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1. INTRODUCTION AND STATEMENT OF THE
MAIN THEOREM

In this paper, we describe the embeddings of groups G,(L) in orthogo-
nal groups such that the long root elements act as Siegel transvections. For
finite orthogonal groups, this is contained in the results of Kantor [K] on
subgroups of finite classical groups generated by a class of long root
elements. The problem stated above is part of the determination of the
subgroups G generated by long root elements in algebraic groups Y over
arbitrary fields. For the case where Y and G are classical groups, see [S].

To state the Main Theorem, we introduce some notation.

11

Let K be a commutative field, let 1V be a finite-dimensional vector
space over K, and let Q: VV — K be a quadratic form (with associated
bilinear form b). A subspace U of V' is called singular, if Q(x) = 0 for all
u € U. We assume that Q is nondegenerate (i.e., if v € Rad(V, b) with
Q(v) = 0, then v = 0) and that Q has Witt index at least 3 (i.e., I contains
three-dimensional singular subspaces).

Let Z be a singular line of 7 with basis {x, y}. For ¢ € K, the mapping

tiv—=>v—cb(v,x)y+cb(v,y)x forveV

is called a Siegel transvection (see [T, Th.5], [S, (1.1.3)]). The set T, == {z, |
¢ € K} is the Siegel transvection group corresponding to /. Let Q(V, Q)
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= (X), where
S = {T,|/ asingular line in 1V}

is the class of Siegel transvection groups, be the associated orthogonal
group.

Let G be a subgroup of Y := Q(V, Q) which is generated by Siegel
transvections. For 4 € 3, weset A2 =A NG, X0 ={A14€3, A+
1} and further V, = [V,G]. We assume that G and X° satisfy the
following hypothesis:

(G,) G is quasi-simple and there exists a commutative field L such
that G == G/Z(G) = G,(L) (resp. G,(2)') and 3%:= {4°] A° € 3%} is the
class of long root subgroups of G.

We regard G,(L) as the subgroup S of a seven-dimensional orthogonal
group Q(W, B) which preserves the Dickson form (as suggested by
Aschbacher [A]; see Section 2). We say that W is the natural module for
G,(L).

The Main Theorem of this paper is:

12. MAIN THEOREM. Let Y =QW,0), let G and G,(L) =S <
Q(W, B) be as in (1.1). Then the following hold:

(@ We have dimV, = 17.

(b) There exists an embedding of fields a: L — K, an injective semi-
linear (with respect to a) mapping ¢: W — Vy with V, = {We)k, and an
isomorphism x: G = S = G,(L) such that (w(g x) ¢ = (we)g forall w
W, g eG.

(¢) The quadratic form B on Vo defined by B(we) == Bw)* for
w € Wis proportional to Q, i.e., Q = dB on V,, for some d € K.

(d If Rad(V,) c Rad(V), then V =V, + C,(G). If Rad(V,) ¢
Rad(V), then Vy + C,,(G) is a hyperplane of V. In the latter case there exists
an eight-dimensional subspace V| of V', which contains V,, such that Rad(V,)
=0and V =V, + C,(G). The action of G on V| is uniquely determined by
the action of G on V.

The Main Theorem shows that the embedding of G in Y is induced by a
semilinear mapping. We can regard the commutator space V, as the
natural module for G (tensored with the bigger field K).

13

The idea of the proof is as follows: We may write G,(L) = {M, X,
where M = SL,(L) is generated by long root subgroups and X = SL,(L)
is generated by two short root subgroups. By [S] the action of M on the
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orthogonal space V' is known ([, M] is the direct sum of a natural and a
dual module for M). We hence may determine the action of X on ¥/, using
a subgroup S; = SL,(L) of M with [§,, X]= 1.

Because of the results of Kantor [K, Th. I, 12.(B)], we may restrict to the
case |L| > 4.

1.4

In the proof of the Main Theorem also the results of Borel and Tits [BT]
on abstract homomorphisms of algebraic groups might be used (see also
[St]. We give a short outline of this approach.

Let L be an infinite field and G an isotropic simple algebraic group
defined over L. Assume that G is split and simply connected. Let I be a
finite-dimensional vector space over an algebraically closed field K and
denote by p: G(L) - GL(V) an irreducible representation of the group
G(L) of rational points. By [BT, (10.4)], p is equivalent to a tensor product

I o a;, where a;: L — K is an embedding of fields, ““G is the group
obtained by transfer of base field, and =; is a nontrivial rational irre-
ducible linear representation of “G.

Let K be any field with algebraic closure K. Choose G as in the above
paragraph and of type G,. Assume that }/ is an absolutely irreducible
KG-module of dimension at most 8 which is tensor indecomposable.
(These properties may by verified for [, G1/C,;, ;,(G) under hypothesis
(G,).) We apply [BT, (10.4)] to V=K ®,V and use that the only
irreducible modules over K of dimension at most 8 for an algebraic group
of type G, are the seven-dimensional orthogonal module in characteristic
# 2 and the six-dimensional symplectic module in characteristic 2 (see
[KL, (5.4.12)], for example). Computing traces yields that the image of L
under the field embedding into K is contained in K rather than in K.

Hence in the Main Theorem [V, G]/C,; (G) is a seven- or six-dimen-
sional natural module for G tensored with K. To finish the proof, we have
to show that [/, G] is the seven-dimensional orthogonal module for G and
that there is no cohomology for [V, G] in characteristic # 2 and only one
dimension of cohomology in characteristic 2.

In the case of characteristic not 2, we might also use the result of
Premet and Suprunenko [PS] on quadratic modules for Chevalley groups.
As a corollary of the Main Theorem (or from [BT]) we obtain that G,(L)
does not occur as a subgroup of a linear group such that the long root
elements act as transvections.

1.5. CoROLLARY. Let K be a commutative field, let V be a finite-dimen-
sional vector space over K, and let SL(V') = (3.), where 3 is the class of
linear transvection groups. Then SL(V') contains no subgroup G generated by
transvections satisfying hypothesis (G,) of the Main Theorem.
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2. G,(L) AS A GROUP OF ISOMETRIES OF
THE DICKSON FORM

In this section, we describe how we can regard G,(L) as a group of
linear mappings preserving an alternating trilinear form (see [A]).

21

Let L be afield and let W = {(x;, x1) L {x,, x5) L (x5, x5) L {x,) be
a seven-dimensional vector space over L with associated quadratic form B
such that (x;, x}) is a hyperbolic pair (i = 1,2,3) and B(x,) = —1. Fur-
ther, let f be the alternating trilinear form on W with monomials

_ ' ’ ' A
f=x0xx] + XpX,x5 + XgX3x5 + X X, X5 + X X5X5.

That is, f is the Dickson form (compare [A, p. 194]).

A singular line Z in W (singular with respect to the quadratic form B) is
called doubly singular, if f(w, x,y) =0 for all w € W, x,y €/ (compare
[A, p. 194)). For example {x,, x,, is not doubly singular, since f(x;, x;, x,)
=1, and {x,, x5, is doubly singular.

2.2

Let O(W, f, B) be the subgroup of GL(W) consisting of all elements
t € GL(W) such that f(wt, xt, yt) = f(w, x, y) and B(wt) = B(w) for all
w,x,y € W.By[A, (2.11), (3.4)] we have S := O(W, f, B) = G,(L). Hence
S < Q(W, B). Further, S is transitive on the doubly singular lines of W by
[A, (7.3)] and T, .., <S by [A, (23)]. We denote by X* the class of
Siegel transvection groups of Q(W, B) corresponding to doubly singular
lines of W. Then the isomorphism mentioned above maps 3! to the class
of long root subgroups of G,(L).

2.3

Let W, = {xq, X,, X350, W3 = (x|, x5, x3), Wy = W, & Wj. We consider
M = SL(W,), where M acts naturally on W,, dually on W (with {x, x}, x5}
the dual basis of {x;, x,, x;}) and M fixes x,. Then M < § by [A, (2.3)].

24

By [A, (2.1)] we have X := {a(¢),b(¢) |t € L) = SL,(L), where the
matrices of a(¢), b(¢) with respect to the basis {x, x5, x,, X}, X5, X, x5} of
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W are as follows:

1
t 1
1
a(t) = -t 1 ,
1t ¢
1 2¢
1
1 ¢
1
1 -t
b(t) = 1 =a(-t)”
1
2t 1
> t 1
with
1
-1
-1
0= 1 =a(—-1)b(1)a(—-1).
1
-1
1
Empty entries should be read as 0. We have S = (M, X) by [A, p. 205,
(2.11)].

Fort € L, t #+ 0, we have a(1)™® = a(¢) and b(1)® " = b(t), where
the matrix of m(¢) with respect to the basis {x;, x5, x,, X}, x3, x4, x5} of W
is

t71

t

Since m(1), o *m(t)w € M, this yields S = (M, a(1), b(1)).
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3. THE ACTION M = SL(W;) ON THE ORTHOGONAL
SPACE V

In this section, we describe the action of M = SL(W¥;) on the orthogonal
space V, applying the results of [S]. We can regard [V, M] as the direct
sum of the natural and the dual module for M. In the following, we use the
notation introduced so far.

3.1

Recall the definition of § and 3' in (2.2). The class 3 of Siegel
transvection groups of the orthogonal group Y = Q(V, Q) is a class of
abstract root subgroups in the sense of Timmesfeld [T]. The same holds for
the class of long root subgroups of G,(L) and hence for the class ' of
Siegel transvection groups in S. In particular, for A, B € 3, we have
[A,Bl=1o0r{A4,B) =SL,(K)or[A4, B] €3 (and similarly for 3%).

Two Siegel transvection groups A4, B € 3 are commuting, if and only if
[V,Aln [V,Bl#0or[V,A] [V, B]*.

We have the following constellation:

G5G/Z(G) 25 Gy(L) =58

o

Y

Here x, is the natural homomorphism, y, is the isomorphism occurring
in hypothesis (G,), x, is the isomorphism of (2.2), and & is the inclusion
mapping. We set x = x; x, x3. Then 3% = 3%,

For each A' = A% € 3!, we have a corresponding element 4 € 3,
defined by 4° c 4. The following relations between the Siegel transvec-
tion groups in S = G,(L) and the corresponding Siegel transvection
groups on IV will be important throughout the whole paper.

(@ [A4,B]=1,if[A4' B'] =1

() (A, B) =SL,(K), if (A", B') = SL,(L).

() [A4,B]=C,if[A4 B']=C"

d) If A* €3l g€ G, and C!:= (AY)8X, then C = A8,
Let M :=(T° | T* e M N 3') < G. Then M% = M.

3.2. We have V =[V,M] L C,,(M) with [V,M] a 6"-space (i.e., an
orthogonal sum of three hyperbolic lines), which can be regarded as the direct
sum of the natural module and the dual module for M. There exists an
embedding of fields a: L — K and a basis & = {vy,v,, 03, V], Uy, U3} of
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[V, M] such that the following holds:

(@ We have [V, M] = {v,,v}) L v,, 05> L {vs, vy with (v;,v)) a
hyperbolic pair (i = 1,2,3).

(b)  the matrix of m € M° with respect to % is obtained by applying o
to the matrix of m x with respect to the basis {x,, x,, x5, X, x5, x5} of W.

Proof. Because of (3.1), we may apply [S, (6.2.1)] to describe the action
of M on V. (Condition (Z) of [S, (3.1.1)] holds for S and Y with G = G,
Y=y,and § =o.)

Hence we obtain that V' = [V, M] L C,,(M) with [V, M] a 6*-space.
Further, [V, M]= U, ® U, with U, U, three-dimensional singular and
invariant under M (.e., [U,T]1 c U, for all T* € M N 3'). We can regard
U, as the natural module for M and U, as the dual module for M.

This means that there exists an embedding «: L — K and an injective
semilinear (with respect to «) mapping ¢: W; — U, with (W) = U,
such that (w(mx)) ¢ = (we)m for all w € W,, m € M°. Further y: M°
— M is an isomorphism.

We let v, == x;¢ (i = 1,2,3). Since we can regard U, as the dual module
for M, there exists a basis {v}, v}, v5} of U, such that the matrix of each
m € M° with respect to this basis is the transpose inverse of the matrix of
m with respect to {v,, v,, v3}.

Since all matrices (** .,~), where 4 € SL,(L), occur as matrices of
elements m € M, we obtain that the fundamental matrix of b with respect
to the basis % = {v,,v,, v5, v}, V5, 05} of [V, M]is of the form (,, M) for
some A € K. We replace v by A~} (i = 1,2,3). Now & and « satisfy
the requirements of (3.2). 1

4. PROOF THAT THE COMMUTATOR SPACE V, IS
SEVEN-DIMENSIONAL

In this section, we show that dim V, = 7. For this we use that [/, M ]is a
6*-space.
Let B =T, .., A == (BY"® € 3! and E == (M, A*). As an inter-

mediate step we show that £ = § = G,(L).

4.1. M is transitive on the singular points of W which have an x,-compo-
nent.

Proof. Let P = {cyx; + cyx, + Caxy + ¢ix] + chxy, + chxly +x,) be a
singular point. Then c¢,c} + ¢,c5 + c3c3 = 1. We show that there exists an
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m € M with {x; + x}, +x,0m = P. Let (¢c,, cs, ¢¢), (c;, cg, ¢g) € L* be lin-
early independent with

(¢4, 5, ¢6)(ch, C/zncé)t =0, (c7,¢q,€9) (1, Ch, Cls)t =0.

Replacing (c,, cs, ¢g) by a scalar multiple, we may assume that the matrix
A defined below has determinant 1. For m € GL(W) whose matrix with
respect to {x;, x,, xg, X}, x5, X3, x,} IS

A €1 € C3
m = At , where 4= (¢, ¢ ¢4,
1 Cc; Cg Cg

we have m € M. Further {x; + x} + x,)m = P, since the first row of 4~*
is (¢}, ch,cy).

4.2. Let W' be the space generated by the singular points y in Wy with
y C[W, T for some T* < E with [W,T*]1 ¢ W,. Then W' = W,.

Proof. We have A < E with [W, A'] = (x| — x,, x3 + xo + x5) ¢ W,
Hence {x} —x,) € W'. We regard W" := {(x} —x,)m | m € M ). Then
W" is an LM-submodule of W;. Since W; = W, @ W; is the direct sum
of two nonequivalent irreducible LM-modules, we obtain W" €
{0, W,, W3, W}, hence W" = W,. This yields W, = W" c W' C W, thus
w=w,. 1

4.3. E is transitive on the singular points of W.

Proof. Let {x) be a singular point in W;. Then there exists a singular
point {y) in W, with y € [W,T'] = L,, T* < E, [W,T'] ¢ W, such that
x &€y*. Since if x is perpendicular to all these y, then (4.2) yields
x € Wy N Wyt =0, a contradiction. For 1 # ¢ < T', we have xt =x + [
with [ € L,, [ & (y), since x & y* . Hence {x)t is a singular point with
an x,-component. By (4.1) the claim follows. |

4.4. E is transitive on the doubly singular lines of W.

Proof. Let L, =P, ® P, be a doubly singular line and e € E with
P{ = {x;) by (4.3). Then L] is a doubly singular line through x,, hence
LS = {x;, Ax}, + pxy) with A, u € L not both 0. We choose m € M with
x;m =x; and xym = Ax, + uxy. Then L = (x;, x50, |

45. We have E = S = G,(L).
Proof. Let L, be a doubly singular line and e € E with L; = {x;, x5)°
by (4.4). Then T, = T <M°<E. 1

(x1, %)
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4.6. We have dimV, = 7 and C,(M) = {v,) with v, € V;, not singular.

Proof. Recall A*=(T,, . )@ andlet T' =T, ., €Mn 3 Then
(W, T + [W, A'] = {x}, x,, x5 + x, + x3) is three-dimensional singular.
Hence [V, T]+ [V, A] is also three-dimensional singular as in [S, (7.2.1)]
and dim((V, M] N [V, A]D = 1. Using (4.5), this yields 6 = dim[}V/, M] <
diml,<6+2-1=71.

We assume V, = [V, M. Let {v,, v,, v3, v}, Uy, U5} be the basis of [V, M ]
occurring in (3.2). Then [V,T]=<v},v,). Let [V, AIN[V,T]=P =
(av} + Bv,). Then P # {v,). Since otherwise [V, D] N [V, A] # 0 for
D' =T, . Hence [D, A] =1, and also [D*, A4'] = 1, a contradiction.
Similarly, P # {(v}).

Let[V, Al = P & {c,v; + c,0, + 305 + i) + chvh + cjvy). Then ¢,c)
+ ¢c,¢y + ¢3¢y = 0. Since [V, A] [V, T]-, we obtain ¢; =0, ¢, =0.
Hence c;c; = 0. We first consider the case ¢ = 0. Let [V, A] N v = {y).
Then y = Av, + pwv; with A, u € K. We have u # 0, since otherwise
v, €[V, AIn[V,T]= P, a contradiction. Hence [V, A] + [V, T]=
(v}, vy, 05). Thus [V, Bl [V, Al + [V, T1c [V, A]*, where B! =
T, .. ., Hence [B', A'] = 1, a contradiction. Similarly, the case c; =0
leads to a contradiction.

Hence dimV, = 7. Because of V =[V,M] L C,,(M), we have V, =
[V, M]+ Cp,(M). This shows C},(M) = {vy) with v, € V. If v is singu-
lar, then V,/{v,) is a 6*-space on which § = G,(L) acts by Siegel
transvections. This is not possible by the previous part of the proof. |

5. THE ACTION OF a(1), b(1) ON V,

In this section, we construct a basis of 1/, such that for a(1), b(1), and all
m € M the matrix with respect to this basis is obtained by applying the
embedding of fields « to the matrix with respect to the basis
{x,, x5, x,, x|, x5, x5, x5} of W. Our starting point is the basis
{v1, 0y, 04,07, Uy, U5, 04} constructed in the proof of (3.2) and (4.6).

5.1. The subspaces {vy,v5), {V},v,7, and (v, vy, Vs) are invariant
under X of (2.4).

Proof. Let SL,(L) =S, <M, where S, acts naturally on {(x, x,),
dually on {x}, x},) (with {x7, x,} the dual basis of {x,, x,}) and S, fixes
X3, X3, Xq.

The action of S; on IV, is known by (3.2). Since [S;X] = 1, we obtain
that [V, S;] = vy, v,, 01, 05) and Cy,(Sy) = v, vy, 5) are invariant un-
der X. Further, a matrix calculation shows that with respect to the basis
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{v1,0,, V], VY, 04, 0y, U3} the matrix of x € X is of the form

| C

with coefficients a, b, ¢, d € K and a 3 X 3 matrix C. This yields the claim.
|
5.2. We have v,a(A) € {v,) and vyb(A) € {vy) for A € L.

Proof. For AL and T'=T, ., we have T'=(T")"". Hence
(v, 05 =V, T] = [V, Tla(A) = {v.a(d), vsa(N)). This yields v,a(r) €
(vy) for A € L. Similarly, v;6(2) € (v;) for A € L, using T,

X, X3)"

5.3.  With respect to {v,, V,} we have

a - (1) =[]

for some 0 # x € K.

Proof. For 0 # t € L, we denote by A(¢) the element of M with matrix

h(t) =

with respect to the basis {x,, x5, x,, x, x5, xg, x5}.

Then a(c)"™ = a(t?c) for ¢ € L. Since |L| > 4, there exists a0 #t € L
with 2 # 1. Let A € L with A(#> — 1) = 1. Then [a()), h(1)] = a(A(¢* —
1)) = a(1). Hence by (5.1), (5.2), and (3.2) the matrix of a(1) is of the form

T O G O O B CO

for some x € K. Similarly, b(1) = (* ).
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It remains to show, that xy = 1. For w = a(—1)b(1)a(—1), we have
TS vy = T - Hence (05, 03) = (0,0, 030) and v, € (v3). On the

other hand, a matrix calculation yields that the first row of the matrix of w
with the respect to {v;, v} is (1 — xy, y). Hence xy = 1.

5.4
Next, we make some suitable replacements.

(1) Replacing v} by x v/ (i =1,2,3), we may assume that the
matrices of a(1), b(1) with respect to {v,, v}} are

1 1 1
aw- [t ,) ew~[* Y

Further, this replacement does not affect the elements m € M.

(2) The fundamental matrix of b with respect to the basis {v,, v,, v,
vy, U5, v5) is of the form (,, *) for some A € K as in the proof of (3.2).
Replacing Q by the proportional quadratic form A~1Q, we may assume
that (v;, v}) is a hyperbolic pair (i = 1,2, 3).

(3) Let O(vy) =r, where C, (M) = (v,) as in (4.6), and let K be
the algebraic closure of K. We replace IV by K ® 1 with QO extended to
K ® V and choose ¢ € K with ¢ = —r~'. Replacing v, by cv,, we may

assume Q(vy) = —1. Later, we will show that ¢ € K, i.e., it was not
necessary to pass to the algebraic closure.

55

The action of a(1), b(1) on {v,, v}, v,,v}) is already determined. Next,
we describe the action on {vg, vy, V).

As in (5.2), (vy) is invariant under a(A). Therefore, C,,(S,) N vy* =
{vg, vy is also invariant under a(A). Hence the matrix of a(A) with respect
to the basis {v4, vy, v3} is of the form

a b c
a(A) ~ d e|=A4.

Since a(A) preserves Q, we have Q(v;) = 0 = Q(v;a(1)), hence ac — b? =
0. We abbreviate the fundamental matrix of the bilinear form associated to
Q with J. The equation AJ4‘ = J shows that the matrix of a(X) is of the
form

a b atb?
a(A) ~ d 2a'bd|.

071
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Let A, r € L with a(1) = [a()), h(¢)] as in the proof of (5.3). Then a matrix
calculation shows that the matrix of a(1) with respect to {v;, vy, v5} is of
the form

1y y
a(l) ~ 1 2y
1

Similarly, the matrix of 5(1) is of the form

1
b(1) ~ | 2x 1
x2 x 1

For T° = T sy x,yr WE have [V, T1 = (v} + v}, 0,). Let A% = (TY° =
Tiryins —xiye Then (v, + vy, =0}y =V, Al = [V, Tlw = (v, +
vy, —U}), since the action of X on (v, v}, v,,v}) is already determined.
This yields vy = vs.

We have o = a(—1)b(1)a(—1). A matrix calculation shows that the last
row of the matrix of w is (x2, x(1 — xy),(xy — 1)?). Hence x? =1, x(1 —
xw)=0,and(xy — 1)?>=0,ie,x?=1land xy=1.1f x =1, then x =y =
1. If x= —1, then we replace v, by —v, and may thus assume that
x=y=1

The present v, is of the form +cuv,, where v, is the original v, and c is
an element of the algebraic closure of K. Hence with respect to the
original v, the matrix of a(1) is a matrix over K of the form

1 1 1 1\/1 1 +c 1
+c7t 1 2 +c = 1 +2¢71
1 1

1
Thus ¢ € K.

6. THE PROOF OF THE MAIN THEOREM

6.1

Since § = (M, a(1), b(1)), we have shown that {v,, v,, v3, V], Uy, U5, Uo) IS
a basis of 1/, over K such that the matrix of g € G with respect to this
basis is obtained by applying the embedding of fields « to the matrix of
g x with respect to the basis {x,, x,, x5, x], x5, x5, x,} of W.

The semilinear (with respect to «) mapping ¢: W — V, with x;, » v,
x; = vl, xy = v, (i =1,2,3) satisfies (w(gx) e = (we)g for all w e W,



SUBGROUPS ISOMORPHIC TO G,(L) 89

g € G. Hence the embedding of G in Y is induced by a semilinear
mapping and yx: G — S is an isomorphism. Further, ¢ is injective and
(We )k = V,. The quadratic form defined by B(wg) == B(w)® for w € W
is proportional to Q.

6.2

We are left with the last part of the Main Theorem. Calculating
dimensions shows that V' = V; + C,,(G) if and only if Rad(},) € Rad(}).
If Rad(V,) ¢ Rad(V), then V, + C,(G) is a hyperplane of 1. We choose
an eight-dimensional subspace V; of V, which contains 1V, such that
Rad(V;}) = 0. Then V =V, + C,(G). The action of G on V/ is uniquely
determined by the action of G on V/, since there is only one possibility to
extend Siegel transvections on V, to Siegel transvections on V) by [S,
(4.3.1)].

6.3. Proof of Corollary 1.5. We assume that SL(}/) has a subgroup G
generated by transvections satisfying hypothesis (G,) of the Main Theo-
rem. By (4.5) we may write G,(L) = (M, T), where T is a long root
subgroup and M = SL,(L) is generated by long root subgroups. Hence the
commutator space [V, G] is at most four-dimensional and G is a subgroup
of SL,(K) such that long root elements act as transvections. Because of
PSL (K) = PQ{(+)K, we may apply the Klein correspondence and ob-
tain G as subgroup of a six-dimensional orthogonal group such that long
root elements act as Siegel transvections. This is a contradiction to the
Main Theorem, (1.2)(a).
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