ B w for0
˜w g W is proportional to Q, i.e., Q s dB on V for some d g K.0

Ž . Ž . Ž . Ž . Ž .d If Rad V : Rad V , then V s V q C G . If Rad V ­0 0 V 0
Ž . Ž .Rad V , then V q C G is a hyperplane of V. In the latter case there exists0 V

Ž .an eight-dimensional subspace V of V, which contains V , such that Rad V1 0 1
Ž .s 0 and V s V q C G . The action of G on V is uniquely determined by1 V 1

the action of G on V .0

The Main Theorem shows that the embedding of G in Y is induced by a
semilinear mapping. We can regard the commutator space V as the0

Ž .natural module for G tensored with the bigger field K .

1.3

Ž . ² :The idea of the proof is as follows: We may write G L s M, X ,2
Ž . Ž .where M , SL L is generated by long root subgroups and X , SL L3 2

w xis generated by two short root subgroups. By S the action of M on the
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Žw xorthogonal space V is known V, M is the direct sum of a natural and a
.dual module for M . We hence may determine the action of X on V, using
Ž . w xa subgroup S , SL L of M with S , X s 1.1 2 1

w Ž .xBecause of the results of Kantor K, Th. I, 12. B , we may restrict to the
< <case L G 4.

1.4

w xIn the proof of the Main Theorem also the results of Borel and Tits BT
Žon abstract homomorphisms of algebraic groups might be used see also

w x.St . We give a short outline of this approach.
Let L be an infinite field and G an isotropic simple algebraic group

defined over L. Assume that G is split and simply connected. Let V be a
finite-dimensional vector space over an algebraically closed field K and

Ž . Ž .denote by r : G L ª GL V an irreducible representation of the group
Ž . w Ž .xG L of rational points. By BT, 10.4 , r is equivalent to a tensor product

ar im p ( a , where a : L ª K is an embedding of fields, G is the groupi i iis1
obtained by transfer of base field, and p is a nontrivial rational irre-i
ducible linear representation of a iG.

Let K be any field with algebraic closure K. Choose G as in the above
paragraph and of type G . Assume that V is an absolutely irreducible2
KG-module of dimension at most 8 which is tensor indecomposable.
Ž w x Ž .These properties may by verified for V, G rC G under hypothesiswV , G x
Ž . . w Ž .xG . We apply BT, 10.4 to V [ K m V and use that the only2 K
irreducible modules over K of dimension at most 8 for an algebraic group
of type G are the seven-dimensional orthogonal module in characteristic2

Ž/ 2 and the six-dimensional symplectic module in characteristic 2 see
w Ž .x .KL, 5.4.12 , for example . Computing traces yields that the image of L
under the field embedding into K is contained in K rather than in K.

w x Ž .Hence in the Main Theorem V, G rC G is a seven- or six-dimen-wV , G x
sional natural module for G tensored with K. To finish the proof, we have

w xto show that V, G is the seven-dimensional orthogonal module for G and
w xthat there is no cohomology for V, G in characteristic / 2 and only one

dimension of cohomology in characteristic 2.
In the case of characteristic not 2, we might also use the result of

w xPremet and Suprunenko PS on quadratic modules for Chevalley groups.
Ž w x. Ž .As a corollary of the Main Theorem or from BT we obtain that G L2

does not occur as a subgroup of a linear group such that the long root
elements act as transvections.

1.5. COROLLARY. Let K be a commutatï e field, let V be a finite-dimen-
Ž . ² :sional ¨ector space o¨er K, and let SL V s S , where S is the class of

Ž .linear trans̈ ection groups. Then SL V contains no subgroup G generated by
Ž .trans̈ ections satisfying hypothesis G of the Main Theorem.2
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Ž .2. G L AS A GROUP OF ISOMETRIES OF2
THE DICKSON FORM

Ž .In this section, we describe how we can regard G L as a group of2
Ž w x.linear mappings preserving an alternating trilinear form see A .

2.1

² X : ² X : ² X : ² :Let L be a field and let W s x , x H x , x H x , x H x be1 1 2 2 3 3 0
a seven-dimensional vector space over L with associated quadratic form B

Ž X . Ž . Ž .such that x , x is a hyperbolic pair i s 1, 2, 3 and B x s y1. Fur-i i 0
ther, let f be the alternating trilinear form on W with monomials

f s x x xX q x x xX q x x xX q x x x q xX xX xX .0 1 1 0 2 2 0 3 3 1 2 3 1 2 3

Ž w x.That is, f is the Dickson form compare A, p. 194 .
Ž .A singular line ll in W singular with respect to the quadratic form B is
Ž . Žcalled doubly singular, if f w, x, y s 0 for all w g W, x, y g ll compare

w x. ² : Ž .A, p. 194 . For example x , x is not doubly singular, since f x , x , x1 2 3 1 2
² X :s 1, and x , x is doubly singular.1 2

2.2

Ž . Ž .Let O W, f , B be the subgroup of GL W consisting of all elements
Ž . Ž . Ž . Ž . Ž .t g GL W such that f wt, xt, yt s f w, x, y and B wt s B w for all

w Ž . Ž .x Ž . Ž .w, x, y g W. By A, 2.11 , 3.4 we have S [ O W, f , B , G L . Hence2
Ž .S F V W, B . Further, S is transitive on the doubly singular lines of W by

w Ž .Ž .x w Ž .x 1
XA, 7.3 2 and T F S by A, 2.3 . We denote by S the class of² x , x :1 2

Ž .Siegel transvection groups of V W, B corresponding to doubly singular
lines of W. Then the isomorphism mentioned above maps S1 to the class

Ž .of long root subgroups of G L .2

2.3

² : X ² X X X : XLet W s x , x , x , W s x , x , x , W s W [ W . We consider3 1 2 3 3 1 2 3 6 3 3
Ž . X Ž � X X X 4M [ SL W , where M acts naturally on W , dually on W with x , x , x3 3 3 1 2 3

� 4. w Ž .xthe dual basis of x , x , x and M fixes x . Then M F S by A, 2.3 .1 2 3 0

2.4

w Ž .x ² Ž . Ž . : Ž .By A, 2.1 we have X [ a t , b t N t g L , SL L , where the2
Ž . Ž . � X X X 4matrices of a t , b t with respect to the basis x , x , x , x , x , x , x of1 2 2 1 3 0 3
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W are as follows:

¡ ¦1
t 1

1
yt 1a t s ,Ž .

21 t t
1 2 t¢ §1

¡ ¦1 t
1

1 yt
v1b t s s a ytŽ . Ž .

1
2 t 1¢ §2t t 1

with

¡ ¦1
y1

y1
1v s s a y1 b 1 a y1 .Ž . Ž . Ž .

1
y1¢ §1

² : wEmpty entries should be read as 0. We have S s M, X by A, p. 205,
Ž .x2.11 .

Ž .mŽ t . Ž . Ž .vy1 mŽ t .v Ž .For t g L, t / 0, we have a 1 s a t and b 1 s b t , where
Ž . � X X X 4the matrix of m t with respect to the basis x , x , x , x , x , x , x of W1 2 2 1 3 0 3

is ¡ ¦t
1

1
y1t .

y1t
1¢ §t

Ž . y1 Ž . ² Ž . Ž .:Since m t , v m t v g M, this yields S s M, a 1 , b 1 .
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Ž .3. THE ACTION M s SL W ON THE ORTHOGONAL3
SPACE V

Ž .In this section, we describe the action of M s SL W on the orthogonal3
w x w xspace V, applying the results of S . We can regard V, M as the direct

sum of the natural and the dual module for M. In the following, we use the
notation introduced so far.

3.1
1 Ž .Recall the definition of S and S in 2.2 . The class S of Siegel

Ž .transvection groups of the orthogonal group Y s V V, Q is a class of
w xabstract root subgroups in the sense of Timmesfeld T . The same holds for

Ž . 1the class of long root subgroups of G L and hence for the class S of2
Siegel transvection groups in S. In particular, for A, B g S, we have
w x ² : Ž . w x Ž 1.A, B s 1 or A, B , SL K or A, B g S and similarly for S .2

Two Siegel transvection groups A, B g S are commuting, if and only if
w x w x w x w xHV, A l V,B / 0 or V, A : V, B .

We have the following constellation:

x x x1 2 36 6 6

G GrZ G G L SŽ . Ž .2

6s

Y

Here x is the natural homomorphism, x is the isomorphism occurring1 2
Ž . Ž .in hypothesis G , x is the isomorphism of 2.2 , and s is the inclusion2 3

mapping. We set x [ x x x . Then S0x s S1.1 2 3
For each A1 s A0x g S1, we have a corresponding element A g S,

defined by A0 : A. The following relations between the Siegel transvec-
Ž .tion groups in S , G L and the corresponding Siegel transvection2

groups on V will be important throughout the whole paper.

Ž . w x w 1 1 xa A, B s 1, if A , B s 1.
Ž . ² : Ž . ² 1 1: Ž .b A, B , SL K , if A , B , SL L .2 2

Ž . w x w 1 1 x 1c A, B s C, if A , B s C .
Ž . 1 1 1 Ž 1. g x gd If A g S , g g G, and C [ A , then C s A .

0 ² 0 1 1: 0Let M [ T N T g M l S F G. Then M x s M.

w x Ž . w x q Ž3.2. We ha¨e V s V, M H C M with V, M a 6 -space i.e., anV
.orthogonal sum of three hyperbolic lines , which can be regarded as the direct

sum of the natural module and the dual module for M. There exists an
� X X X 4embedding of fields a : L ª K and a basis BB [ ¨ , ¨ , ¨ , ¨ , ¨ , ¨ of1 2 3 1 2 3



Ž .SUBGROUPS ISOMORPHIC TO G L2 83

w xV, M such that the following holds:

Ž . w x ² X : ² X : ² X : Ž X.a We ha¨e V, M s ¨ , ¨ H ¨ , ¨ H ¨ , ¨ with ¨ , ¨ a1 1 2 2 3 3 i i
Ž .hyperbolic pair i s 1, 2, 3 .

Ž . 0b the matrix of m g M with respect to BB is obtained by applying a
� X X X 4to the matrix of mx with respect to the basis x , x , x , x , x , x of W .1 2 3 1 2 3 6

Ž . w Ž .xProof. Because of 3.1 , we may apply S, 6.2.1 to describe the action
ˆŽ Ž . w Ž .xof M on V. Condition Z of S, 3.1.1 holds for S and Y with G [ G,

.c [ x , and d s s .
w x Ž . w x qHence we obtain that V s V, M H C M with V, M a 6 -space.V

w xFurther, V, M s U [ U with U , U three-dimensional singular and1 2 1 2
Ž w x 1 1.invariant under M i.e., U , T : U for all T g M l S . We can regardi i

U as the natural module for M and U as the dual module for M.1 2
This means that there exists an embedding a : L ª K and an injective

Ž . ² :semilinear with respect to a mapping w : W ª U with W w s UK3 1 3 1
Ž Ž .. Ž . 0 0such that w mx w s ww m for all w g W , m g M . Further x : M3

ª M is an isomorphism.
Ž .We let ¨ [ x w i s 1, 2, 3 . Since we can regard U as the dual modulei i 2

� X X X 4for M, there exists a basis ¨ , ¨ , ¨ of U such that the matrix of each1 2 3 2
m g M 0 with respect to this basis is the transpose inverse of the matrix of

� 4m with respect to ¨ , ¨ , ¨ .1 2 3
AaŽ . Ž .ytSince all matrices , where A g SL L , occur as matrices ofa 3AŽ .

elements m g M, we obtain that the fundamental matrix of b with respect
X X X lI� 4 w x Ž .to the basis BB [ ¨ , ¨ , ¨ , ¨ , ¨ , ¨ of V, M is of the form for1 2 3 1 2 3 lI

X y1 X Ž .some l g K. We replace ¨ by l ¨ i s 1, 2, 3 . Now BB and a satisfyi i
Ž .the requirements of 3.2 .

4. PROOF THAT THE COMMUTATOR SPACE V IS0
SEVEN-DIMENSIONAL

w xIn this section, we show that dim V s 7. For this we use that V, M is a0
6q-space.

1 1 Ž 1.aŽ1. 1 ² 1:XLet B [ T , A [ B g S , and E [ M, A . As an inter-² x , x :1 3
Ž .mediate step we show that E s S , G L .2

4.1. M is transitï e on the singular points of W which ha¨e an x -compo-0
nent.

² X X X X X X :Proof. Let P s c x q c x q c x q c x q c x q c x q x be a1 1 2 2 3 3 1 1 2 2 3 3 0
singular point. Then c cX q c cX q c cX s 1. We show that there exists an1 1 2 2 3 3
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² X : Ž . Ž . 3m g M with x q x q x m s P. Let c , c , c , c , c , c g L be lin-1 1 0 4 5 6 7 8 9
early independent with

t tX X X X X Xc , c , c c , c , c s 0, c , c , c c , c , c s 0.Ž . Ž . Ž . Ž .4 5 6 1 2 3 7 8 9 1 2 3

Ž .Replacing c , c , c by a scalar multiple, we may assume that the matrix4 5 6
Ž .A defined below has determinant 1. For m g GL W whose matrix with

� X X X 4respect to x , x , x , x , x , x , x is1 2 3 1 2 3 0

c c c1 2 3A
ytm s , where A s ,c c cA 4 5 6� 0 � 0c c c1 7 8 9

² X : ytwe have m g M. Further x q x q x m s P, since the first row of A1 1 0
X X XŽ .is c , c , c .1 2 3

4.2. Let W9 be the space generated by the singular points y in W with6
w 1 x 1 w 1 xy : W, T for some T F E with W, T ­ W . Then W9 s W .6 6

1 w 1 x ² X X :Proof. We have A F E with W, A s x y x , x q x q x ­ W .1 2 3 0 3 6
² X : ²Ž X . :Hence x y x : W9. We regard W0 [ x y x m N m g M . Then1 2 1 2

W0 is an LM-submodule of W . Since W s W [ W X is the direct sum6 6 3 3
of two nonequivalent irreducible LM-modules, we obtain W0 g
� X 40, W , W , W , hence W0 s W . This yields W s W0 : W9 : W , thus3 3 6 6 6 6
W9 s W .6

4.3. E is transitï e on the singular points of W.

² :Proof. Let x be a singular point in W . Then there exists a singular6
² : w 1 x 1 w 1 xpoint y in W with y g W, T \ L , T F E, W, T ­ W , such that6 1 6

H Ž .x f y . Since if x is perpendicular to all these y, then 4.2 yields
x g W l W Hs 0, a contradiction. For 1 / t g T 1, we have xt s x q l6 6

² : H ² :with l g L , l f y , since x f y . Hence x t is a singular point with1
Ž .an x -component. By 4.1 the claim follows.0

4.4. E is transitï e on the doubly singular lines of W.

Proof. Let L s P [ P be a doubly singular line and e g E with1 1 2
e ² : Ž . eP s x by 4.3 . Then L is a doubly singular line through x , hence1 1 1 1
e ² X X :L s x , l x q m x with l, m g L not both 0. We choose m g M with1 1 2 3 y1X X X Xem ² :x m s x and x m s l x q m x . Then L s x , x .1 1 2 2 3 1 1 2

Ž .4.5. We ha¨e E s S , G L .2

² X :eProof. Let L be a doubly singular line and e g E with L s x , x1 1 1 2
e eŽ . Xby 4.4 . Then T s T F M F E.L ² x , x :1 1 2
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Ž . ² :4.6. We ha¨e dim V s 7 and C M s ¨ with ¨ g V not singular.0 V 0 0 00

1 Ž .aŽ1. 1 1
X XProof. Recall A s T and let T s T g M l S . Then² x , x : ² x , x :1 3 1 2w 1 x w 1 x ² X X :W, T q W, A s x , x , x q x q x is three-dimensional singular.1 2 3 0 3

w x w x w Ž .xHence V, T q V, A is also three-dimensional singular as in S, 7.2.1
Žw x w x. Ž . w xand dim V, M l V, A G 1. Using 4.5 , this yields 6 s dim V, M F

dim V F 6 q 2 y 1 s 7.0
w x � X X X 4 w xWe assume V s V, M . Let ¨ , ¨ , ¨ , ¨ , ¨ , ¨ be the basis of V, M0 1 2 3 1 2 3

Ž . w x ² X : w x w xoccurring in 3.2 . Then V, T s ¨ , ¨ . Let V, A l V, T s P s1 2
² X : ² : w x w xa ¨ q b ¨ . Then P / ¨ . Since otherwise V, D l V, A / 0 for1 2 2

1 w x w 1 1 xXD s T . Hence D, A s 1, and also D , A s 1, a contradiction.² x , x :2 3
² X :Similarly, P / ¨ .1

w x ² X X X X X X : XLet V, A s P [ c ¨ q c ¨ q c ¨ q c ¨ q c ¨ q c ¨ . Then c c1 1 2 2 3 3 1 1 2 2 3 3 1 1
X X w x w xH Xq c c q c c s 0. Since V, A : V, T , we obtain c s 0, c s 0.2 2 3 3 1 2

X X w x H ² :Hence c c s 0. We first consider the case c s 0. Let V, A l ¨ s y .3 3 3 1
Then y s l¨ q m¨ with l, m g K. We have m / 0, since otherwise2 3

w x w x w x w x¨ g V, A l V, T s P, a contradiction. Hence V, A q V, T s2
² X : w x w x w x w xH 1¨ , ¨ , ¨ . Thus V, B : V, A q V, T : V, A , where B s1 2 3

w 1 1 xXT . Hence B , A s 1, a contradiction. Similarly, the case c s 0² x , x : 31 3

leads to a contradiction.
w x Ž .Hence dim V s 7. Because of V s V, M H C M , we have V s0 V 0

w x Ž . Ž . ² :V, M q C M . This shows C M s ¨ with ¨ g V . If ¨ is singu-V V 0 0 0 00 0
² : q Ž .lar, then V r ¨ is a 6 -space on which S , G L acts by Siegel0 0 2

transvections. This is not possible by the previous part of the proof.

Ž . Ž .5. THE ACTION OF a 1 , b 1 ON V0

Ž . Ž .In this section, we construct a basis of V such that for a 1 , b 1 , and all0
m g M the matrix with respect to this basis is obtained by applying the
embedding of fields a to the matrix with respect to the basis
� X X X 4x , x , x , x , x , x , x of W. Our starting point is the basis1 2 2 1 3 0 3
� X X X 4 Ž . Ž .¨ , ¨ , ¨ , ¨ , ¨ , ¨ , ¨ constructed in the proof of 3.2 and 4.6 .1 2 3 1 2 3 0

² X : ² X : ² X :5.1. The subspaces ¨ , ¨ , ¨ , ¨ , and ¨ , ¨ , ¨ are in¨ariant1 2 1 2 3 0 3
Ž .under X of 2.4 .

Ž . ² :Proof. Let SL L , S F M, where S acts naturally on x , x ,2 1 1 1 2
² X X : Ž � X X 4 � 4.dually on x , x with x , x the dual basis of x , x and S fixes1 2 1 2 1 2 1

x , xX , x .3 3 0
Ž . w xThe action of S on V is known by 3.2 . Since S X s 1, we obtain1 0 1

w x ² X X : Ž . ² X :that V, S s ¨ , ¨ , ¨ , ¨ and C S s ¨ , ¨ , ¨ are invariant un-1 1 2 1 2 V 1 3 0 30

der X. Further, a matrix calculation shows that with respect to the basis



ANJA STEINBACH86

� X X X 4¨ , ¨ , ¨ , ¨ , ¨ , ¨ , ¨ the matrix of x g X is of the form1 2 1 2 3 0 3

ba
a yb

dc
yc d� 0

C

with coefficients a, b, c, d g K and a 3 = 3 matrix C. This yields the claim.

Ž . ² : X Ž . ² X :5.2. We ha¨e ¨ a l g ¨ and ¨ b l g ¨ for l g L.1 1 2 2

1 1 Ž 1.aŽl.
XProof. For l g L and T s T , we have T s T . Hence² x , x :1 3

² X : w x w x Ž . ² Ž . X Ž .: Ž .¨ , ¨ s V, T s V, T a l s ¨ a l , ¨ a l . This yields ¨ a l g1 3 1 3 1
² : X Ž . ² X : X¨ for l g L. Similarly, ¨ b l g ¨ for l g L, using T .1 2 2 ² x , x :2 3

� X 45.3. With respect to ¨ , ¨ we ha¨e1 2

1 y11 xa 1 s , b 1 sŽ . Ž .ž / ž /x 1 1

for some 0 / x g K.

Ž .Proof. For 0 / t g L, we denote by h t the element of M with matrix

¡ ¦t
y1t

t
y1th t [Ž .

y2t
1¢ §2t

� X X X 4with respect to the basis x , x , x , x , x , x , x .1 2 2 1 3 0 3
Ž .hŽ t . Ž 2 . < <Then a c s a t c for c g L. Since L G 4, there exists a 0 / t g L

2 Ž 2 . w Ž . Ž .x Ž Ž 2with t / 1. Let l g L with l t y 1 s 1. Then a l , h t s a l t y
.. Ž . Ž . Ž . Ž . Ž .1 s a 1 . Hence by 5.1 , 5.2 , and 3.2 the matrix of a 1 is of the form

y1y1 a at ta a 1a 1 ; sŽ . ya yaž / ž / ž /ž / ž /c d c d x 1t t

1 yŽ . Ž .for some x g K. Similarly, b 1 s .1
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Ž . Ž . Ž .It remains to show, that xy s 1. For v s a y1 b 1 a y1 , we have
v ² X : ² X : ² X :X XT s T . Hence ¨ , ¨ s ¨ v, ¨ v and ¨ v g ¨ . On the² x , x : ² x , x : 2 3 1 3 1 21 3 2 3

other hand, a matrix calculation yields that the first row of the matrix of v
� X 4 Ž .with the respect to ¨ , ¨ is 1 y xy, y . Hence xy s 1.1 2

5.4

Next, we make some suitable replacements.

Ž . X y1 X Ž .1 Replacing ¨ by x ¨ i s 1, 2, 3 , we may assume that thei i
Ž . Ž . � X 4matrices of a 1 , b 1 with respect to ¨ , ¨ are1 2

1 1 1a 1 ; , b 1 ; .Ž . Ž .ž / ž /1 1 1

Further, this replacement does not affect the elements m g M.
Ž . �2 The fundamental matrix of b with respect to the basis ¨ , ¨ , ¨ ,1 2 3

X X X lI4 Ž . Ž .¨ , ¨ , ¨ is of the form for some l g K as in the proof of 3.2 .1 2 3 lI

Replacing Q by the proportional quadratic form ly1 Q, we may assume
Ž X. Ž .that ¨ , ¨ is a hyperbolic pair i s 1, 2, 3 .i i

Ž . Ž . Ž . ² : Ž .3 Let Q ¨ s r, where C M s ¨ as in 4.6 , and let K be0 V 00

the algebraic closure of K. We replace V by K m V with Q extended to
2 y1K m V and choose c g K with c s yr . Replacing ¨ by c¨ , we may0 0

Ž .assume Q ¨ s y1. Later, we will show that c g K, i.e., it was not0
necessary to pass to the algebraic closure.

5.5

Ž . Ž . ² X X :The action of a 1 , b 1 on ¨ , ¨ , ¨ , ¨ is already determined. Next,1 2 2 1
² X :we describe the action on ¨ , ¨ , ¨ .3 0 3

Ž . ² X : Ž . Ž . X HAs in 5.2 , ¨ is invariant under a l . Therefore, C S l ¨ s3 V 1 30
² X : Ž . Ž .¨ , ¨ is also invariant under a l . Hence the matrix of a l with respect0 3

� X 4to the basis ¨ , ¨ , ¨ is of the form3 0 3

a b c
d ea l ; \ A.Ž . � 0f

Ž . Ž . Ž Ž .. 2Since a l preserves Q, we have Q ¨ s 0 s Q ¨ a 1 , hence ac y b s3 3
0. We abbreviate the fundamental matrix of the bilinear form associated to

t Ž .Q with J. The equation AJA s J shows that the matrix of a l is of the
form

a b ay1 b2

y1a l ; .Ž . d 2 a bd� 0y1a
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Ž . w Ž . Ž .x Ž .Let l, t g L with a 1 s a l , h t as in the proof of 5.3 . Then a matrix
Ž . � X 4calculation shows that the matrix of a 1 with respect to ¨ , ¨ , ¨ is of3 0 3

the form

1 y y2

a 1 ; .Ž . 1 2 y� 01

Ž .Similarly, the matrix of b 1 is of the form

1
2 x 1b 1 ; .Ž . � 02x x 1

0 w x ² X X : 0 Ž 0.v
X XFor T s T , we have V, T s ¨ q ¨ , ¨ . Let A [ T s² x qx , x : 1 3 21 3 2

² X : w x w x ²XT . Then ¨ q ¨ , y¨ s V , A s V , T v s ¨ q² x q x , y x : 2 3 1 22 3 1X X : ² X X :¨ v, y¨ , since the action of X on ¨ , ¨ , ¨ , ¨ is already determined.3 1 1 2 2 1
This yields ¨ X v s ¨ .3 3

Ž . Ž . Ž .We have v s a y1 b 1 a y1 . A matrix calculation shows that the last
Ž 2 Ž . Ž .2 . 2 Žrow of the matrix of v is x , x 1 y xy , xy y 1 . Hence x s 1, x 1 y

. Ž .2 2xy s 0, and xy y 1 s 0, i.e., x s 1 and xy s 1. If x s 1, then x s y s
1. If x s y1, then we replace ¨ by y¨ and may thus assume that0 0
x s y s 1.

The present ¨ is of the form "c¨ , where ¨ is the original ¨ and c is0 0 0 0
an element of the algebraic closure of K. Hence with respect to the

Ž .original ¨ the matrix of a 1 is a matrix over K of the form0

1 1 "c 11 1 1 1
y1 y1s .1 2 "c"c 1 "2cž / ž /� 0 � 01 11 1

Thus c g K.

6. THE PROOF OF THE MAIN THEOREM

6.1

² Ž . Ž .: � X X X 4Since S s M, a 1 , b 1 , we have shown that ¨ , ¨ , ¨ , ¨ , ¨ , ¨ , ¨ is1 2 3 1 2 3 0
a basis of V over K such that the matrix of g g G with respect to this0
basis is obtained by applying the embedding of fields a to the matrix of

� X X X 4g x with respect to the basis x , x , x , x , x , x , x of W.1 2 3 1 2 3 0
Ž .The semilinear with respect to a mapping w : W ª V with x ¬ ¨ ,0 i i

X X Ž . Ž Ž .. Ž .x ¬ ¨ , x ¬ ¨ i s 1, 2, 3 satisfies w g x w s ww g for all w g W,i i 0 0
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g g G. Hence the embedding of G in Y is induced by a semilinear
mapping and x : G ª S is an isomorphism. Further, w is injective and

˜ a² : Ž . Ž .Ww s V . The quadratic form defined by B ww [ B w for w g WK 0
is proportional to Q.

6.2

We are left with the last part of the Main Theorem. Calculating
Ž . Ž . Ž .dimensions shows that V s V q C G if and only if Rad V : Rad V .0 V 0

Ž . Ž . Ž .If Rad V ­ Rad V , then V q C G is a hyperplane of V. We choose0 0 V
an eight-dimensional subspace V of V, which contains V , such that1 0

Ž . Ž .Rad V s 0. Then V s V q C G . The action of G on V is uniquely1 1 V 1
determined by the action of G on V , since there is only one possibility to0

wextend Siegel transvections on V to Siegel transvections on V by S,0 1
Ž .x4.3.1 .

Ž .6.3. Proof of Corollary 1.5. We assume that SL V has a subgroup G
Ž .generated by transvections satisfying hypothesis G of the Main Theo-2

Ž . Ž . ² :rem. By 4.5 we may write G L s M, T , where T is a long root2
Ž .subgroup and M , SL L is generated by long root subgroups. Hence the3

w xcommutator space V, G is at most four-dimensional and G is a subgroup
Ž .of SL K such that long root elements act as transvections. Because of4

Ž . qŽ .PSL K , PV q K, we may apply the Klein correspondence and ob-4 6
tain G as subgroup of a six-dimensional orthogonal group such that long
root elements act as Siegel transvections. This is a contradiction to the

Ž .Ž .Main Theorem, 1.2 a .
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