Cancellation of Azumaya Algebras

M. Ojanguren* and R. Sridharan

Tata Institute of Fundamental Research, Bombay, 5, India

Communicated by D. Rees

Received December 3, 1969

1. Let \(R \) be a commutative ring with 1 and \(\text{Az}(R) \) the category of Azumaya algebras over \(R \). It was proved in [4] that if \(R \) is semilocal then, for \(X, Y, A \in \text{Obj } \text{Az}(R) \) the "cancellation law" \(X \otimes A \cong X \otimes Y \Rightarrow A \cong Y \) holds. In this note we prove a theorem which gives a set of equivalent conditions for cancellation over any ring. We derive, as corollaries, the above result, a theorem of Knus and the "cancellation law" for \(\text{Az}(k[x]) \) where \(k \) is a perfect field. We show (Proposition 2) that cancellation does not always hold over polynomial rings in two variables. To show this, we first prove that if \(D \) is any noncommutative division ring, there exist nonfree projective ideals in \(D[x, y] \). This result seems to be of some independent interest.

For unexplained terms we refer to Bass [2].

2. In this section, we denote by \(A, B, X, Y, Z, \ldots \) Azumaya algebras over a commutative ring \(R \). If \(A \subset Z \), \(A' \) will denote the commutant of \(A \) in \(Z \). All unadorned tensor products will be over \(R \). All homomorphisms will be \(R \)-homomorphisms.

Theorem. For any \(A \in \text{Obj } \text{Az}(R) \), the following conditions are equivalent.

1. For any integer \(n \geq 1 \) and any \(Y, M_n(Y) \subset M_n(A) \) implies \(Y \cong A \).
2. For any \(X, Y, X \otimes Y \cong X \otimes A \) implies \(Y \cong A \).
3. For any \(Z \supset A \) and \(Y \subset Z \), \(Y' \cong A' \) implies \(Y \cong A \).
4. For any integer \(n \geq 1 \) and any projective right \(A \)-module \(P \), \(P^n \cong A^n \) implies that \(P \) is an \(A \)-bimodule.

Proof. (1) \(\Rightarrow \) (2) Let \(X^0 \) denote the "opposite" of \(X \) and let \(X^0 \otimes X \cong \text{End}_R P \). We have \(X \otimes Y \cong X \otimes A \), hence \(X^0 \otimes X \otimes Y \cong X^0 \otimes X \otimes A \),

* Work done when the author was a Visiting Fellow at the Tata Institute of Fundamental Research.
i.e. $\text{End}(P) \otimes Y \cong (\text{End}(P) \otimes A)$. By [2, p. 476], there exists an R-projective module Q such that $Q \otimes P \cong R^n$ for some $n \geq 1$. Tensoring with $\text{End}(Q)$, we get from the above isomorphism that $M_n(Y) \cong M_n(A)$. Now (1) implies $Y \cong A$.

(2) \Rightarrow (3). We have $Z = A \otimes A' = Y \otimes Y'$. Since $Y' \cong A'$, (2) implies $Y \cong A$.

(3) \Rightarrow (1). Let $\psi : M_n(A) \cong M_n(Y)$. The commutant of A in $M_n(A)$ is $M_n(R)$ and hence the commutant of $\psi(A)$ in $M_n(Y)$ is isomorphic to $M_n(R)$. On the other hand the commutant of Y in $M_n(Y)$ is $M_n(R)$. Now (3) implies $A \cong Y$.

(1) \Rightarrow (4). Let $P^n \cong A^n$. We then have $\text{End}_A P^n \cong M_n(A)$. It is easy to see that $\text{End}_A P^n \cong M_n(\text{End}_A P)$. Thus, by (i) we have $\text{End}_A P \cong A$. It follows from this isomorphism that P can be regarded as a left A-module and clearly this makes P into an A-bimodule.

(4) \Rightarrow (1). Let $\varphi : M_n(Y) \cong M_n(A)$ be an isomorphism. Let e_{ij}, $1 \leq i, j \leq n$ denote the canonical matrix units of $M_n(Y)$. Let $\varphi(e_{ij}) = f_{ij}$. Then (f_{ij}) is a system of matrix units of $M_n(A)$ and we have a direct-sum decomposition

$$ A^n = \prod_{1 \leq i \leq n} f_{ii}(A^n), $$

into projective right A-modules. We assert that all the summands are A-isomorphic. In fact multiplication by f_{ij} gives an isomorphism of $f_{ii}(A^n)$ onto $f_{jj}(A^n)$, the inverse being multiplication by f_{ij}. Let $P = f_{11}(A^n)$. We have $P^n \cong A^n$. Now (4) implies that P is an A-bimodule. Thus the map which sends any element of A into left-multiplication in P by that element gives a R-homomorphism of A into $\text{End}_A P$. Since A is an Azumaya algebra, this map is a monomorphism. On the other hand, from $P^n \cong A^n$, we have $M_n(\text{End}_A P) \cong M_n(A)$ and computing the ranks over R, we get $n^2 \text{rank } \text{End}_A P = n^2 \text{rank } A$ i.e. $\text{rank } \text{End}_A P = \text{rank } A$. Thus $A \cong \text{End}_A P$.

We now show that $\text{End}_A P \cong Y$. For $\alpha \in \text{End}_A P$, the element

$$ \bar{\alpha} = \sum_{1 \leq i, j \leq n} f_{1i} f_{ij}, $$

clearly commutes with f_{ij}, $1 \leq i, j \leq n$ and $\varphi^{-1}(\bar{\alpha})$ is therefore an element of the commutant of $M_n(R)$ in $M_n(Y)$, i.e. $\varphi^{-1}(\bar{\alpha}) \in Y$. We thus have a map $\theta : \text{End}_A P \to Y$ which is easily seen to be an R-algebra homomorphism. It is in fact an isomorphism, the inverse map $Y \to \text{End}_A P$ being given by $y \mapsto \varphi(y) | P$. This proves (4) \Rightarrow (1).
CANCELLATION OF AZUMAYA ALGEBRAS

COROLLARY 1 ([4, Proposition 3.2]). If R is a semilocal ring, any Azumaya algebra A over R satisfies the conditions (1)-(4) of the Theorem.

Proof. We check (4). Let $P^n \cong A^n$. Since R is semilocal, $A/\text{rad } A$ is an Artinian ring and the isomorphism $P^n \cong A^n$ implies $(P/P \text{rad } A)^n \cong (A/\text{rad } A)^n$. By Krull–Schmidt theorem, it follows that $P/P \text{rad } A \cong A/\text{rad } A$. Hence $P \cong A$.

COROLLARY 2. Let $A = \text{End}_B Q$, where B is an Azumaya algebra and Q a projective B-module such that $f\text{-rank}_B Q > \text{dim Max}(R)$. If $K^0(B)$ has no torsion, then A satisfies the conditions (1)-(4) of the theorem.

Proof. We check (4). Let $P^n \cong A^n$. Since $A = \text{End}_B Q$, the algebras A and B are Morita-equivalent [2, p. 67]. Under this equivalence, A corresponds to the B-module $A \otimes_A Q = Q$ and P corresponds to $P' = P \otimes_A Q$. We thus have a B-isomorphism $P^n \cong Q^n$. Since $K^0(B)$ is without torsion, this implies that there exists a finitely generated projective B-module Q' such that $P' \oplus Q' \cong Q \oplus Q'$. Since $f\text{-rank}_B Q > \text{dim Max}(R)$, the “cancellation theorem” of Bass shows that $P' \cong Q$, i.e. $P \cong A$, by Morita-equivalence.

COROLLARY 3. Let $R = K[x]$, with K a perfect field. Then any Azumaya algebra A satisfies the conditions (1)-(4) of the theorem.

Proof. By a theorem of Auslander–Goldman [1], the algebra A is Brauer-equivalent to $D \otimes_K K[x] = D[x]$ for some central division algebra D over K. Hence, by [3, p. 109], A is Morita-equivalent to $D[x]$. The equation $S^n \cong T^n$, where S and T are projective (and therefore free) modules over $D[x]$ clearly implies $S \cong T$. Hence the same is true for projective modules over A. Thus, the projective module P of condition (4) is isomorphic to A.

Remark. If $R = K[x, y]$, where K is a field of characteristic zero and if $\text{Br}(K) = (0)$, then, by a theorem of Auslander–Goldman [1], $\text{Br}(R) = (0)$. Hence, any Azumaya algebra A over R is Brauer- and therefore Morita-equivalent to $K[x, y]$. Since projective R-modules are free by a theorem of Seshadri [5], it follows that A satisfies the conditions (1)-(4) of the theorem. However, if $\text{Br}(K) \neq (0)$, there always exist Azumaya algebras over R which do not satisfy these conditions. To show this, we prove first the following Proposition which is of some independent interest.

PROPOSITION 1. Let D be any noncommutative division ring. Then $A = D[x, y]$ contains a non-free projective ideal P such that $A \oplus P \cong A$.

1 This result was kindly communicated to us by Knus.
Proof. Let \(a, b \in D \) with \(c = ab - ba \neq 0 \). Consider the exact sequence of right \(A \)-modules

\[
0 \to P \to A^2 \to A \to 0,
\]

where \(\varphi(\lambda, \mu) = (X + a)\lambda - (Y + b)\mu \).

The homomorphism \(\varphi \) is surjective since \(\varphi(Y + b, X + a) = c \) is invertible in \(A \). The module \(P \) is projective, since the sequence splits. We show that \(P \) is not free. For this, it is enough to show that \(P \) cannot be generated by a single element. It can be verified that the element \((\lambda_1, \mu_1)\) where

\[
\lambda_1 = b(b^{-1}ab - a)^{-1}a^{-1}x + a^{-1}ba(ba - ab)^{-1}y \\
+ (b^{-1}ab - a)^{-1}a^{-1}xy + (ba - ab)^{-1}y^2,
\]

\[
\mu_1 = b^{-1}ab(b^{-1}ab - a)^{-1}a^{-1}x + a(ba - ab)^{-1}y \\
+ (b^{-1}ab - a)^{-1}a^{-1}x^2 + (ba - ab)^{-1}xy
\]

and the element \((\lambda_2, \mu_2)\), where

\[
\lambda_2 = (ab^{-1} - b^{-1}a)^{-1} + (a^{-1}b^{-1}a(ab^{-1} - b^{-1}a)^{-1} \\
+ a^{-1}ba(ba - ab)^{-1}y + (ba - ab)^{-1}y^2,
\]

\[
\mu_2 = b^{-1}a(ab^{-1} - b^{-1}a)^{-1} + b^{-1}(ab^{-1} - b^{-1}a)^{-1}x \\
+ a(ba - ab)^{-1}y + (ba - ab)^{-1}xy
\]

are both in \(P \). If \(P \) were to be generated by a single element \((\lambda_0, \mu_0)\), then the above elements would be multiples of \((\lambda_0, \mu_0)\) and it is clear by comparing degrees that \(\lambda_0 \) must be a quadratic polynomial in \(x, y \). On the other hand, it is easily seen that \(P \) cannot contain any element \((\lambda, \mu)\) with \(\lambda \) linear in \(x, y \). Thus \(\lambda_0 \) must be of degree 2. Then, if \((\lambda_i, \mu_i) = s_i(\lambda_0, \mu_0), i = 1, 2\), the elements \(s_i \) must be non-zero elements of \(D \). Now \(\lambda_1 = s_1\lambda_0 \), implies that \(\lambda_0 \) has no constant term. On the other hand \(\lambda_2 = s_2\lambda_0 \) implies that \(\lambda_0 \) has a non-zero constant term. This is a contradiction, which proves that \(P \) is not free.

Since, for any \((\lambda, \mu) \in P\), we have \(\lambda = 0 \Rightarrow (\lambda, \mu) = 0 \), it follows that the projection mapping \(P \to A \) given by \((\lambda, \mu) \mapsto \lambda\) is an \(A \)-isomorphism of \(P \) on to a right ideal of \(A \).

We use Proposition 1 to prove the following

Proposition 2. Let \(D \) be a noncommutative central division algebra over a field \(K \). Then the Azumaya algebra \(A = D[x, y] \) does not satisfy the condition (1) of the theorem.
Proof. Let P be the projective A-module of Proposition 1. From $P \oplus A \cong A^3$, we get $P^3 \oplus A^3 \cong A^3 \oplus A^3$. Since f-rank $A^3 > 2 = \dim \operatorname{Max}(K[x,y])$, it follows from the cancellation theorem of Bass [2, p. 184], that P^3 is isomorphic to A^3. Hence $M_3(\operatorname{End}_A P) \cong M_3(A)$. We assert that $B = \operatorname{End}_A P \cong A$. Since $P^3 \cong A^3$, P is faithfully projective and we have that the mappings

$$f : P \otimes_A \operatorname{Hom}_A(P, A) \to B$$

and

$$g : \operatorname{Hom}_A(P, A) \otimes_B P \to A$$

defined respectively by $f(p \otimes p')(q) = p \cdot p'(q)$ and $g(p' \otimes p) = p'(p)$ are isomorphisms of B- and A-bimodules respectively [2, p. 68]. Suppose now $B \cong A$. This means, in view of the above isomorphisms, that P is an invertible A-bimodule. Since by [3, p. 108], $\operatorname{Pic} A \cong \operatorname{Pic}(K[x,y]) = (0)$, it follows that P is free, which is a contradiction. This proves the Proposition.

References