
Rank and Null Space Calculations Using
Matrix Decomposition without Column Interchanges

Leslie V. Foster

Department of Mathemutics and Computer Science

San Jose State University

San Jose, California 95192

Suhittetl by James H. Wilkinson

ABSTRACT

The most widely used stable methods for numerical determination of the rank of a

matrix A are the singular value decomposition and the QR algorithm with column
interchanges. Here two algorithms are presented which determine rank and nullity in
a numerically stable manner without using column interchanges. One algorithm makes
use of the condition estimator of Cline, Moler, Stewart, and Wilkinson and relative to
alternative stable algorithms is particularly efficient for sparse matrices. The second
algorithm is important in the case that one wishes to test for rank and nullity while

sequentially adding columns to a matrix.

1. INTRODUCTION

The most widely used stable methods for numerical determination of the
rank or nullity of an M X N matrix A are the singular value decomposition
(SVD) and the QR algorithm with column interchanges (see [S], [17]). The
singular value decomposition is considered more precise whereas the QR
algorithm with column interchanges is more efficient and in practice usually is
sufficiently precise [S]. However in certain applications both algorithms are
inefficient. For example with a sparse matrix A the SVD does not take
sufficient advantage of the sparsity of A and the QR algorithm with column
interchanges forces an ordering of the columns based on numerical not
sparsity considerations.

We will present two algorithms which determine rank and nullity in a
numerically stable manner without using column interchanges in the sense
that although columns are dropped the columns are not reordered. One

LINEAR ALGEBRA AND ITS APPLJCATIONS 74:47-71 (1986) 47

c: Elsevier Science Publishing Co., Inc., 1986
52 Vanderbilt Ave., New York, NY 10017 0024379.5/86/$3..50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82624661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

48 LESLIE V. FOSTER

algorithm makes use of the condition estimator of Cline, Moler, Stewart and
Wilkinson [4] and is well suited for application to large sparse matrices whose
rank defects are not large. The second algorithm presented uses certain matrix
inverses for condition estimates and is of importance when one wishes to test
for rank and nullity while sequentially adding columns to a matrix. As we will
describe later this last problem arises in certain approaches to the minimal
basis problem [8, 9, 161 of engineering control theory.

In this paper in Section 2 we define and discuss numerical rank and
nullity as well as present essential background material. In Section 3 we
present a description of our algorithms as well as their analysis in relation to
singular values. In Section 4 we recommend specific implementations and
prove numerical stability. Finally in Section 5 we present an example,
discussion, and conclusions. Section 5 will further discuss related literature
but here we might mention that Heath [15] considers sparse matrices with
rank deficiencies using an approach somewhat similar to ours. As we will see
our approach can be substantially more accurate in the determination of rank
determination.

Three norms will be used in developing our results. For x E R” these are
defined by

llxllz = (cx:y~ IIXIIT = CIXiL ll4L = =4lx,l).

The first of these, the usual Euclidean vector norm, will be so basic that the
suffix 2 will be omitted. Each of the vector norms provides a corresponding
induced matrix norm defined by

llAllp = m=
II AxlIp
llxll (p=%l,@3),

P

and again the suffix 2 will be omitted.

2. NUMERICAL RANK AND NULLITY

As is well known, on a finite precision computer if M > N it is highly
probable that no column of an M X N matrix A will be exactly linearly
dependent on the other columns of A and no vector x will exactly satisfy
Ax = 0. Therefore for computer calculations we need to define the numerical
rank and nullity of A. We will do so with respect to a tolerance E and the
Euclidean matrix norm I] 1). Although no single definition of numerical rank is
best for all applications, rank determination based on singular values is very
widely used and provides a point of comparison for other methods of rank

RANK AND NULL SPACE CALCULATIONS 49

determination (see [ll]). As we see, the following definition will lead to
singular values:

DEFINITION 2.1. The numerical E rank of an M x N matrix A is defined

by
R,(A)=mp{rank(B):]IA-B]]<E},

and the numerical E nullity NC(A) is defined by

N,(A)=max{nullity(B):]~A-B]I<s}.

In order to help clarify as well as use Definition 2.1, several equivalent
formulations of numerical rank and nullity are important. To describe these
we first note that any M X N matrix A has a singular value decomposition
A = UDV*, where ’ indicates transpose, D is an M X N diagonal matrix, and
U and V are, respectively, M x M and N X N orthogonal matrices. When
M > N we will call the diagonal entries si < sa < . . . < sN the singular values
of A. For later convenience we choose to order the singular values so that the
first singular value is the smallest. When M < N we will say that A has N
singular values: si = s2 = . . . = s~_,~ = 0 and the diagonal entries of A,
which we order sN M+ r < . . . < sN 1 < s,\,, We have chosen to define N
singular values even when M < N. This convention, although nonstandard,
will substantially simplify our later description. The columns of U and of V,
respectively, are termed left and right singular vectors of A. Given a vector y
in Euclidean M space R”, and a subspace S of R”, we also define the
distance between y and S by dist(y, S) = min{ IIy - z]]: z E S }. We then have:

THEOREM 2.2. For an M x N matrix A

WA) = msF {d imension(S): S is a subspace of RN such that x E S,

(2.3)

N,(A) = number of singular values of A that are < E, (2.4)

R?(A) = min {dimension(S) : S is a subs-pace of RM such that x E RN, x # 0
s

j dist(Ax, S)

Ilxll
6 E} (2.5)

R.(A) = number of singular values of A that are > E, (2.6)

R?(A)= N- N&A). (2.7)

50 LESLIE V. FOSTER

Proof. The results (2.4) and (2.6) are well known [ll]. Although the
author has not seen (2.3) or (2.5) elsewhere in the forms presented here, these
results and (2.7) follow easily from standard results in linear algebra. In the
interest of space, we will not present the straightforward proofs here. W

The results (2.3) and (2.5) are geometrical-(2.3) stating that E mlllity is
the largest dimension of a space that is approximately annihilated by A, and
(2.5) stating that E rank is the smallest dimension of a space that approximates
well vectors in the range of A. A subspace S of dimension N*(A) that satisfies
(2.3) will be called an E null space of A. The results (2.4) and (2.6) suggest
one method of calculating the numerical rank of A -via the SVD. For many
of our results we will find (2.3) and (2.7) more useful.

Some other well-known results that will be of use to us follow. If x E R”,

then

IIxII, < llxll G v%IIxllm and ilxlll fi G llxll d llxII1. (2.8)

Furthermore, if a 1, . . . , a,v are the columns of an M X N matrix A and

K = max(]]ai]l,. . . , Ilayll> then

K < llAll< K@. (2.9)

An additional characterization of the singular values of an M X N matrix A is
the Courant-Fischer characterization: sk = min,(max. E s]]A~]]/]]~]]), where
the minimum is over subspaces S of dimension k. Furthermore if an M X N

matrix A has singular values si, . . . , s,~ and if B is a matrix formed by
deleting a column of A, then the singular vahies S,, . . . , S,v I of B interleave
thoseof A: s <$ <s <i < ... <3,,;_ i<s,,,. 1’ 1’ 2’ 2’ It is also useful to note that
]]A]] = s,v,andif s,#Oandif A’ isthegeneralizedinverseof A [AA+A= A,
A’AA+= A’, (AA’)r= AA+, (AtA)‘= A+A], then]]A+]] = l/s,. In ad-
dition the definition of the condition of A is cond(A) =]]A]]]]A+]I for the two
norm, and cond i(A) and cond,(A) are defined similarly. Finally we should
note that the QR factorization A = QR, Q unitary and R right trapezoidal, is
of use in the sequel.

3. ALGORITHMS AND COMPARISON WITH SINGULAR VALUES

In this section we wish to describe our algorithms and show that they
calculate rank with a precision comparable to that of singular values without

RANK AND NULL SPACE CALCULATIONS 51

calculating singular values. The principle result of this section and we feel of
the paper is a demonstration that this may be done by an algorithm based on
dropping columns of a matrix A corresponding to largest magnitude compo-
nents of approximate null vectors of A. As we will describe, these approxi-
mate null vectors can be determined by using the condition estimator of
Cline, Moler, Stewart, and Wilkinson, by using certain matrix inverses or by
other methods.

We first outline objectives to be met in an algorithm which seeks to
determine the E nullity of an M x N matrix A with a reliability comparable
with that achieved by the use of the singular value decomposition. The
algorithm should compute successive approximate singular vectors wI; (k =
1,2,. . .) and corresponding approximate singular values ek defined by

IIAWkll
ek= llWkll (with e,<e,g ... holding approximately).

If the first ek to exceed E is eP+ i, so that

ek < e, k=l,..., P and q,+,>E, (3.1)

then p is to be regarded as the E nullity as determined by the algorithm. For
the approximation to be satisfactory from this point of view two conditions
must be met. First it must be true that

ek G Ysk (k=l,...,p+l) (3.2)

with some fairly modest value of y (i.e., the ek must not be substantial
overestimates of the Sk, the true singular values). Secondly, since the true
singular vectors are orthogonal (i.e., maximally linearly independent), the
approximate singular vectors should also be far removed from linear depen-
dence; otherwise the ek would have no real significance. To insure this we
require that

condi(w,,wa ,..., w,,)=condi(W)<C, (3.3)

where again C is a modest constant. The conditions (3.1) to (3.3) lead to:

THEOREM 3.4. Let L, be the number of singular values of A less than or
equal to E/Y, and let L, be the number of singular values less than or equal
to CE. Zf the conditions (3.1) and (3.2) are satisfied, then p >, L,. Zf

52 LESLIE V. FOSTER

conditions (3.1) and (3.3) are satisfied, then p < L,. Zf (3.1), (3.2), (3.3) are
true and A has a gap in its singular values with rw singular values in

E

v -=c s < CE, (3.5)

then p = NJ A).

Proof. To prove (3.1) and (3.2) imply p > L,, note that E < e,,,, and

e,+lGys,+l imply E/Y<sp+l. Then p > L, follows immediately.
To show (3.1) and (3.3) imply p Q L,, let S be the subspace spanned by

w ,,“., WP. Thenforw=WyES

IlAwll G 5 IlAWtII IYil G ma IIAw,Il llylll
,=I i=l....,p

<E max
i i=l,...,p

IIwiIl)IIYIII~

using (3.1) and properties of matrix norms. Furthermore cond,(W)
= llWlllmin z + O(llzll 1/II Wzll 1) is a property of condition numbers and

so C a IIwIIIIIYII1/IIwII1~ Therefore for any w E S, IIAwII/IIwII G

E(maxi=I,...,p IIwiII)IIyIIIC/(IIWIIIIIyII1)~ EC. Since S is a subspace of dimen-
sion p, by the Courant-Fischer theorem the singular value sP of A satisfies
sp < CE. Therefore A has at least p singular values less than or equal to CE,
and p < L, ‘follows.

If (3.1)-(3.3) and (3.5) are true, then L, = L,, and p = L, = L, = NJA)
follows immediately. n

The importance of the result is the following: If our rank determination is
based on approximate singular values and if (3.1) is true, then it is natural to
let the estimated E nullity determined by the algorithm be p. If (3.1)-(3.3)
are true and E has been chosen to lie in a gap in the singular value of A as in
(3.5), then this calculated E nullity equals the E nullity based on singular
values. When E is close to a singular value, so that (3.5) is not true, then the
calculated E nullity may not agree with the E nullity determined by singular
values. However, we do not feel that this is a serious limitation in our
algorithm, since if E is not contained in a reasonable sized gap in the singular
values of A, then even when singular values are used the physical interpre-
tation of numerical E rank is unclear [ll]. Also, if (3.5) is not true, then
Theorem 3.4 still provides bounds on the calculated nullity.

RANK AND NULL SPACE CALCULATIONS 53

We would like to develop algorithms that are simple and that insure that
(3.2) and (3.3) are true with y and C not large. In order to fully develop these
algorithms we will describe several modifications related to the condition
(3.2). The first is introduced to allow inclusion of error analysis in our
development. We will assume that ek, our k th approximate singular value,
satisfies

ek $ ys, + At,> k=l,...,p+l (3.6)

rather than (3.2). Here AA = cuq(lAlj, where n is the relative machine precision
and (Y is assumed to depend only on the dimension of A and is not large.
Furthermore, for ek < E we assume that

(3.7)

instead of the stronger condition ek = ~~Awkll/~~vvk~~. Of course, if A, = 0 then
(3.6) and (3.7) are equivalent to our earlier conditions, and if AA f 0 then
(3.6) and (3.7) lead to a theorem similar to Theorem 3.4, as we will see.

Another modification related to (3.2) is now introduced, since we will find
it easiest to estimate an interior singular value sk of A by first estimating the
smallest singular value sk of certain submatrices A, of A. Note the use of the
superscript to distinguish sk from sk.
our estimate of sk is related to sk by

In our algorithm we will assume that ek

ek < Ysk + A,+ k=l,...,p+l (3.8)

with AA as earlier. In addition let us assume that when ek < E our algorithm
calculates an approximate null vector wk of the submatrix A, such that

(3.9)

We will see shortly that (3.8) and (3.9) lead directly to (3.6), (3.7) and a
theorem like Theorem 3.4. In the algorithm below we will assume that ek and
wk satisfying (3.8) and (3.9) are available. The details of calculating ek and iyk
will be discussed in the next section.

To describe our algorithms we assume that a parameter E is given and that
we wish to determine the E nullity p of an M x N matrix A and an E
nullspace S of A. If desired, (2.7) can then be used to obtain a computed

54 LESLIE V. FOSTER

rank. We will refer to the columns of A by a,, n = 1,. . . , N. Our algorithms
are :

1.
2.
3.

4.

1.
2.
3.

4.

5.

ALGORITHM 1.

Let A, = A, k = 1, p = 0.

Calculate ek.
If ek < E, let p +- p + 1, detennine ti, satisfying (3.9), and let wP be an
N-vector formed by expanding Ck putting zeros in elements correspond-
ing to columns of A dropped in forming A,. Let A,, r be A, with a
column dropped corresponding to a largest element in absolute value of
6, (ties may be broken arbitrarily). Let k + k + 1 and go to 2.
If ek > E, stop. Let the current p be p, the calculated nullity of A, and
S = span{w,, . . ,w,}.

ALGORITHM 2.

Let A, = a,, k = 1, n = 1, p = 0.
Calculate ek.
If ek < E, let p + p + 1, determine w, satisfying (3.3), and let w,, be an
N-vector formed by expanding \;vk putting zeros in elements correspond-
ing to columns of A dropped in forming A,. Let A,, r be A, with a
column dropped corresponding to a largest element in absolute value of
6~~ (ties may be broken arbitrarily). Let k + k + 1 and go to 2.
If ek > e and r~ <N, then let Ak+r =(Ak,an+r), k + k + 1, n + n + 1,

and go to 2.
If ek > E and n = N, stop. Let the current p be p, the calculated nullity,
and S = span{w,,...,w,}.

As we will discuss in more detail later, Algorithm 1 has the advantage that
the quantity ek must be determined only p + 1 times. On the other hand, the
matrices A, of Algorithm 2 will generally be smaller than those of Algo
rithm 1. We now have

THEOREM 3.10. Let L, be the number of singular values of A less than
or equal to (E - AA)/ y, and let L, be the number of singular values of A less
than or equal to C(E+ A,). Zf the conditions (3.1), (3.8), and (3.9) are true,
then p > L,. Zf the conditions (3.1) and (3.3) are true, then p < L,. Zf (3.1),
(3.3), (3.8), and (3.9) are true and A has 710 singular values in

E-A*
-<s<C(~+h~),

Y

then p = NF(A).

(3.11)

RANK AND NULL SPACE CALCULATIONS 55

Proof. By our constructions]]wk]] =]lwk]] and I]A&,_]] = J]Aw,I(are triv-
ially true, so that (3.9) implies (3.7). By successive application of the interlace
theorem of Section 2, sk < sk, so that (3.6) follows immediately from (3.8).
Now the proof of Theorem 3.4 is valid with minor modifications in some of
the inequalities to reflect introduction of AA. q

It is important for the success of our algorithms that neither C nor y be
large. We will discuss the size of y in the next section. We will now discuss C;
we assume without loss of generality that the calculated null vectors wi,
i = l,..., p, are normalized so that (Jwi(Joc = 1.

THEOREM 3.11. Zf the null vectors are nomliz.ed so that jlwi (I ~ = 1,
then C satisfies

C < N2P. (3.12)

Proof. Since in each algorithm we dropped columns of A corresponding
to a largest component in absolute value of wk, it follows easily that there
exists a row permutation matrix I’, and a column permutation matrix P,, such
that W’ = P,wP, is lower trapezoid with ones on the diagonal and whose
elements have magnitude one or less. Let Z be the first p rows of W’. Then
for x E RP clearly JJWxJ], > JJZx]],. To obtain a lower bound for JJZxJ], we
will let y = Zx and assume without loss of generality that (1 y (1 3c = 1. Then if Z
has components zij, for i > 1 we have xi = yi --E~~:zijxj and so Ix,] f 1+
1x1]+ . . . + Ixi _ II. Since (x1] = Jyi] < 1, by induction it is easily proven that
(xi(<2’-’ and consequently that ((~((,<2~-1$2~. Now for y=Zx,

llWxll~/II4I~ 2 lIZxllm/l141~= IIYmll/llxII~ 2 VP. Furthermore, since IIwillm
= 1, it follows by properties of matrix norms that]]W]]r= maxi=l,,.,,p]]wi]]l
< N. Finally a property of condition numbers is that condr(W) =

llWll min xER~]]~]]I/J]W~(]l< N2P, by theaboveinequalities. n

If the calculated rank deficiency p is small and we assume that y is not
large, then Theorem 3.10 and Theorem 3.11 imply that our algorithms
correctly determine an E rank for E contained in a moderate sized gap in the
singular values A. However, if p is not small, then the bounds in (3.5) (3.11),
and (3.12) are disappointingly large. In practice, though, the bound (3.12) is
not realistic. In fact the bound (3.12) appears to be similar in nature to certain
other known exponential bounds in linear algebra problems-for example, the
bound in the growth of elements in Gaussian elimination with partial pivoting
[25], or the bound on the error of the LINPAK condition estimator when using
the QR algorithm with column interchanges [5, 17]-that in practice are
never achieved.

To examine the point further, for a given N X p matrix B let P,BPL = LU

be the LU decomposition of the permutation of B that is obtained by using

56 LESLIE V. FOSTER

Gaussian elimination with partial (PI, = I) or with complete pivoting. Our
matrix W’ in the proof of Theorem 3.11 is of the same form as L in the above
LU decomposition, that is, lower trapezoidal with unit diagonal elements and
all elements of magnitude one or less. Such matrices L are known to usually
be well conditioned [2, 71, that is, C +Z 2pN. To examine C experimentally we
generated N x p matrices of the form W’ with ones on the diagonal and
elements below the diagonal chosen uniformly randomly between + 1 and
- 1, and we calculated an upper bound for C. Our experiments indicated that
although C may be large for larger values of N when p/N is near one, for
p/N not near one C was not large for a wide range of N values. For example,
for p = N/4, which would correspond to a calculated nullity equal to 25% of
the dimension of the domain of A, our calculated bound on C was always 65
or less for several hundred matrices W’ ranging in size up to 200 X 50. The
numerical experiments in the last section further our conclusion that in
practice C is not large. We might add that exceptional examples exist: for
example, for p >, 3 the author has constructed matrices A with p = N/2,
C 2 2”, and no singular values in 0 < s < 2p ~ 2~/fi, and yet with NJA) # p
= NF(A)+ 1. Such matrices appear to be exceedingly rare in practice.

4. IMPLEMENTATIONS AND ERROR ANALYSIS

The results of Section 3 were to some extent general, and they are
applicable to a variety of implementations of either algorithm. In this section
we wish to provide specific natural implementations, complete the partial
error analysis of Section 3, and discuss the size of y.

Implementations of Algorithm 1 can be based on subroutines in LINPACK
or, in the case of sparse matrices, other published approaches. To describe
such implementations the following additions are required to our previous
description of Algorithm 1:

IMPLEMENTATION OF ALGORITHM 1.

1. Let A, = A, k = 1, p = 0. Use the LINPACK subroutine SQRDC (with or
without the pivoting option)-or, in the case of a sparse matrix A, the
algorithm of [lo]-to determine R in a QR factorization of A,. Let
R, = R.

2. As outlined below, use the LINPACK subroutine STRCO-Or, in the case of
sparse matrices, its sparse matrix modification [14]--to determine an
approximate null vector iy, to R, (and Ak). Determine ek as outlined
below.

RANK AND NULL SPACE CALCULATIONS 57

3. If ek f E, let p +- p + 1 and let wP be an iv-vector formed by expanding
w, putting zeros in elements corresponding to columns of A dropped in
forming A,. Using the subroutine scrmx-or, for sparse matrices, a
suitable modification as described below-drop the column of R, (and
A,.) corresponding to the component of \;vk with largest magnitude, and
retriangularize the result using Givens transformations to form R,, i. Let
k 6 k + 1 and go to 2.

4. If ek > E, stop. Let the current p be p, the calculated nullity. Let
S = span{w,,...,w,}.

The details of the LINPACK subroutines are available in [5] and will not be
presented here except to discuss ek and wk. The LINPACK routine STRCO and
its sparse variation [I41 determine a vector y such that the vector x in
Rkx = y is large relative to y. The trial null vector iy, described for step 2 will
be the x vector of STRCO. Also, our approximation ek will be the calculated

ratio IIyll/llxll = IIyll/ll%ll~ II’ IS c c a ion CJ UI t requires a simple change in
STRCO, since STRCO calculates]]y(]i/]]x]Ii not]]y]]/]lxl].

We should note that the sparse matrix algorithm [lo] of step 1 uses Givens
transformations, takes strong advantage of the sparsity of A, allows use of
convenient fixed data structures, and is numerically stable. For sparse (or
dense) matrices in step 3 a Hessenberg matrix results after a column of R, is
dropped, and as is standard [5], this matrix can be retriangularized by
applying a sequence of Givens transformation making use of any sparsity in
R, [15]. For sparse matrices this updating can be done within the fixed data
structure of [lo].

To analyze the conditions (3.8) and (3.9) we note that although the author
knows of no published theoretical bounds for the condition estimators of
Cline, Moler, Stewart, and Wilkinson used in the LINPACK subroutine STRCO,

extensive numerical tests have been performed [4, 191. If ek =]]yl]/]]x]] as
above and if s(A, + E) represents the smallest singular value of a matrix
A, + E, then the tests and analysis of [4] and [19] indicate that a ratio similar
to ek/s(A, + E), but involving the one norm, is typically 2 and almost
always 10 or less, and E is a matrix such that IIEII/IIAkll is a modest multiple
of machine precision. Furthermore, since these LINPACK condition estimators,
when modified appropriately, appear to work well for norms other than I(I] I
[19], we expect that e,/s(A, + e) < y with y = 10 or less. Since s(A, + E)
=S s(Ak)+]lEll, (3.2) follows with AA = cxn]]A,]] < (uql]A]], where LX a modest
sized factor.

To examine (3.9) we note that the algorithms SCHEX, STRCO, and SQRDC
and the use of the Givens transformations described above are all stable
procedures [5, 241. It follows that for any k, a unitary matrix Qk and error
matrices E, and E; exist with Qk(Ak + Ek)= R,, (Rk + E;)Gk = y, llEkll <

58 LESLIE V. FOSTER

~kllAkll~~ and IIELII G ~~IIAAl~~ where % is the calculated vector defined
above, and where crk and CX; are of modest size and depend only on the size
of A. These results imply that

However, since]]Ak]] <]]A]/, since there are at most p < N different k’s, and

since]]y]]/]]*k]] = ek, then (3.9) is true with (Y = max(ak + a;), k = 1,. . . , p.
To summarize these comments:

THEOREM 4.1. lf the condition estimator of Cline, Moler, Stewart, und
Wilkinson as used above has the properties described, then (3.8) and (3.9)
are true. n

This result, along with the results of Section 3, implies a type of stability
for Algorithm 1. More specifically, if E lies in a sufficiently large gap in the
singular values of A as described in Theorem 3.10, then the correct nullity is
calculated in finite precision arithmetic as well as in exact arithmetic.

To complete the discussion of Algorithm 1 we note that the primary value
of the algorithm becomes apparent when comparing for sparse matrices the
efficiency of Algorithm 1 with other stable methods of rank and nullity
determination. The SVD is apparently inefficient when applied to sparse
matrices, since excessive fill-in occurs, and furthermore the QR algorithms
with the column interchanges described in LINPACK, by Lawson and Hanson
[16], or more recently by Manteuffel [IS] do not order the columns of A on
the basis of sparsity considerations, so that excessive fill-in will often result.
For our algorithm the columns of A can be preordered with preservation of
sparsity as the sole basis. Subsequently columns are dropped but not other-
wise reordered. Therefore, if the effort expended in steps 2 and 3 is moderate,
as will usually be the case (see [14] for timings of the sparse matrix version of
STRCO), and if p is not large, our Algorithm 1 will be substantially more
efficient than the abovementioned alternatives. In the case of dense matrices
we note without presenting the details that Algorithm 1 will be more efficient
than the SVD and comparable to (p small) or somewhat less efficient than (p

not small) SQRDC [5] with column interchanges.
Finally we should note that for dense matrices Algorithm 1 can be

implemented using essentially only the computer memory required for the
matrix A. For sparse matrices space is needed for fill-in in forming the
triangular factors R,.

Our second algorithm could be implemented similarly to the first al-
gorithm, using the LINPACK condition estimator to select trial 11ull vectors.

RANK AND NULL SPACE CALCULATIONS 59

However, for Algorithm 2 an alternate method is somewhat more efficient
and leads to a rigorous bound for y. In our description of this implementation
we will assume that the reader is familiar with Givens and Householder
orthogonal transformations [25]. Algorithm 2 can be implemented with the
following additions to the steps in Section 3. We restrict our attention to
dense matrices, since algorithm 2 is not best suited to sparse matrices.

IMPLEMENTATION OF ALGORITHM 2.

1. Let A,=a,(thefirstcolumnof A), k=l, n=l, p=O,and d,=a.Let
Qi represent the Householder transformation such that Q,A, = R, is
upper triangular.

2. Note that R, will have n - p columns. If R, has no columns, let ek = Gk
and go to step 4. Otherwise let 8, be the principle (n - p - 1)x(n - p -
1) submatrix of R,, let r be the first n - p - 1 elements of the last column
of R,, and let t be the (n - p)th diagonal entry in R,. Then let x be the
calculated solution to k,x = r, 6, = (-x, 1)r [if n - p = 1, let wk = (1)]
and ek = min(ik,]t]/]]tiJ]).

3. If ek < E, let p = p + 1 and let wP be an N-vector formed by expanding i,
putting zeros in elements corresponding to columns of A not included in
forming R,, and normalizing so that]]w,,]], = 1. Let Ri be R, with the
column dropped corresponding to a largest magnitude component of w,,
and let Qk+ 1 represent the Givens transformations required so that

Qk+lRfr =Rk+i is triangular (let Qk + I = I if R f, has no columns). Also
let &k+ 1 = B,, k + k + 1, and go to 2.

4. Ifek>Eandn<N,thenlet1,+,=Qk...Qla.+landletQ,+,repre-
sent the Householder transformation so that Qk+ i(R,, ci,, 1) = R, + 1 is

triangular. Let Ck+i = min(gk, ek), k +- k + 1, n + n + 1, and go to 2.
5. If ek > E and n = N, stop. Let the current p be p, the calculated nullity,

and S = span{w,,...,w,}.

Perhaps the motivation of this implementation is not immediately clear.
However, if A = QR and if no columns of A are dropped (so ek > e,

k=l,..., N), then it follows easily that in exact arithmetic]]iYk]]/]t] is the
two norm of column k of R ‘, the psuedoinverse of R. Therefore, by the

constructions of the algorithm, eN would be the reciprocal of the maximum
two norm of a column of R+. Since here the smallest singular value of A is
l/llR + 112, we conclude by (2.9) that in the case that no columns are dropped
the tests in steps 3 and 4 involving ek would be a precise way to examine
rank deficiency. That this property persists when columns are dropped and in
inexact arithmetic is the content of the following theorem, whose proof is in

the appendix.

60 LESLIE V. FOSTER

THEOREM 4.2. lf sk is the smallest singular value of A,, and if ek and
Gk as in step 2 in the above algorithm are calculated on a computer with
relative machine precision 9, then (3.8) is true with y = fi. Furthermore
when ek < E the calculated iy, satisfies (3.9).

As shown in Section 3 and discussed earlier, this theorem implies that if E
is chosen to lie in a sufficiently large, usually moderate sized gap in the
singular values, then the correct nullity is calculated in exact or finite
precision calculations.

Algorithm 2 operates on matrices A, of column dimension usually N - p
or less, whereas Algorithm 1 operates on matrices A, of up to N columns.
Thus for p large enough it can be shown that Algorithm 2 will be somewhat
more efficient than 1. However, we feel that the most valuable use of
Algorithm 2 will be for problems where we wish to sequentially add column
vectors in a specified order until a matrix A is formed with a specified
numerical nullity or rank. In this case Algorithm 1 is not appropriate but
Algorithm 2 is quite natural. Suppose p is the desired specified E nullity, and
suppose that the calculated E nullity is p when A has N columns. If we let
c = p/N, then we may consider cases where the largest component in
magnitude of each w, is the first component (worst case) or a middle
component (typical case). When using algorithm 2 to select N, the operation
(multiplication) counts are less than:

MN2 N3 I N3(15c-21c2+7c3)

6 6
(worst case)

MN2 N3 I NC3(6c-9c2 +4c3)

6 6
(typical case) (4.3)

for large M and N, M > N. For sequential rank tests an alternative to
Algorithm 2 would be to perform rank calculations via the SVD and succes-
sively update the SVD as columns are added. However when column n

I:
< n < N) is added, an update of complete SVD would require Mn’ + n3

or each n) multiplications [3], and so successive construction of complete
SVDs would require an order of magnitude more operations than indicated in
(4.3). Potential algorithms which update partial SVDs also appear relatively
inefficient. When adding a column, to update the QR decomposition that
results from column interchanges (SQRDC [5] or HF~X [17]) also appears
inefficient. Such updating can require a complete reordering of the existing
column order, and if so, apparently will be expensive.

We should mention that Algorithm 2 requires some storage in addition to
the storage required for A. In particular, the Householder transformation, the

RANK AND NULL SPACE CALCULATIONS 61

accepted null vectors, and the current R, can be stored in the storage area for
A, but the Givens transformations in general cannot be. These may require up
to N2/2 extra storage locations.

Finally, in this section we would like to briefly discuss an application-the
minimal basis problem [8]-of the sequential rank tests which Algorithm 2
facilitates. This problem has many important applications in engineering
control theory [8,9,16,26]. Furthermore, in the approaches described in
[9,16,26] for solving the minimal basis problem, the rank and nullity of
certain matrices are tested while sequentially adding columns to the matrices.
For such tests our algorithm has proven the numerical stability and precision
of rank determination, whereas the algorithms used in [9,16,26] do not. The
interested reader is referred to the references [9,16,26] for more details on the
minimal basis problem.

5. EXAMPLES, DISCUSSION AND CONCLUSIONS

The following simple example compares various methods of determining
rank and nullity and illustrates some of our results.

EXAMPLE 5.1. Let A be

‘1 1 0 0

A= ; -a 1 2 1
0 a 0'

,O 0 0 a I

and suppose we wish to determine the E nullity and an E null space of A for
E=a2 where a is small. The singular values of A are 6, fi, a, and
a'/&, where (as throughout the example) for simplicity we list our results
accurate to the lowest order power of a only. Thus the a2 nullity of A is one.
An E null vector for A is the singular vector w = (1, - 1, -0.2a, -0.4a)', and

IIAwll/llwll = a2/Ji0.
Applying our implementation of algorithm 1, step 1 has A r = R, already

triangular. In step 2 STRCO produces a trial null vector ti, = (1,
- 1, -0.2a, -0.4a) with e, =]]Ati,J/]]tik]l = a2/m < a2. Therefore we
accept wi = i+, as a null vector as in step 4, and we drop column 1 (or column
2) of R, (and A,), retriangularizing using Givens transformations to obtain
R,. STRCO now produces the trial null vector (0,2, - 1)r for R, (and A,) with
e2 = a > E, and so we stop. Thus NJ A) = 1 is calculated, and wi is in the
calculated null space with]]Aw,]]/]]w~]] = a”/m.

62 LESLIE V. FOSTER

If we apply our implementation of Algorithm 2, for k = 1 we obtain R 1 =
(column 1 of A), Cv, = (1) e = 1 > a ‘; for k = 2, R, = (columns 1 and 2 of
A), G~~=(-l,l)~, e,=a/ / 2 >u2; and for k = 3, R, = (the first 3 columns
of A), Cvs =(- l,l,a)r/a, e3 = a”,/& < u2. Therefore we accept wi =
(- 1, 1, u,O)r as a null vector. For k = 3 in step 3 of the algorithm we drop
column 1 (or 2) and retriangularize to obtain R as a 4 X 2 triangular matrix.

For k=4,iY,=(u,l)rand]t]/]lwk]/=l/ fl l+u >.s,andfinally,fork=5,
iy, = (0, -2, l),]t]/]]sk]] = a > a 2. Thus N,(A) = 1 is calculated, and wi =
(- l,l, u,O)T is in the calculated null space with]IAw,]]/]]wiI] = u”/&.

We can now illustrate some properties of other potential methods for null
space determination. One scheme would be to accept a column of A as
linearly dependent if the elements on a diagonal of the triangular portion of
some QR factorization of A are smaller than some specified tolerance TOL.

For this example such a scheme would select a null space of dimension 0 or 3,
both incorrect. An alternative to this idea has been suggested by Heath [15]:
if R 1 in A = QR, has a small diagonal entry, one drops the cohimn of A
corresponding to the first small entry. The result is retriangularized to form
R,, which is examined for small diagonal entries, repeating until some R, has
no small entries. If this algorithm is performed on our A with a tolerance
TOL=U2, no dependences are detected. If TOL is increased the calculated
nullity will be 1 only for TOL in the narrow interval a < TOL < fia and then
the null vector calculated by assuming the small diagonal entry is zero is
w = (1, - l,O,O)“‘, satisfies]]Aw]]/]]w]] = u/v’% B u2, and is not an u2 null
vector. A third potential scheme would be to use our Algorithm 2 except that
if an entering column provokes ek < TOL, then consider the last entered
column the culprit and drop it rather than some prior column. Applying this
scheme to our example, we obtain e,= 1, e,=u/&, es= u2/fi< u2,
e, = u/a and e5 = u2/(2&) < a2, and we incorrectly select an u2 null
space with 2 (almost linearly dependent) basis vectors. Finally we mention
that the QR algorithm with column interchanges (SQRDC [5] or HFIX [17])
produces an R with diagonal entries z 2, 1, &/2, and u2/fi, which do
correctly reflect the nullity of A, and the column interchanges of [18] can be
successfully used.

We should mention that Heath [14] notes a potential difficulty of his
proposed scheme. He mentions, for example, the (in)famous example of
Wilkinson [25], which has no small diagonal entries and is ill conditioned for
moderate or larger N. The above example, or more simply

illustrates that the size of diagonal entries of a matrix need not correspond to

RANK AND NULL SPACE CALCULATIONS 63

the degree of ill-conditioning even for N very small. This, we presume, is the
reason that Golub and Wilkinson [12] have reported “all algorithms based on
search for negligible rii (diagonal entries of R) failed disastrously” in rank
determinations when using QR decompositions without interchanges for
certain Jordan canonical form calculations. Our algorithms are successful for
the Wilkinson and other examples mentioned.

As additional tests of the accuracy of our Algorithm 1 we have run
numerous numerical experiments on dense random matrices of size up to
100 x 100 formed by multiplying diagonal matrices by many (20 to 50)
Householder transformations. We display in Figure 1 a typical graph which
pictures the complete singular value spectrum as calculated by SSVDC in
Linpack (open rectangles) and the set of approximate singular values (asterisks)
calculated by our Algorithm 1. To save space we have presented only one
graph with a particular spectrum shape. However we have run hundreds of
matrices from the class described above, with a large variety of spectrum
shapes, and our Algorithm 1 was always similar in precision to the enclosed
graph. Across the entire spectrum, for hundreds of matrices and thousands of
singular values,

1 _ < (app rox. singular value k)

6 (singular value k from SSVDC)
< 9.

For smaller singular values, which are of more interest in many applications,
the above ratio was typically bounded by i and 2, not 4 and 9. Our
experiments were run on a CDC Cyber computer.

To discuss some of the related literature we might note that our algorithms
can be used to construct basic solutions for rank deficient least squares
problems with nullity p, that is, to construct a solution with p zero compo-
nents. This problem is discussed in [23] (without any error analysis) and in
[111. In [111 the results are based on the SVD and the QR algorithm with
interchanges and therefore apparently are not best suited to sparse problems
or sequential testing of rank, as discussed earlier. We should also note that
there are similarities between our algorithms and the algorithms of [18]-for
example, the use of ideas related to the condition estimator of Cline, Moler,
Stewart, and Wilkinson [4]. However, the approaches differ in that in [18]
column interchanges are explicitly required, whereas in our algorithms they
are not.

An important potential use of our results is to aid in solving rank deficient
sparse least squares problems. Our implementation of Algorithm 2 described
in Section 4 could be used in least squares problems in a manner similar to the
use of the rank determination procedure of Heath mentioned above (see [151).
Work on numerical testing of such an implementation of our algorithm is

64

-10

LESLIE V. FOSTER

-9.00‘

-8;OO

-7.00 -6.06 -4.00 -3.00 -2.00 -1.00 0.00

Y

-..

. ” -5;cm ” . I .
__

‘0 *
at

T

FIG. 1. True (open rectangles) and approximate (asterisks) singular values for a

100 X 100 matrix.

RANK AND NULL SPACE CALCULATIONS 65

being planned. This implementation will be based on the least squares
algorithm of George and Heath [lo], which apparently is a very good sparse
least squares algorithm. However, it is important to note that the ideas
discussed in Section 3 are largely implementation independent. It is therefore
likely that Algorithm 1 of Section 3 can be successfully used in conjunction
with, for example, the method of Peters and Wilkinson [22] (see Bjork and
Duff [l]), the normal equations approach or with as yet undeveloped meth-
ods. Also there is potential for use with iterative methods such as the method
in [21]. What is required is the ability to identify the largest components of
approximate null vectors and to drop columns from the problem-nothing
more.

It is interesting to note that our Algorithm 1 and Algorithm 2, respec-
tively, appear to involve concepts similar to the methods of backwards [6] and
stepwise [6, 201 regression in statistics. However the criteria for selecting
columns to drop are different in our and the statistical approaches.

Finally, we repeat that our algorithms require a usually moderate sized
gap in the singular values in order to correctly determine the rank of A.
However, we do not feel that this is a serious limitation, because if there is no
such gap then the physical interpretation of numerical rank is unclear.

To summarize our results, we have presented two stable algorithms that
do not require column interchanges for determining the rank and nullity of a
matrix. Potential applications to sparse matrix rank determination and rank
determination when sequentially adding columns have been discussed.

APPENDIX. PROOF OF THEOREM 4.2

First we should note that our notation and subscripts will probably be
clearer if the reader considers them in relation to a simple example-perhaps
Example 5.1. For notational convenience let us examine this theorem for
k=k* sothatwecanlet k(k=1,2,..., k*) be a variable as in the algorithm
description. Also we will assume that M, the number of rows of A, is greater
than or equal to N, the number of columns of A. This may be done without
loss of generality for our proof, simply by adding zero rows to A when
M < N.

We begin by assuming that the algorithm is run in inexact arithmetic. To
distinguish the inexact arithmetic values from certain exact arithmetic values
to be defined later, we will place dots over inexact arithmetic values that
would be floating point numbers in a computer implementation. In this
notation we wish to prove that if sk’ is the smallest singular value of A,,

66 LESLIE V. FOSTER

(where A,. is the submatrix of A defined below), then

and that if g,, < E then

(A.11

(A.2)

where A, = orl[IAI/. Equation (A.2) is only the right half of the condition
(3.9). We will not prove the left half of (3.9) here, since it is not needed in
order to reach any of the conclusions of Section 3 or 4. For simplicity of
notation we will drop the superscript k* when we refer to sk* so that s = ,sk*
below.

Now for the algorithm run in inexact arithmetic let nk and ok, k =

1,2,..., k*, be the values of n and p at the kth entry in step 2, and
furthermore, for convenience, let n* = nk* and p* 3 pk*. Thus when k = k*,

step 3 will have been entered p* different times. Let k,, p = 0,. . , p* - 1, be
the values of k at the (p + 1)st entry in step 3, and also for convenience
define k,, = k* + 1. Quantities of importance below will be jP* =;n* - p*; for
p = 0,. . . i p* - 1, j, = nk - p - 1 = the number of columns in R

p=o

k,,; and for

>...> p* - 1, i, = thePnumber of the column of ii, dropped in step 3 of
the algorithm. Note that i, < j, + 1, j,, - 1 < j,,, and that nk = k, - p,

p=o,..., p* - 1. For Example 5.1 we would have for k* = 5: n* =“4; p* = 1;

nl= 1, n2= 2, n,=3, n,=3, n,= 4; pl=pz=prx=O, p4=p5= 1; k,,=3,
k, = 6; j, = 2, j, = 3; i,, = 1.

Now consider the matrix A, and note that by an arbitrarily small
perturbation of A we can form a matrix A’ such that A’ has no exact column
dependences. To be specific assume that lIA’- AlI < nIlAll. In the following
for 1 < k < k * we will let A; and A,, respectively, be formed by removing
the same columns of A’ and A as were removed in forming A, from A.
Otherwise, unless explicitly indicated otherwise, all our notation without dots
for real number quantities will refer to exact arithmetic application of our
algorithm to A’ in the following manner: enter step 3 only when k = k,,

p=o >...1 p* - 1, and then in step 3 drop column i, of Rkp, where k, and i,
are the integer quantities determined by the inexact arithmetic algorithm.
Therefore all the integer parameters (nk, pk, n*, p*, k,, k*, jp, and iP)
defined above will be unchanged. Furthermore, for notational simplicity, for
p = 0,. . . , p* - 1 let T, = 8,

let T,,, = R,,.

p = (the principal j, x j, submatrix of R k), and i’

RANK AND NULL SPACE CALCULATIONS 67

Now define c, = cc, and for k = 1,2,. . . , k* define ck = Itl/lltikll, where t
and w, are as defined in step 2 of the algorithm. Note that w, necessarily
exists and that ck # 0 by our assumption on the column independence of A’.
Furthermore, by the logic of our algorithm it follows easily that ek =

min h E s, cl, and Ek = min,, Es c,,, where Sk=(h:l<h,<k, h/k,, p=

0 ,..., ~~-1, hinteger}andS*L={h:O<h<k-1, h+k,,p=O ,..., ~~-1,

h integer}. Note that S, and S, contain nk members, since a member of S, is
added every time step 4 is entered.

It is of use to relate the above ck’s to the columns of T,- I, p = 0, 1, . . . , p*.

However, by our assumption on A’, T,- 1 will exist, and furthermore it follows
easily from the constructions of step 2 that for k E Sk*, Gk/t is the first

nk - pk entries in column nk - pk of Tp, I. That is, if for 1~ k < k * we have
d, = l/c, = llwk/tll, then for k E Sk., d, is the norm of the (nk - pk)th
column of Tp, ‘, and for 1 < k < k*, B, = l/max/, + d,, and ek =
I/max,, Es, d,,. For later convenience we also define &k* + 1 = ek*.

To show that 6, and ek are related to the singular values of A,, we define
PO’, for p = 0,. . . , p* - 1, to be the j, X j, column permutation matrix that
moves the i&h column of a matrix to the last column and moves columns
i, + 1 to j, one column to the left. (If i, >, j, let P;“ = Z.) Also, for p =

0,. . . , p* - 1 let UPT be a j, X j, unitary matrix such that UpTT,PpT is triangu-
lar. Then by the constructions of the algorithm it follows that the principal
(j,, - 1) X (j, - 1) submatrices of UpTTp P,’ and T,, 1 are the same, and further-
more, since T, + 1 is triangular, for p = 0,. . . , p* - 1,

the principal (j, - 1) X (j, - 1) submatrices

of P,T,- ‘U, and T,;: are the same.
(A.31

We now, for p E {l,.. ., p* }, define tip, to be a j, X j, diagonal matrix

with l’s on the diagonal from positions j, _ 1 to j, (“I, is a zero matrix if

j,<j,~,),andW,tobeaj,xj,_, matrix with l’s on its diagonal. Next, for
some pE {l,..., p* } let xP be a vector with j, components. Since we are
using subscripts currently to indicate different vectors and matrices, we will
use the notation (x~)~ to indicate component h of xP and (A),, to indicate
column h of matrix A. Then by (A.3) and the triangularity of To,

68 LESLIE V. FOSTER

If we define xP _ 1 = Z~;~lll(Up_ l),,(xp),, and Ii,, = fi$x,, then it follows that
1

Furthermore, since UP- 1 is unitary, it follows that 11x,, r/l2 = (x):
+ . . . + (x$, ~, and therefore

llx,l12 = llxp ,I? + ll~,l12. (A.5)

Now for pi {O,...,A p*} let xP be any jP-vector with llxJ1 = 1. Also, for
y=o >...> p - 1, define P,, = W,P, IWp_ ,Ppm2. . . W,_ ,Pu, and define P,, = I.

Then we may apply (A.4) inductively to conclude that

where by (A.5j

llx,,l12+ll~1112+ ... + /lf,l12 = llxJ2 = 1. (A.7)

Furthermore, for y = 1,. . . , p, since T, ‘lVyk y will only involve columns j, ,

to j, of T,,, and since for any vector x with j, components Il?Yxll = I/XII, due
to the definitions of k, and j, and due to (A.6), we have

G$ \iZkll+ i: Jjy-jy~I+U~yll
P i y=l i

(A.8)

However, since j, + Cy= i(j, - j, , + 1) = nP, due to (A.7) &follows easily
from (A.8) that for p = 0,. .., p* - 1 we have IjTPP’xPll < ,/n,/2kp and for

p = p* we have IIT,- ‘xPll < Jn*/d,.+, <G/e,,. Since n* < N and for

RANK AND NULL SPACE CALCULATIONS 69

p=o,..., p* - 1 we have ekW < gk D we may conclude that for p = 0,. . . , p*,

(A.9)

Finally if we let s’ be the smallest singular value of A’,,, then since A;* and
R,, are unitarily equivalent and since T,, is just the first n* - p* rows of the
matrix R,, with n* - p* columns, we may conclude from (A.9) by standard
arguments that eke <@s’. In addition, since]]A’- A]] < n]]A]], it follows by

standard results that

eke < fis + BsIIAII~ (A.10)

where s is the smallest singular value of A,,.
Now to show (A.l) let us assume that the minimum cII, h E S,,, occurs at

h = k, so that ek+ = ck = l/d,. $so recall the convention used in the proof
that in step 2 of the algorithm R,, fik, k, i, i, and kk are inexact arithmetic
values when the algorithm is applied to A, and Rk, R k, r, t, x, and wk are
corresponding v$ues resulting from using exact arithmetic and A’. Since the
construction of R, involves the application of a sequence of Householder and
Given transformations to certain columns of A, since (1 A’ - A](=S n]I A I], and
due to properties of triangular matrices, it follows from standard results [24]
that for the calculated vector P a matrix E, exists with (Rk + E,)i = r in
exact arithmetic, where]]Ei]] Q CX~~]]A]J. Here (or and below each of the (Y’S
used represent parameters that can be chosen to depend only on the size of A *
and are not large. Also It-t] < (Y,TJ]]A]] follows easily. Since Rkx = r, it
follows that x -i = 8, ‘Eri. Furthermore, due to this equation, since R, is a
submatrix of TPk, since (Iv%, -kk]] =]]x-xl], since l/H]] Q]]&k]], since by as-
sumption l/e,, = d, = Ilwkll/ltl, and by (A.9), it then follows that

II *
F

- ikll G liTPi lIl”ldiAI\ IIGkIi G JN (l/ek*)alviiAIi iIckII

= N(ll\irkll/ltI)al1711All]]6k]]. These equations imply that]t]/]]kk]] <

Itl/ilckll+ w’%lI4 Th en since It] < It]+ +rl]]A]] and since]]&k]] > 1, it
fol?s that t/]]&k]] < t/]];ir,]]+ ~~sql]A]] = ek* + ~~srl]]A](, where CY~ = (us +
c~i N . Finally, due to this inequality, by (A. lo), and since by construction
&,, < t/]]&lk]], we conclude that (A.l) is true with a: = m + (Ye.

Now to prove (A.2) let us assume that e k* < E. Then since by construction
2,. > E, it follows that in step 2 of the algorithm 8,, =]t]/]]~k]] for k = k*.
ForthiskiteasilyfollowsthatIt-tl~as?7llAllandr-aki=Rk(x-i)=E2H
with]],Es]] < a,rl]]A]], as in our arguments to prove (A.l). But then llR,$kll =

I/[(‘.- R,i)? till = II[(Ezi)T, till> so that IIA’,,&kll = llR&kll d llEzll Ilill+ ItI d
llEzll ~~%~~+ (t - iI+ ItI. However, since]]kk]] >]]x]], since]]&k]] >, 1, and by our

70 LESLIE V. FOSTER

bound on It - tl, then IIA’#k(l/ll&kll < lIEelI + a,qllAll+ Itl/llCJ < 6,*
+(a4 + ~~~)ql(All. Finally, since IIA - A’II < qllAl[, we conclude easily that
(A.2) is true with OL = CX~ + cxs + 1. The difference in the values of a used in
proving (A.l) and (A.2) can be resolved by choosing a new cx which is the
maximum of the two.

REFERENCES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

A. Bjork and I. S. Duff, A direct method for the solution of sparse linear least
squares problems, Linear Algebra Appl. 34:43-67 (1980).
A. Bjork, Methods for sparse linear least squares problems, in Sparse Mutrix

Computations (J. Bunch and D. Rose, Eds.), Academic, 1976, pp. 1777199.
J. Bunch and C. Nielsen, Updating the singular value decomposition, Numer

Math. 31:111-129 (1978).
A. Cline, C. Moler, G. Stewart, and J. Wilkinson, An estimate for the condition
number of a matrix, SIAM J. Numer. Anal. 163368-375 (1979).
J. Dongarra, C. Moler, J. Bunch, and G. Stewart, LINPACK User's Guide, SIAM,
Philadelphia, 1979.

N. Draper and H. Smith, Applied Regression Analysis, Wiley, 1966.
I. Duff and J. Reid, A comparison of some methods for the solution of sparse
overdetermined systems of linear equations, Inst. Math. Appl. 17:2677280
(1976).
G. Forney, Jr., Minimal basis of rational vector spaces, with applications to

multivariable systems, SIAM J. Control 13:493-520 (1975).
L. Foster, A practical solution to the minimal design problem, IEEE Truns.

Automat. Control AC-24:449-454 (1979).
A. George and M. Heath, Solution of sparse linear least squares problems using

Givens rotations, Linear Algebra A&. 34:69-83 (1980).
G. Golub, V. Klema, and G. Stewart, Rank degeneracy and least squares
problems, Stanford Univ. Technical Report STAN-CS-76559, 1976.
G. Golub and J. Wilkinson, I&conditioned eigensystems and the computation of
the Jordan canonical form, SIAM J. Numer. Anal 13:578-619 (1976).
G. Golub, Some modified matrix eigenvalue problems, SIAM Reo. 15:3188334
(1973).
R. Grimes and J. Lewis, Condition number estimators for sparse matrices, SIAM

J. Sci. Statist. Comput. 2:384-388 (1981).
M. Heath, Some extensions of an algorithm for sparse linear least squares
problems, SIAM J. Sci. Statist. Comput. 3:223-237 (1982).
S. Kung and T. Kailath, Fast projection methods for minimal design problems in

linear systems theory, Automuticu 66:399-403 (1980).
C. Lawson and R. Hanson, Soloing Least Squares Problems, Prentice-Hall, 1974.
T. Manteuffel, An interval analysis approach to rank determination in linear least

squares problems, SIAM J. Sci. Statist. Comput. 2:335-348 (1981).
D. O’leary, Estimating matrix condition numbers, SZAM J. Sci. Statist. Comput.

1:205-209 (1980).

RANK AND NULL SPACE CALCULATIONS

20 M. Osborne, On the computation of stepwise regressions, Austral. Comput. J.
8:61-68 (1976).

21 C. Paige and M. Saunders, ISQR: An algorithm for sparse linear equations and

sparse least squares, ACM Truns. Math. Software 8:43-71 (1982).

22 G. Peters and J. Wilkinson, The least squares problem and psuedo-inverses,

Comput. J. 13309-316 (1970).

23 J. Rosen, Minimum and basic solutions to singular linear systems, SlAM I. A&.

Math. 12: 156 162 (1964).

24 G. Stewart, Introduction to Matrix Computations, Academic, 1974.

25 J. Wilkinson, The Algebruic Eigenouhe Problem, Oxford U.P., 1965.

26 L. Foster, A comparison of solutions to the minimal design problem, IEEE Trans.
Automat. Control, Feb. 1984.

Reteioeti 25 March 1983; revised 25 Octolm 1984

