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Abstract—We consider the class of polynomial differential equations & = Pn(z,y) + Pn+1(z,y)
+Puio(z, ), ¥ = Qnlz, V) +Qn+1(z, ¥)+Qnt2(x, y), for n > 1 and where P; and Q; are homogeneous
polynomials of degree i. These systems have a linearly zero singular point at the origin if n > 2.
Inside this class, we identify a new subclass of Darboux integrable systems, and some of them having
a degenerate center, i.e., a center with linear part identically zero. Moreover, under additional
conditions such Darboux integrable systems can have at most one limit cycle. We provide the explicit
expression of this limit cycle. © 2006 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION AND
STATEMENT OF THE RESULTS

Probably the three main open problems in the qualitative theory differential systems in R? are
the determination of the number of the limit cycles and their distribution in the plane (see, for
instance, [1]); the distinction between a center and a focus, called the center problem (see, for
instance, [2]); and the determination of their first integrals (see, for instance, [3]). This paper
deals with these three problems for a class of polynomial differential systems. More explicitly,
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we study the class of real planar polynomial differential systems of the form,

T = Pn(:c,y) + Pn+1(xay) + Pn+2(x’ y)7
¥ = Qn(z,Y) + Qni1(z,y) + Qny2(z,v),

where P; and @Q; are homogeneous polynomials of degree 1.

Let p € R? be a singular point of a differential system in R2. We say that p is a center if
there is a neighborhood U of p such that all the orbits of U \ {p} are periodic, and we say that
p is a focus if there is a neighborhood U of p such that all the orbits of U \ {p} spiral either in
forward or in backward time to p. A singular point p is called linearly zero if the singular point
has zero linear part. A singular point p is a monodromic singular point of system (1) if there is
no characteristic orbit associated to it, i.e., there is no orbit tending to the singular point with
definite tangent at this point. When the vector field is analytic, a monodromic singular point p is
either a center or a focus, see [4,5]. A singular point p is called degenerate center if the singular
point is a center and it has zero linear part.

We say that an analytic differential system in the plane is time-reversible (with respect to an

(1)

axis of symmetry through the origin) if after a rotation,

£\ [cosa —sina x
(n)(sina cosa)(y)’

the system in the new variables (£, 7) becomes invariant by a transformation of the form (§,7,t) —
(¢,~m,—t). The phase portrait of this new system is symmetric with respect to the straight
line £ = 0.

The center problem for a nondegenerate singular point (i.e., distinguish when a singular point is
either a center or a focus) has been partially solved, in the sense that there are several algorithms
for deciding between a focus or a center, see [6,7]. Unfortunately, the implementation of this
algorithm is very difficult due to the huge computations that it needs. In general, it does not
exist an algorithm for the center problem of a linearly zero singular point, see, for instance, [2,7]
and the references therein. The center problem for linearly zero singular points may be separated
into two problems: the monodromy problem, to decide if the singular point is monodromic or
not, and the stability problem, to decide when it is either a focus or a center. The monodromy
conditions can be derived by an algorithmic method based in the blow-up technique, see, for
instance, [2,6]. For the stability problem, some results are obtained in a series of papers, see [8]
and the references inside. On the other hand, several authors have studied the center problem for
particular subclasses of polynomial differential systems, see, for instance, [9,10]. In [11], sufficient
conditions in order that the origin of system = = P3(z,y) + Pa(z,v), ¥ = Qa(z,y) + Qu(z,y) is a
center are given.

For degenerate analytic centers, it is also known that, in general, they have no local analytic
first integrals defined in its neighborhood, see, for instance, [3]. There are very few examples
of degenerate analytic centers. Nemitskii and Stepanov in [12, page 122] give a real polynomial
differential system which has a degenerate center, but the system has neither a local analytic
first integral in its neighborhood, nor a formal one. In [13], Moussu gives another example of a
real polynomial differential system having a degenerate center for which does not exist a local
analytic first integral.

A limit cycle of system (1) is a periodic orbit isolated in the set of periodic orbits of system (1).
Let W be the domain of definition of a C*! vector field (P, ), and let U be an open subset of W.
A function V : U — R that satisfies the linear partial differential equation,
oV ov. (6P 6Q> v

5 "9 ~ e Ty

5 @)

is called an ‘nverse integrating factor of the vector field (P,Q) on U. We note that {V =0} is
formed by orbits the vector field (P, @). This function V' is very important because R = 1/V
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defines on U \ {V = 0} an integrating factor of system (1) (which allows to compute a first
integral of the system on U\ {V = 0}) and {V = 0} contains the limit cycles of system (1) which
are in U, see [14].

A differential system is completely integrable if all solutions to well-posed initial or bound-
ary value problems can be presented beginning with elementary functions, using finitely many
algebraic operations and compositions of functions, and evaluating limits. Thus, this definition
holds for the cases in which solutions can be constructed explicitly and generalizes the notion of
integrability by quadratures or Liouville integrability, see [15-17]. A particular case of Liouville
integrability is the notion of Darboux integrability. A function of the form fl’\1 - f,i‘ * exp(h/g),
where f;, g and h are polynomials in C[z, y] and the A; are complex numbers, is called a Darbouz
function. System (1) is called Darbouz integrable if the system has a first integral or an integrating
factor which is a Darboux function (for a definition of a first integral and of an integrating factor,
see for instance [3,18]). The problem of determining when a polynomial differential system (1) is
Darboux integrable is, in general, open.

Inside the class of the differential systems (1), we will characterize a new subclass of Darboux
integrable systems, and under an additional assumption over the inverse integrating factor we
shall show that they have at most 1 limit cycle and this upper bound is reached. Moreover,
inside this family, we identify new examples of degenerate centers which, in general, are neither
Hamiltonian nor time-reversible.

In order to present our results we need some preliminary notation and results. Thus, in polar
coordinates (r,#), defined by

T =rcos?, y=rsinb, (3)

system (1) becomes
P = fap1 (00" + fri2(0)r™ ! 4 fria(@)r™ T2,
0 = gnr1(0)r" " + gay2(0)r™ + gnya(6)r™ T,

(4)

where
fi(6) = cos 0P;_1(cos0,sin B) + sin 0Q; 1 (cos 6, sin §),

9i(0) = co80Q);_1(cos B,sin ) — sin 8P;_,(cos 8, sin §).

We remark that f; and g; are homogeneous trigonometric polynomials in the variables cosé
and sin§ having degree in the set {i,7 — 2,¢ — 4,...} NN, where N is the set of nonnegative
integers. This is due to the fact that £;(8) can be of the form (cos? 6 + sin? )° f;_5, with f;_o, a
trigonometric polynomial of degree i — 2s > 0. A similar situation occurs for g;(8).

If we impose gny2(8) = gna3(f) = 0 and g,,41(8) either > 0 or < 0 for all 8, then system (4)
becomes the following Abel differential equation,

dr 1
— = ——— [fur1(0) 7+ faro (8) r% + fays(6) ). 5
7 gn+1(0)[f+1()7+f+2()7‘+f+3()T] (5)
These kind of differential equations appeared in the studies of Abel on the theory of elliptic
functions. For more details on Abel differential equations, see [19-21].
We say that all polynomial differential systems (1) forms the class F if
(i) gn42(0) = gn4a(0) = 0;
(ii} either gn41(6) > 0, or gn+1(6) < 0, for all 4; and
(iil) the following equality holds,

In+1(0) (Fr43(0) frs2(0) = Frss(0)fny2(0)) = afni2(0) = Frs1(0)fnsa(0)fnis(8),  (6)

for some a € R, with / = %. Here, f™(8) means [f(6)]™.



1456 J. GINE AND J. LLIBRE

Since gn+1(8) either > 0 or < 0 for all 8, it follows that the polynomial differential systems (1)
in the class F must satisfy that n + 1 is even.

We shall prove that all polynomial differential systems (1) in the class F' are Darboux integrable.
We have found the subclass F' thanks to cases (a), (b), (¢), and (d) of Abel differential equations
studied in [19, pp. 24-25]. Using similar techniques in [22,23] are found new Darboux integrable
systems for polynomial systems with a center or a focus at the origin.

Our main result is the following one.

THEOREM 1. For polynomial differential systems (1) in the class F' the following statements
hold.
(a) If frn1(0) fros2(0) frss(0) is not identically zero, then the system is Darboux integrable
with the first integral H(z,y) = H(r,8) obtained from

rexp (= [ £:23{848) exp [~ 7k arctan [LE2rkesy OO

1
, ifa> Z,
PO Tl P Fral8)] Fueal®) +a
Fnt1(0) L
T exp (— f md&) exXp (1+2rfn+3(9)/fn+2(‘9)) ifa = -1-
L1 2 Fry5(0)/ Fuga®) ’ v
Fun (6) 2rpss)) H )
rexp <_fﬁ@_)d9> (m+1+ Foia® ) faz0<
IYem 11_4a H 4’
(ViTda—1-Zka@) : )
fri1(8
Texp (_ J 9711129; d9> fura(®) ifa=0

.fn+2(9) '
through the change of variables (3).
(b) If fn41(8) is not identically zero, a = 0 and fn3(8)fn+2(8) is identically zero, then the
system is Darboux integrable with the first integral H(z,y) = H(r,8) obtained from

exp (f f22540) / exp ([ §225348) foi2(6)

dgv if fn+3(9) = 07

T Gn+1(0)
frnt1(6) frny1(6)
exp (2 [ f2t2d6 exp (2 [ 5540 ) fata(6)
(/50 )+2 / (i) df, if fasa(6) =0,
2 gn+1(0)

through the change of variables (2).
Theorem 1 will be proved in Section 2.

THEOREM 2. For a polynomial differential system (1) in the class F' the following statements
hold.

(a) If fny1(0) fri2(0)fns3(8) is not identically zero, then in the domain of definition of the
inverse Integrating factor,

V(r,0) = r(r* f2,5(0)/ fa 12(8) + 7 fara(0)/ fri2(6) + ) , (7)

system (1) has no limit cycles.

(b) If fri1(8)fni3(0) is not identically zero, a = 0 and f,12(0) is identically zero, then the
maximum number of its limit cycles contained in the domain of definition of the inverse
integrating factor,

2 [ Leilap ) f,,5(0)
T 3 fas1(0) exp( /9n+1(9) ) nt
V(r,0) = 5+ riexp (—2 @) d9> / I do (8)

IS one.
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(c} If fry1(0) fay2(B) is not identically zero, a = 0 and f,43(8) is identically zero, then in the
domain of definition of the inverse integrating factor,

fas1(6) d9> /exp( f240) £r020)
gn+1(6) Int1(0)

V(r,0) =r+r?exp <— g, (9)

system (1) has no limit cycles.

Theorem 2 will be proved in Section 3.

Theorem 1 are related to the results obtained in [24] about the Darboux integrability of a
system £ = P, (z,y) + Pn(z,v), ¥ = Qn(z,y) + Qm(z,y) with m > n and where P; and Q; are
homogeneous polynomials of degree i verifying P, = zA(z,y) and Qn = yA(z,y) where A is a
homogeneous polynomial of degree m — 1.

It is easy to check that systems (1) with n = 1 satisfying g3(8) = g4(6) = 0 for all § can be

written into the form,
& =apoz +any +z (az + By + Az? + Bxy + Cy2) ,
§ = bioz + bory +y (ax + By + Az + Bay + Cy?),
ii» @, 3, A, B and C are arbitrary constants. In the first corollary of the Appendix,
we provide new classes of Darboux integrable systems (10) satisfying Statements (a) and (b) of

Theorem 1. The case when the linear part of (10) is a focus, is studied in [23].
Systems (1) with n = 3 satisfying g5(6) = ge(f) = 0 for all 6 can be written into the form,

(10)

where a;;, b

& = agoz® + an1z’y + a122y” + aosy®
+ 2 (az® + Baty + yzy? + 6y® + Az* + By + Cz*y® + Dzy® + Ey'), 0
§ = as0x” + 0212y + azoxy” + agsy® )
+y (osz 4 Bxy + yzy® + 8y + Azt + Bzly + Cx%y? + Day® + Ey4) ,
where a;j, bij, @, 3,7,6, A,B,C, D and E are arbitrary constants. In the second corollary of the
Appendix, we provide new classes of Darboux integrable systems (11) satisfying Statements (a)
and (b) of Theorem 1. The proofs of the first and second corollaries involve tedious computations

using a computer-algebra program.

A characteristic direction for the origin of system (1) is a root {Az, Ay} for all A € R of the
homogeneous polynomial £Qy(z,y) — yPu(z,y), which can be written by w* = [cos ¢*,sin ¢*]
where ¢* is the argument of z + iy. It is obvious that, unless 2Qn(z,y) — yPn(z,y) = 0, the
number of characteristic directions for the origin of system (1) is less or equal than n + 1. It
is well-known (see [25]) that if 4(t) is a characteristic orbit for the origin of system (1) and
w* = limy_ 0o Y()/I7(®)|l, then w* is a characteristic direction for system (1). In particular,
if all the roots of the polynomial zQ,(x,v) — yP.(z,y) have nonzero imaginary part, then the
origin is a monodromic singular point of system (1).

Systems (1) in the class F for n > 2 have a linearly zero singular point at the origin. It is
obvious that n must be odd and greater or equal 3 in order that systems (1) in the class F' have a
linearly zero monodromic singular point at the origin. If a Darboux integrable system has a first
integral defined in a neighborhood of the origin and the singular point is monodromic, then the
system has a degencrate center at the origin. In the second corollary of the Appendix, we provide
new classes of Darboux integrable systems (1) in the class F for n = 3 satisfying Statements (a)
and (b) of Theorem 1 which have a degenerate center at the origin.

2. PROOF OF THEOREM 1

ProOF OF THEOREM la. Following Case (d) of Abel differential equation studied in [19, p. 25],
we do the change of variables (r,8) — (1,£) defined by r = u(6)n(£), where

w0 ([ [515] )
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and § = [[1(0) fat2(0)/gn+1(0)]d6. This transformation writes the Abel differential equation (5)
into the form,

7' (€) = g(&) (&) + ()], (12)
where g(€) = u() frr3(8)/ fas2(0) and ' = £
Doing the change £ — ¢t in the independent variable defined by ¢ = —1/(tn(€)), where now
l = dL’ equation (12) takes the form,
t%6"(t) + g(€(2)) = 0. (13)
Note that g(¢) = a& means u(8) fr4+3(8)/fr+2(0) = af 0) fr+2(8)/gn+1(6)]d8, or equivalently

differentiating with respect to 8, we get

) (250 _ oy ) ) Fuss)

Fny2(8) In+1(0) frt2(8)
Taking into account that v/(8) = u(6) f.+1(8)/9n+1(0), we obtain
(fn+3(9)> o, Inr2(0) frt1(8) fri3(0) (14)
fn+2( ) gn+1(0) gn+1(€) fn+2(0) ’

which is equivalent to condition (6). So, we have g(€) = af. Now we note that equation (13) is an
Euler differential equation. Therefore, doing the change t = exp(7) in the independent variable,
equation (13) becomes the linear ordinary differential equation with constant coefficients,

(1) =€ (1) +ak(r) =0, (15)

where here’ = %. Equation (15) has the characteristic equation k% —k+a = 0, hence, its general
solution is £(7) = C exp(7/2) + Ca7exp(7/2) if a = 1/4, and &(1) = Cy exp(k17) + Ca exp(kaT)
if a # 1/4, where k1 and kg are the two roots of the characteristic equation. Going back to
the independent variable ¢ = exp(r) the solution of the Euler differential equation is £(t) =
C1vVt+ Cyv/tint if a = 1/4, and £(t) = Cyt*1 + Cyt*2 if a # 1/4.

Finally, going back to the variables (r,0) and taking into account if the roots k; and k; are
real or complex, after some tedious computations, we obtain the first integrals of Statement (a)
according with the values of a.

Now, we are going to prove that systems of Statement (a) are Darboux integrable. For sys-
tems (1) in the class F with fp, 1 1(8) fat2(0) fnt3(8) not identically zero, it is easy to check that an
inverse integrating factor for its associated Abel differential equation (5) is given by (7). As this
inverse integrating factor V(r,#) is an elementary function in cartesian coordinates (see [16,17]
for more details and a definition of elementary function), then systems (1) in the class with
frn41(0) ft2(8) frrs(6) not identically zero have a Liouvillian first integral according with the
results of Singer, see [17], and this completes the proof of Statement (a). |

Proor or THEOREM 1b. If f,3(0) is identically zero or fn+2( ) is identically zero, the Abel dif-
ferential equation (5) is the Bernoulli differential equation 2 =72 f, 2(6)/gn+1(0)+7 frr1(8) gns1
(0), or & =13 f,1.5(0)/gn+1(8) + 7 frs1(0)/gns1(6); respectlvely Solving these Bernoulli equa-
tions we obtain the first integrals of Statement (b).

Systems of Statement (b) are Darboux integrable because their first integrals are obtained by

integrating elementary functions, see, for more details, [17]. ]

Now, we study if it is possible to find other integrable subclasses from the well-known integrable
cases of the Abel differential equation. Following the Case (a) of Abel differential equation
studied in [19, p. 24], first we do the change of variables (r, ) — (1, £) defined by r = w(8)n(¢) -

fn+2(€)/(3fn+3 ((9)), Where

w(f) = exp ( / Ei% B 3fn+j:225>2g(5)+1<0>] d”)
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and & = [[fn13(0)w?(0)/gn+1(0)]df. This transformation writes the Abel equation (5) into the
normal form,

7'(€) = &) + 1), (16)
where
10) — gn+1(9) [i ( Jn2(6) ) _ fni1(6)fn12(6) 2f542(0) }
Frn+3(0)w3(0) | dO \ 3fni3(8) 3fnt3(0)gnr1(8) ~ 27f2 5(0)gni1(0)] "

From the definition of w(8), we have

wi — [ [0 F2)
In [w(8)| _/[gn+1(9) 3fn+3(0)gn+1(9)]d9
9

(17)

_ fn+2( ) [f7l+1(9)fn+3(9) _ fn+2(9) :| do
frn3(0) L fnt2(8)gns1(8)  3gni1(0)
In the case a # 0, using (6) or equivalently (14) in (17), we obtain
d { fui3(0)
Snia(9)
3a m 3a gn+1(0)
1. | fass(8) ( 1 ) fat1(6)
R +{1—— dé
3a | fns2(0) 3a gn+1(0)
Using this result, we get that
fn+3(0)

1170 [ [0

w(g) B fn+2(9)

and therefore I(8) becomes

t) = [252] (Bt e [ 12 [ 28 .

It is easy to see that for « = 2/9 and for a = 1/3 we have I{(f) = 0 and I(8) = —1/27,
respectively. For these two cases, the differential equation (16) is of separable variables and we
can obtain the associated first integrals. But I(6) = 0 and I(8) = —1/27 implies that equality (6)
holds with a = 2/9 and for a = 1/3, respectively. So, we obtain cases already studied. New cases
of integrability would be able to appear for I(8) # 0,—1/27.

We must mention that Cases (b} and (c) of Abel differential equation studied in [19, p. 25]
provide again the case studied for a = 2/9.

3. EXISTENCE OF LIMIT CYCLES IN THE CLASS F

In order to study the existence and nonexistence of the limit cycles of system (1), we shall use
the following result.

THEOREM 3. Let (P,Q) be a C! vector field defined in the open subset U of R?. Let V =V (z,v)
be a C! solution of the linear partial differential equation (2) defined in U. If v is a limit cycle
of (P,Q) in the domain of definition U, then =y is contained in {{z,y) € U : V(z,y) = 0}.
ProoF. See Theorem 9 of [1,14]. 1
We recall that under the assumptions of Theorem 3, the function 1/V is an integrating factor

in U\{V(z,y) = 0}. Again, for more details, see [3,18]. As we have seen, the function V is called
an inverse integrating factor. In fact, using this notion, recently it is proved that any topological
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finite configuration of limit cycles is realizable by algebraic limit cycles of a Darboux integrable
polynomial differential systems, see [1].

Proor oF THEOREM 2A. For systems (1) in the class F' with f,,41(0) fa+2(0) fr4+3(0) not identi-
cally zero, it is easy to check that an inverse integrating factor of its associated Abel differential
equation (5) is given by (7). By Theorem 3, if system (1) and consequently its associated
Abel equation (5) have limit cycles, those of the Abel equation must be contained into the set
{V(r,8) = 0}. From the expression of the inverse integrating factor, the unique possible limit
cycles must be given by

('_1:t V1“4a) fn+2 (9) if 1
2fn+3(9) s 1a<Z,
r(0) =
_Int2 () oot
2fn+3 (9)’ B 4’

Since n+2 is odd, the function f,2(#) has zeroes, therefore the above expressions of r(6) cannot
be positive for all 8. Consequently, there are no limit cycles in the domain of definition of V.. 1
Proor oF THEOREM 2B. For systems (1) in the class F' with fn4+1(6)fn43(8) not identically
zero, a = 0 and f,12(6) is identically zero, it is easy to check that an inverse integrating factor
of its associated Abel differential equation (5) is given by (8). By Theorem 3, if system (1) and
consequently its associated Abel equation (5) have limit cycles, those of the Abel equation must
be contained into the set {V'(r,6) = 0}. From the expression of the inverse integrating factor,
the unique possible limit cycles must be given by

fn )
exp (f L2153 do)

\/_2 f EXP(QI£:+1(2) d9)fn+3(9) do

gn+1(9)

r{8) =+

In order that this expression of r(#) define limit cycles, we must have r(8) > 0, for all §. Conse-
quently, the maximum number of possible limit cycles in the domain of definition of V(r, 6} is at
most, 1.

Now it only remains to prove that this upper bound for the number of the limit cycles is reached.
Systems (1) in the class F with f,41(8)fnt3(0) not identically zero and f,2(8) identically zero,
which first integrals are given in Theorem 1b, can have limit cycles as the following examples show.
For n = 1, the system & = —y —z(x? + y? — 1), § = = — y(z? + 4% — 1) has exactly one limit cycle
given by the circle 22 +y? —1 = 0. For n = 3, the system ¢ = —2° + 2%y —y3 + 23(2? + 3 — 229),
¥ = 23 —2%y+ay?+x?y (2% +y? —2xy), has the limit cycle given by the circle z2+4%*—1 = 0. Thisis
due to the fact that this circle is an invariant algebraic curve and the system has a monodromic
point at the origin because it has not characteristic directions since zQ,(z,y) — yPa(z,y) =
z% 4+ 3. Both systems have a focus at the origin. These systems for n = 1 have been studied
in [23]. |
Proor orF THEOREM 2cC. For systems (1) in the class F' with f,4+1(8)f.+2(0) not identically
zero, a = 0 and f,,,3(6) is identically zero, it is easy to check that an inverse integrating factor
of its associated Abel differcntial equation (5) is given by (9). By Theorem 3, if system (1) and
consequently its associated Abel equation (5) have limit cycles, those of the Abel equation must
be contained into the set {V{r,8) = 0}. From the expression of the inverse integrating factor,
the unique possible limit cycles must be given by

fn 1 (2
exp (f ——QHLEH%dQ)
Fnt1D Y ¢ (6 )
fexP(fm ) +2()d9

gn+1(0)

r(f) = —

Since n+2 is odd, the function f,2(8) has zeroes, therefore the above expressions of r(f) cannot
be positive for all 8. Consequently, there are no limit cycles in the domain of definition of V. |
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4. THE APPENDIX

Systems (1) with n = 1 satisfying g3(#) = g4(f) = 0 inside the class F (i.e., the cubic sys-
tems (10)) having a focus or a center at the origin were studied in [23]. The following corollary
provides the cubic polynomial systems (10) which belong to the class F' without a focus or a
center at the origin.

COROLLARY 4. Cubic systems (10) without a focus or a center at the origin belong to the class
F if and only if one of the following statements holds.
(a) a=8=0.

) ao=bo=a=0,A=0, and a = (a1 B + b5:C)/3>.
) bio=a=0,A=B =0, and a = (bp:C)/5>%.
(d) & = 0, A= 0, C= —(aloB)/blo, and a = (aglblo - alobol)B/(blo)BQ).

) bio = a =0, bo1 = 2a10, B = —(2a014)/a10 ,and a = 2(a?,B — a2, A)/(a105%).

) B = A(ai0af —ag10® +boraff —b1of?) /(a(bora — b10f)), C = AB(a108 —an1@)/(a(bora —
b108)), and a = A(aiobor — ag1bio)/(a(abe; — Bbig))-
(2) bo1 = (b108)/a, A=0, C = (8B)/a, and a = bjoB/a?.
(h) apgy = (aloﬁ)/a, b()l = (blgﬂ)/a, C = ﬁ(CYB - ,BA)/aQ, and a = (aloaA + bloaB -
bloﬁA)/a?’.
a1 =B=B=C=0, and a = ajpA/o?.
apr =bgy =B =C =0, and a = (ajpA + byoB)/a?.

(i)

8

(k) ajg = 2b01, b10 = —(bolB)/(QC), apgl = ﬁ = 07 and a = b01(4AC — BQ)/(QCaz)
(m) ao1 =bio=bp1 =0, A=0,C=(8B)/a, and a =0.
n) ap; =0, big = (@a10)/B, bo1 = 2a10, C = (8B)/(2a), and a = (a10B)/(af).
O) b10 = a(algﬂ—2a01a)/,62, b01 = (2a10,3—3a01a)/ﬁ, A= (2&1001,8B—400102B—(110ﬁ20+

3a0108C)/(2a018%), and a = (20108C — dagaC + ap1 8B)/33.
System (a) is Darboux integrable with the first integral given by Theorem 1(b) with n = 1

and where f3(6) = 0. The other systems are Darboux integrable with the first integral given by
Theorem 1(a) withn = 1.

(
(

Systems (1) with n = 3 satisfying ¢5(8) = g6(6) = 0 inside the class F' has a linearly zero
singular point at the origin. The following corollary provides some quintic polynomial systems
of the form (11) which belong to the class F.

COROLLARY 5. Systems (1) with n = 3 satisfying gs(8) = g6(0) = 0 belong to the class F if one
of the following statements holds.

(a) a=FB=v=6=0.

(b) b30:b12:b03:0, bglza,@Z/C,a:’Y:é:O, and A=B=D=FE=0.

(¢) A=B=C=D=F=0anda=0.

Systems (a) and (c) are Darboux integrable with the first integral given by Theorem 1b with
n = 3 and where f5(6) = 0 and fs(68) = 0, respectively. System (b) is Darboux integrable with
the first integral given by Theorem la with n = 3. Consequently, these quintic systems with a
linearly zero singular point at the origin are Darboux integrable.

Inside Family (a) of Corollary 5 we have examples with a degenerate center. For instance, the
system ¢ = y(z? — y?) — 22y, ¥ = x(z? + y?) — 22%y? has a monodromic singular point at the
origin because it has not characteristic directions. Therefore, the system has a center or a focus
at the origin. Moreover, this system has a degenerate center at the origin because it is a time-
reversible system (i.e., it is invariant under the change (z,y,t) — (x, —y, —t). Its first integral is
given by H = (z? + y?) exp{2 arctan(z? — y2 /2% + y2)]/(z? + y? — 1)2. Another example is the
system,

i = —y(2® +9%) — 2((3a + b)z* — 3cz®y — 3bx?y? — 3dzy® — 3ay?)/3,

18
g = 2(z* + y*) — y((Ba + b)z* — 3ez®y — 3bz?y* — 3dzy® — 3ay*)/3. (18)
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System (18) has a monodromic singular point at the origin because it has not characteristic

dir

ections. Moreover, this system has a degenerate center at the origin because it has the first

integral H = (z2 + y*)?/ f(z,y) where f(z,vy) = —48(z® 4+ y?) + 3(3d + 5¢)z* + 32(3a + b)z’y +
18(d — c)z?y? + 96azy® — 3(5d + 3c)y* which is well defined at the origin. We note that this
degenerate center is neither time-reversible nor Hamiltonian.

Therefore, an exhaustive study of the family F will give a lot of examples of degenerate centers
which are Darboux integrable.

The proof of Corollaries 4 and 5 follows doing tedious computations and using a computer-
algebra program and Statements (a) and (b) of Theorem 1 when n = 1 and n = 3, respectively.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.
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