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ABSTRACT 

An analytical expression for the LLT decomposition for the Gaussian Toeplitz 
matrix with elements Tij = [l/(27r>“2cr]exp[ - (i - jj2/2a2] is derived. An exact 
expression for the determinant and bounds on the eigenvalues follows. An analytical 
expression for the inverse T-’ is also derived. 

INTRODUCTION 

Toeplitz matrices arise in the study of a number of problems in engineer- 
ing and mathematics [l]. The Gaussian Toeplitz matrix is of interest espe- 
cially in the context of signal and image processing, the study of heat kernels 
in relation to the diffusion equation, etc. We consider Gaussian convolution 
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defined as follows. Given an input function f(x) defined for x E R”, the 
output function h(x) is obtained from 

4x1 =/,“e - y,t)f(y) dY> (1.1) 

where 

1 
k(x,t) = 

Id2 
(4at) 

n,2exp -- 
i i 4t (1.2) 

In the context of the heat equation, the function h(r) is the solution obtained 
by propagating f(x) over a time period t. It is of great interest to ask the 
following: given the solution h(x) at a later time t, is there a kernel k-l, 
inverse to k, such that the solution at the earlier time f(x) can be obtained? 
It is known [2] that unless suitable growth restrictions are placed on f(x) for 
large x, an inverse kernel in general does not exist. 

In the context of image processing f(r) can be taken to be the original 
object and h(r) the image. The kernel k(s - y; t) describes the distortion or 
blur [3] produced by the instrument due to its finite resolution. In keeping 
with the experimental setup where the object function is discretized into 
pixels, we can discretize Equation (1.1) as follows (to keep the notation 
simple, we shall consider only one space dimension x), 

h(i)= 5 Tijf(j), 
j=l 

where 

1 
Tij = 

(i-j)” (2*)1/2uexp 
[ 1 -~ ga” 

We shall consider the solution of Equation (1.31, namely, finding the 
inverse of the matrix T for a finite but arbitrary integer N. We shall derive 
an analytical formula for the inverse of T. The question of the limiting 
behavior when N tends to infinity and the relation of the discrete problem 
(1.3) in the limit N +w to the continuum problem (1.1) are also of interest. 
As discussed in [2, 31, the continuum problem is ill conditioned. In general 
we do not expect the discrete solution f(i) to converge to a continuum 

(1.3) 

(1.4) 
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solution for arbitrary h(i). We shall see in Section 3 that the condition 
number of the matrix T is large. 

In the present paper we shall give the following results for Tij as given 
by Equation (1.4): 

(a) It is proved that the matrix T is positive definite for all values of u 
and for arbitrary dimension N. 

(b) It is shown that T admits a Cholesky decomposition 

T = LLT. 

An analytic expression for L is written down. 
(c) An analytic expression for det T is obtained, from which bounds on 

eigenvalues are derived. 
(d) An explicit analytical expression for T-’ is derived. 

2. THE CHOLESKY DECOMPOSITION 

Let us define 

-1 

a=exp 2a2 . i-i 

Then clearly 

(2.1) 

(2.2) 

Ignoring the trivial overall normalization factor, we shall consider the k X k 
matrix 

T(k) = 

f 
1 a a4 a9 . . . a(k-l)* 

a 1 a a4 . . . aW2)2 

/ a(k- 1)’ a(k-2)2 a(k-3)2 aU-4)2 . . . 1 

\ 

. (2.3) 

/ 
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LEMMA. 

T(k) = L(k)L(kf, (2.4) 

where the (r + l)st rou‘ of the lower triangular matrix L(k) is given by 

L ,+,.1(k) = a? 

L .+l,,+l(k) = 

a(r-sql_ a2r)(l_ a2('-l)) . . . (1- a2(r--s+l)) 

(1_a2)1/2(1_a4)1’2...(1_a”‘)1’2 ’ 

r&s>l. (2.5) 

It is a simple matter to check that L(k) as given by Equation (2.5) 
satisfies Equation (2.4) for s = 0,1,2,. . and for arbitrary r. The proof for the 
case when s is also arbitrary is given in the Appendix. 

3. DETERMINANTS AND BOUNDS ON EIGENVALUES 

We have 

detT(k)=[detL(k)12 

2(I_a2)k-‘(I_a4)k-2...(I_a2(k-2))2(I_a2(k-r)) 

> 0. (3.1) 

Also, for every vector y the scalar product of y with T(k)y is 

(cf.V)y) = (W(WTW)y) 

> 0. (3.2) 

Since det T(k) is nonzero, T(k) is positive definite. 
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Consider now the eigenvalues A\” of T(k), and arrange them in se- 

quence of decreasing values 

A(?‘, A’k’ 2 ,..., A@’ k . 

From the interlacing property of eigenvalues 

A(;+1)&A(;)>Ah(2k+1)> . . . >A’,k+‘)>/A(kk)>Af;:) (3.3) 

and 

detT(k +l) &?‘A(k+‘) J-1 3 

detT( k) = $k_IA(jk’ 

we have an upper bound on the least eigenvalue: 

A’kk=l”~(1-u2)(1-a4)...(1-azk). (34 

Now for T(k = 2) the eigenvalues are 1 - a and 1 + a, so trivially 

A’;+“>l+ a. (3.5) 

The condition number of a matrix is defined as the ratio of the largest to 
the smallest eigenvalues. We then have the bound 

icondition number Of T(k)l 2 cl_ u2>(l_ &;. cl_ u2(k-1)) ’ (3.6) 

We note in passing that in most applications in signal processing a is very 
close to unity, so the condition number is very large. 

A lower bound on the minimum eigenvalue can be found as follows. We 
have 

,$;+l) 
_ . . . Ack+l)-- l-a’)(l-u4)***(l-azk). (3.7) 

A(;’ ’ -( 
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From the interlacing property A(! +I) Q A(k) ) I 1-l’ Further, 

k+l 

Trace T( k + 1) = c A(ik+‘) 
j=l 

=k+l, (3.8) 

so we have A(:+‘) < (k + 1). Combining the above observations, we have 

A(k+l) > 
k+l ’ 

(1-u’)...(1-8)A~~) 

k+l k 7 

which leads on iteration to 

A’,k=;’ > 
(I_ a2)k(l_ a4)k-1.. . (I- .zk) 

(k +l)! 

A(kk++;) > 
detT(k +l) 

’ (k+l)! 

(3.9) 

(3.10) 

(3.11) 

FinalIy we get an upper bound on the condition number: 

[condition number of T ( k ) ] < 
k-k! 

(l_a2)k-1...(l_aZ(k-l)) 
. (3.12) 

4. THE INVERSE [T(k)]-’ 

We shall now show 

[T(k)] -I = ATE-%, (4.1) 
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where the lower triangular matrix A is given by 

A= 

’ 1 0 0 0 0 
-a 1 0 0 0 

a2 
-a(l-a4) 

1-a’ 1 0 0 

- a3 
a2(1- a”) 

l- a2 

-a(l-a6)(1-a4) 1 o 

(l- a”)(l-a”) 
. . 

. 
. . . 

and E is the diagonal matrix 

‘1 0 
1-a’ 

E= 
(l-a’)(l-a”) 

,O 

The general elements of A and E can be written as 

A r+l,l = ( -ll)ra’ 

A r+1,s+1= 0, s > r, 

and 

E,, = 1, 

. . . 

. . . 

. . . 

(4.2) 
. . . 

J 

(4.3) 

(4.4) 

E,,=(1-a2)(1-a4)~~~(1-a2(‘-‘)), i>l. (4.5) 

To prove Equation (4.1) let us return to the Cholesky decomposition 
(2.4), (2.5) and write it in the form 

T = FEFT, (4.6) 
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where E is the same matrix as in Equation (4.5) above, and F is given by 

F r+1,1= 
f-2 

a , (4.7) 

F r+l,s+l = a 
(r_s)Z (1 - a’?) f * . (1 - az(r-s+l)) 

(1-a2)...(1-a”“) ’ r as. (4.8) 

It is then sufficient to show that 

AF=l (4.9) 

to prove that T-’ is as given by Equation (4.1). Since both A and F are left 
triangular matrices, it follows that 

(AF)i+l,i+l = Ai+l,i+lFi+l,i+l 

= 1. 

IA us write 

i-k 

(hF)i+l,k+l= C A. F t+l,l+k+l I+k+l,k+l’ 

l=O 
(4.10) 

Consider the last two terms in the summation, corresponding to 1 = 0 and 
1= 1. We have 

Ai+l,k+l + Ai+l,k+2Fk+2,k+l 

= ( -l)i-kai-kRi,k +( -l)i-k-lai-k-lfii,k+laRk+l,k, (4.11) 

where we have introduced the notation 

Ri,k = 

(I_ a2i)(1_ a2(i-l)). . . (I- az(i-k+l)) 

(l-a2)(1-a4)***(1-azk) ’ 
(4.12) 
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The Ri,k satisfy the recursion relations 

l- ,z(i+l) 

Ri+l,k = 1_ a2(-k+l)Ri.kp 

l- &i-k) 

Ri,k+l = I_ a2(k+l) Ri,k* 

(4.13) 

(4.14) 

It is then easy to see that Equation (4.11) can be written as 

=(-qi- kai-*R,,k[l- ‘;fry’] 

1 _ a2(i-k-l) 

=(_l)i-k+1a(i-k)+2Ai,k 1_a2 . (4.15) 

Repeating the procedure with the I = 2 term in Equation (4.10), we get 

‘i+l,k+l + h i+l,k+2Fk+2,k+l + ‘i+l,k+SFk+s,i+l 

= ( _ 1)(i-k)+2aCi-k)+2+4Ri,k 

I_ a2(i-k-1) I_ a2(i-k-2) 

1_ a” 

l--U4 
. (4.16) 

Now a general term in the right hand side of Equation (4.10) is given by 

A. F t+l,j+k+l j+k+l,k+l 
= ( - i)i-j-kai-j-kRi,j+kajZRj+k,k. (4.17) 

Using the equations (4.12)-(4.14) we can write 

Ri,j+k Rj+k,k = Rik 

(l-a 2(i-k-i+l)) , . . (I__ a2(i-k-l))(l_ a2(i-k)) 

(i-~~)(i-~~)...(i-~~j) . 

(4.18) 

Further, 

( _ l)i-j-kai-j-kaj2= (_ l)i-k+jai-ka2+4+ ..’ +Z(j-1). (4.19) 
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We can therefore write for the right hand side of Equation (4.101, summing 
upto l=j, 

~ A. ,+l,l+k+l~l+k+l,k+l= (_l)i-k+j,(i-k)+2+4+...+2j 

I=0 

Setting j = i - k - 1, we find 

i-k-l 

CA. F ,+l,l+k+l I+k+l,k+l = -’ 
(i-k)+2+4+ ... +2(i-k-1)~ 

i,k 

l=O 

=-_a (i-k)‘Ri k 

=- 
Fi+l.k+l. 

5. CONCLUSION 

The exact analytical expression that we have derived obviously has many 
applications. We have used it to study image processing in the case where 
the convolution kernel is Gaussian. For situations approximated by a Gauss- 
ian, we can use T -’ for preconditioning, which can be of considerable 
computational value. Finally, our solution will be useful for numerically 
studying problems of the heat equation type. 

APPENDIX 

Proof of the Cholesky decomposition (2.4). We need to prove (taking 

r 2 s) 

S+l 

CL ,.+,,j(k)L,+l,j(k) = &-‘)‘. 
j=l 

(A.1) 



THE 

We have for s = 0 and 1 respectively 

L r+l,l(~)Ll,l(~) = ar2> 

L .+l,l(k)Lz,l(k)+Lr+l,2(k)Lz,Z(k)=a’2.a+a(’-’)2(1-.~r) 

= & 1Y 

We shall work out the case s = 2 in a manner whose generalization to 
arbitrary s becomes evident. Let 

2 L,+,,,(k)L,,j(k)=A’P’+A’,O’+A’,O’ (W 
j=l 

with 

l-a4 
A(,o)= &l)*(l- a2r)a- 

1-U2’ 

(A.31 

(A.4) 

and 

A(30) = a(r-2)2( 1 - a2r)( 1- a”‘- “). (A.51 

The sum in Equation (A.2) of course adds up to ecrP2)*. It is to be noted that 
the term in r~(~-‘)* occurs only in A(3); it has coefficient unity. Further, all 
other terms in A($ as well as in A$‘) and A’? have higher powers of a, and 
they mutually cancel on addition. Specifically open up the last bracket in 
(A.51 and write 

A(;) = &-2f( 1 _ a2r) _ &-2)2( 1_ a27a2cr- l) (‘4.6) 
= A(31) + $0’ 

3 ’ (A.71 

Combining A$‘) with A(‘) s given by Equation (A.41, we have 

A@‘+ &‘o’= a(‘-‘)*+3 _ /+4 
2 3 (A.8) 

= A’,” + A@’ 
2 . (A.9 
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Combining Ac,O) with the term A’:’ given by Equation (A.3), we have 

A(;’ + AC,“) = 0 (A.lO) 

or 

A’;’ + A(;’ + A(30) = A’;’ + A(;). (A.ll) 

Now 

A’,” = .(r-g)‘_ &-2)‘+2r 

= A(;) + AC,‘, (A.12) 

and 

A’,“+$‘=0 

so that 

A’,” + A(;) = A(;) = &-@ 

(A.13) 

the desired result. 
For arbitrary s we have 

s+l 

C Lr+l,j(k)Ls+l,j(k) 

j=l 

= A(;’ + A’,o’ + . . . + A’!’ 
5+1 (A.14) 

= a’2as2+ a(r-1)2a(s-1)* (l- a1”;2- a2s) + . . . 

+ &s+lQ l_ $9 . . . (I- a2(r-s+2)) 
(1-a2S)~~~(1-a4) 

(1_a2)...(1_axd) 

+ &s)*( 1_ (p) . . . (1 - (+x-s+ 1’). (A.15) 

We anticipate that these terms add up to a(r-s)2, which occurs only in the 
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last term A$‘;,. We write 

ATi, = A’,‘$, + x(,0!,, 

A’,‘; 1 = &-#( 1_ a2r) . . . (I- a2(r-s+29, 

Ac,o!,= -,(r-s+1,z+1(1_a2’) ...(1_a2(r-s+2)), 

Combining with A(‘) s , we have 

A’,“! 1 + A(;’ = A’,” + A$“, 

where 

145 

A(f) = &-s+lf+3( 1 _ $r) . . . (1 - &-+3)) 
1 _ (p(s- 1) 

s 
l-U2 

A’O’ = _ a+-~+2~2+4(1 _ a2r) . . . (I_ a2(r-s+3)) 

1 _ u2(s- 1) 

s 
l-a2 

After j steps we obtain 

A”’ 
s+l-j= 

u(r-s+j)2+j2+2j( 1_ u2r) . . . (I_ u2(r-s+j+2)) 

l- uxs-l) 1_ u2(s-_i) 

X 
l_$ .‘. l-aw (A.16) 

and 

A’,o!l_j = _ ,(r--S+j+1)*+(j+1)*(1_ u2r) . . . (I_ u%r-s+j+2) 1 

1 - u2(s- 1) l- uz(s-j) 

X 
1_a2 *** l-a2i (A.17) 

so that finaily 

A(;’ + AC,“) = 0 

(A.18) 
A’;’ + A(;) + . . . +A(“)+A(,o+A~)+ . . . +&)+A(,‘;,. s s 
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The sum on the right hand side of Equation (A.18) can again be reduced 
beginning with the last term. As in the previous step, at the intermediate 
stage we have 

A@’ 
s+l-j= 

a(r-s+j)Z+jZ+4j( I_ a9-r) . . . (l- &XT---s+j+%) 

l- (p-2) I_ a2(S-l-j) 

X 
l-&2 .” I- a2j ’ (A.19) 

A”’ 
s+1-j = 

_ u(r-s+j+l)2+(j+l)2+2(j+l)(1_ a2r) . . . (I_ .%r-s+j+3)) 

l- @2(S--2) I- a2(S+l-j) 

X 
l-(g ... l-_.2i ’ (A.20) 

Comparing Equation (A.16) and Equation (A.20), we get 

A”‘, = _ A”’ 
1-&-l) 

S J s+l-_j I_ az(j+l) ’ (A.21) 

Therefore 

This procedure can be iterated. At the mth iteration the analog of 
Equation (A.ll) is 

A’,“; 1) = - A\m+; Sj 
I- a2(s--m+l) 

1 _ $(j+ 1) ’ 
(A.22) 

Setting j = s - m, we find 

A’“- 1) + AC,;;’ = 0. 
m (A.23) 

After s iterations, it is easily seen that only the term acrPs)’ from A(‘) is left, 



147 THE GAUSSIAN TOEPLI-IZ MATRIX 

so 

A(;’ + A$” + . . . + A@’ 
s+l 

= A”’ + . . . + A”’ 
2 s+l 

= A(;) + . . . + A’:’ 
s+l 

= . . . 

= &sY n (A.24) 

We would like to thank Professor R. Ravindran and Professor T. Kailath 
for valuable discussions and critical comments on the manuscript. We would 
also like to thank the referee fw his valuable suggestions. 

REFERENCES 

U. Grenander and G. &ego, Toeplitz Forms and Their Applications, Univ. of 

California Press, Berkeley, 1958. 

F. John, Numerical solution of the equation of heat conduction for preceding 

times, Ann. Mat. Pura Appl. (4) 40:129-142 (1955). 

R. A. Hummel, B. Kimia, and S. W. Zucker, Deblurring the Gaussian blur, 

Comput. Vision Graphics and Image Process. 38:66-80 (1987). 

Received 22 ]anuasy 1991; final manuscript accepted 5 June 1991 


