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Abstract 

To monitor the battery system, a well-designed battery management system with a set of current and voltage sensors is 
demanded to properly track the battery properties. It is imperative to design a reliable and robust diagnostic scheme in case of
the employed sensors faults occurred. This paper presents a model-based fault diagnosis scheme to detect and isolate the faults
of the current and voltage sensors applied in the series battery pack based on an adaptive extended kalman filter, and the 
robustness of the proposed diagnostic strategy is ensured. The diagnostic scheme is validated in the Matlab/Simulink, and the 
simulation results show the effectiveness of the proposed strategy in detecting and isolating various fault scenarios using the
real-world driving cycles. 
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1. Introduction 

Lithium-ion batteries are becoming the main energy sources in today’s electric vehicle market due to the 
advantages of high energy and power density, and long lifespan. To monitor the battery system, a well-designed 
battery management system (BMS) is required to track the battery properties, such as the state-of-charge (SOC), 
state-of-health (SOH) estimation, and remaining useful life (RUL) estimation [1]. Among these properties, SOC 
estimation not only plays the role to indicate the remaining useful capacity of the battery pack and to predict the 
possible driving mileage, but also to prevent the battery pack from over-charge and over-discharge [2]. SOH 
estimation as another important function of BMS is applied to predict some battery parameters such as capacity 
and resistance as to inspect the related capacity and power fade of the battery pack respectively [3]. Besides these, 
RUL estimation is used to predict the remaining useful time from present time to the end of useful life [4]. The 
estimation accuracies of these above properties are based on the employed sensors, a fault of which is often 
neglected when design BMS.  

This paper proposes a model-based fault diagnosis scheme to detect and isolate the current and voltage sensors 
fault. In model-based fault diagnosis, the residual generation as an important step can be classified into three kinds 
of approaches, as observer-based, parameter identification or parity equation approach [5]. In the exciting 
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literatures, Marcicki [6] et al. proposed an FDI scheme for lithium-ion battery management system using 
nonlinear parity equation approach, and the limitation is one of the sensors must be considered as healthy. Liu [7] 
et al. proposed a structural analysis based sequential residual generation method, and the basic idea is to generate 
different set of equations based on the system dynamic, so as to obtain different residuals.  

This paper proposes a model-based fault diagnosis scheme for lithium-ion battery pack with three different 
cells connected in series. The proposed FDI uses an adaptive extended kalman filter (AEKF) to detect and isolate 
multiple sensors fault, including the bias fault in current and voltage sensors and gain fault in the voltage sensor. 
The contribution of this work is to present a systematic FDI scheme for the lithium-ion battery system. Besides 
that, the robustness of the proposed diagnostic strategy is ensured in the case of inaccurate initial SOC value.  

The rest of the paper is organized as follows. Section 2 describes the series battery pack modeling, while 
Section 3 presents the proposed fault diagnosis scheme. The diagnosis results and resulting conclusions are given 
in Section 4 and 5, respectively. 

2. Series battery pack modeling 

2.1. Battery pack description   

A lithium-ion battery pack is composed of several battery cells connected in series to provide the required 
voltage and in parallel to satisfy the capacity requirement. The battery pack properties are based on the applied 
electrical topologies, of which there are three different types including cells connected in series, parallel of and 
cells connected in series and series of string of cells connected in parallel. Cells of each battery pack have 
inhomogeneous performances (such as different SOC, capacity and internal resistance) due to the manufacturing 
inconsistence and different working conditions (such as thermal imbalance) [8]. Thus, cell-to-cell balance is 
required to handle this uniformity by using the balance methods with active and passive balance control method 
[9]. The cell SOC will be differed accordingly by using different methods, and passive control method is used due 
to its low complexity as the main focus of this work is sensors fault diagnosis. Three LiFePO4 cells connected in 
series with different capacity are considered as shown in Fig. 1 (a), taking three cells with different capacities of 
4.1 Ah, 4.3 Ah and 4.5 Ah as an example. The capacity, resistance and SOC of each cell connected in series are 
denoted by Ci, Ri, and Si, respectively, i = [1, 2, 3]. 
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Fig.1. (a) cells connected in series; (b) cell electrical model 

2.2. Battery modeling  

The electrochemical models and equivalent circuit models are commonly used for the lithium-ion battery to 
predict the output voltage and SOC. The equivalent circuit model is often applied in the control-oriented battery 
system, as the electrochemical models are difficult to achieve the state estimation due to the computation 
complexity of the PDEs structure. The first-order equivalent circuit with hysteresis model is preferred for 
LiFePO4 battery [10] and will be applied in this work. The model is composed of an open circuit voltage, a 
hysteresis voltage source, an internal resistance and an RC network, as shown in Fig.1 (b).  The dynamic 
equations used to describe the hysteresis voltage and voltage across the RC network, and to predict the SOC and 
output voltage are as follows, 
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where  is the Coulombic efficiency, C is the battery nominal capacity, I is the outflow current with a positive 
value at discharge and negative value at charge, V represents the cell terminal voltage, Voc is the battery open 
circuit voltage (OCV), R is the ohmic resistance, Rp is the equivalent polarization resistance simulating the 
relaxation effect during charge and discharge process, Cp is the equivalent capacitance, Vp is the voltage across the 
Cp, h(t) is the hysteresis voltage, is a positive constant which tunes the rate of decay, and M is the maximum 
magnitude of hysteresis voltage which is positive for charge and negative for discharge. 

2.3. Considered faults 

Hazard analysis for the lithium-ion battery system has been conducted in the previous work to help identify the 
possible faults and severity, and in this paper, sensors faults including the bias in the current and voltage sensors, 
and gain fault in the voltage sensor are considered. These faults are taken as an additive fault as the sensor fault 
model is really difficult to validate in the real industrial application. As BMS required and applied three cells 
connected in series in this work, there will be one current sensor, and three voltage sensors. It is assumed that 
only one sensor fault is occurred at a time, and all the parameters are known.  

3. Proposed fault diagnosis scheme 

Fault diagnosis aims to recognize the faulty behavior of the system components with the sensor measurement 
signals. In this section, we presents the development of model-based fault diagnosis scheme for the series battery 
pack based on an adaptive extended kalman filter. The fault signature development and the summary of the 
applied AEKF are also included in this section. 

3.1. AEKF based diagnosis scheme 
Fig.2 depicts the block diagram of the proposed diagnostic scheme for the battery pack with three cells 

connected in series. The basic idea is that the residuals can be generated through comparing the estimated values 
with the corresponding sensor measurement signals [5].  

Series battery pack

AEKF Residual 
generators Fault decision

Lithium-ion model

Input current I

Fig.2. Proposed fault diagnosis scheme 

The inputs to the residual generators are the sensor measurement signals and the predicted output using AEKF, 
and then the generated residuals will be transmitted to fault decision block in which the fault can be detected if the 
corresponding residual cross the preset alarm threshold, and then can be isolated based on the detection signals. In 
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this work, there are three residuals corresponding to three voltage sensor measurement signals. The final AEKF 
algorithm is summarized in Table 1 [11,12]. The state variables of one cell is x = [Vp(t) h(t) S(t)] T.

Table 1. Summary of the residual sequence based adaptive extended kalman filter 

Nonlinear discrete-time state-space model a:
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For k >= N, compute 

     Residual sequence: ˆ( , )j k k kv y g x u
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1

1ˆ
k

k j j
j k N

v v
N

     Process noise matrix update: ˆk k k kQ G G

     Measurement noise matrix update: ˆ
k k k k kR C P C

     a wk and vk are independent, zero-mean, Gaussian noise process of covariance matrices Qk and Rk, respectively; N is the moving estimation 
window size. 

3.2. Fault signature development 

If the current sensor become faulty while the other sensors are healthy, all the residuals are different from zero. 
On the other hand, if one of the voltage sensor become faulty while the current sensor work properly, then only 
the corresponding residual will be different from zero. If we define “1” as the residual different from zero and “0” 
as residual tends to be zero. The fault signature of residuals are summarized in Table 2. The two faults can be 
isolated uniquely if the signed words formed by the two corresponding columns are different, thus all the four 
sensors faults can be isolated uniquely in this work. 

4. Diagnosis simulation results 

The proposed FDI scheme is implemented in the Matlab/Simulink to validate the effectiveness under different 
fault scenarios. The faulty sensors with different fault modes are specified in Table 3. If the residual exceed the 
pre-set alarm threshold (denoted in red), the fault alarm will be on, and vice versa. The input current profile 
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plotted in Fig. 3 (a) is Urban Dynamometer Driving Schedule (UDDS) driving cycles, and the OCV of the applied 
lithium-ion battery obtained from experiment is plotted in Fig. 3(b). Additionally, it is assumed that all the other 
parameters are known. The initial SOC value is selected to be 20% off from the true value so as to validate the 
robustness, i.e. the fault diagnosis performance cannot be affected in the case of inaccurate SOC initial value.  
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Fig. 3. (a) Input current; (b) open circuit voltage versus state-of-charge 

The generated three residuals are plotted in Fig. 4 (a), (b) and (c). It is clear that two faults can be detected in 
each residual, but the fault can be isolated just from one residual. Based on the fault signature matrix in Table 2, 
the fault signatures are obtained as plotted in Fig. 4 (d). Also as shown in Table 3, it is concluded that from 600-
650s, the current sensor fault is detected; from 1300 to 1350s, the voltage sensor fV1 is detected; from 2000 to 
2050s, the voltage sensor fV2 is detected; from 2500 to 2550s, the voltage sensor fV3 is detected. The conclusions 
matches exactly with the experimental setup, and the validation results shows the effectiveness of the proposed 
diagnostic scheme. In addition, the fault diagnosis performance is not influenced as see from the residuals.  
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Fig. 4. (a) Residual r1; (b) Residual r2; (c) Residual r3; (d) fault signatures 

Table 2. Fault signature matrix 

 Faulty I sensor Faulty V1 sensor Faulty V2 sensor Faulty V3 sensor 

r1 1 1 0 0 
r2 1 0 1 0 
r3 1 0 0 1 

(a) (b) 

fI fV1 fV2 fV3 
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Table 3. Different sensors fault scenarios 

Fault Time Type Specification

fI 600-650 s Bias +1 (A) 

fV1 1300-1350 s Bias +0.01(V) 

fV2 2000-2050 s Bias -0.01(V) 

fV3 2500-2550 s Gain fault -1% 

5. Conclusions and future work 

This paper presents a systematic method to detect and isolate the current and voltage sensors fault applied in 
the series lithium-ion battery pack based on an adaptive extended kalman filter. The proposed FDI scheme is 
capable of detecting and isolating the sensor fault with very small magnitude. The simulation results confirmed 
the effectiveness of the effectiveness and robustness of the proposed FDI strategy. In the future, the experimental 
evaluation will be conducted and a more robust FDI scheme will be developed under various disturbances.
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