
ELSEVIER 

An International Joumal 
Available online at www.sciencedirect.com computers & 

.c,=.c= ~__~o,.=c.. mathematics 
with applications 

Computers  and Mathemat ics  with Applications 51 (2006) 1453-1462 
www.elsevier .com/loca te /camwa 

Integrability,  Degenerate  Centers ,  and 
Limit Cycles  for a Class of 

Po lynomia l  Differential  S ys t e m s  

J .  GINI~ 
D e p a r t a m e n t  de M a t e m k t i c a  

U n i v e r s i t a t  de  Lleida,  

Av.  J a u m e  II, 69, 25001 Lle ida ,  S p a i n  
gine@eps, udl. es 

J. LLmRE 
Departament de Matemgtiques 

Universitat Aut~noma de Barcelona 

08193 Be l l a t e r ra ,  Ba rce lona ,  Spa in  
j llibre@mat, uab. es 

(Received May 2005; revised and accepted January 2006) 

A b s t r a c t  We consider ~he class of polynomial  differential equat ions  :~ = Pn(x, y) + P,~+l(X, y) 
+P,~+2 (x, y), ij = Q,~ (x, y)+Q,~+I (x, y)+Q,~+2 (x, y), for n _> 1 and  where Pi and Qi are homogeneous  
polynomials  of degree i. These  sys tems  have a linearly zero s ingular  point  at the  origin if n _> 2. 
Inside this class, we identify a new subclass  of Darboux  integrable sys tems,  and some of t h e m  having 
a degenerate center, i.e., a center with linear part  identically zero. Moreover, under  addit ional  
condit ions such Darboux  integrable sys tems  can have at most  one limit cycle. We provide the  explicit 
expression of this  limit cycle. @ 2006 Elsevier Ltd. All r ights reserved. 

K e y w o r d s - - I n t e g r a b i l i t y ,  Algebraic limit cycle, Linearly zero s ingular  point,  Degenerate  center, 
Polynomial  vector field, Polynomial  differential system.  

1. I N T R O D U C T I O N  A N D  
S T A T E M E N T  OF T H E  R E S U L T S  

Probably the three main open problems in the qualitative theory differential systems in R 2 are 
the determination of the number of the limit cycles and their distribution in the plane (see, for 
instance, [1]); the distinction between a center and a focus, called the center problem (see, for 
instance, [2]); and the determination of their first integrals (see, for instance, [3]). This paper 
deals with these three problems for a class of polynomial differential systems. More explicitly, 
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we s tudy  the class of real p lanar  polynomial  differential systems of the  form, 

Jc = P,~(x,y) + Pn+I(x,Y) + P~+2(x,y), 
(1) 

= @,(x,y)  + Qn+l(~,y) + On+2(x,y), 

where Pi and Q~ are homogeneous polynomials  of degree i. 
Let p E R 2 be a singular  point  of a differential system in R 2. We say tha t  p is a center if 

there  is a ne ighborhood U of p such tha t  all the orbi ts  of U \ {p} are periodic,  and we say tha t  
p is a focus if there  is a neighborhood U of p such t ha t  all the  orbi ts  of U \ {p} spiral  either in 
forward or in backward t ime to p. A singular point  p is called linearly zero if the singular  point  

has zero linear part .  A singular point  p is a monodromie singular  point  of system (1) if there  is 
no characteristic orbit associated to it, i.e., there is no orbi t  tending  to the  singular  point  with 

definite tangent  at  this  point.  When  the vector field is analyt ic ,  a monodromic  singular  point  p is 
ei ther a center or a focus, see [4,5]. A singular point  p is cMled degenerate center if the  singular 

point  is a center and it has zero l inear par t .  
We say tha t  an analyt ic  differential system in the  plane is time-reversible (with respect  to an 

axis of s y m m e t r y  through the origin) if after a rotat ion,  

cos a - sin c~ "~ 

the system in the new variables (~, 7) becomes invariant  by a t ransformat ion  of the  form (~, r], t) H 

( 4 , - r l , - t ) .  The phase por t ra i t  of this new sys tem is symmetr ic  wi th  respect  to the  straight  

line ~ = 0. 
The center problem for a nondegenerate  singular  point  (i.e., d is t inguish when a singular  point  is 

either a center or a focus) has been par t ia l ly  solved, in the  sense t ha t  there  are several a lgori thms 

for deciding between a focus or a center, see [6,7]. Unfor tunately ,  the  implementa t ion  of this 

a lgor i thm is very difficult due to the  huge computa t ions  tha t  it  needs. In general,  it  does not  

exist an a lgor i thm for the center problem of a l inearly zero singular  point ,  see, for instance,  [2,7] 

and the references therein. The  center problem for l inearly zero singular  points  may  be separa ted  

into two problems: the monodromy problem, to decide if the  singular  point  is monodromic  or 

not, and the stability problem, to decide when it is ei ther a focus or a center.  The  monodromy 

condit ions can be derived by an algori thmic method  based in the  blow-up technique,  see, for 

instance, [2,6]. For the  s tabi l i ty  problem, some results are ob ta ined  in a series of papers ,  see [8] 

and the references inside. On the other  hand, several authors  have s tudied  the center problem for 

par t icular  subclasses of polynomial  differential systems,  see, for instance,  [9,10]. In [11], sufficient 

condit ions in order tha t  the origin of system 2 - Pa(x, y) + P4(x, y), ~1 = Q3(x, y) + Q4(x, y) is a 

center are given. 
For degenerate  analyt ic  centers, it is also known tha t ,  in general,  they  have no local analyt ic  

first integrals  defined in i ts neighborhood,  see, for instance, [3]. There  are very few examples  

of degenerate  analyt ic  centers. Nemitskii  and Stepanov in [12, page 122] give a real  polynomial  

differential sys tem which has a degenerate center, but  the sys tem has nei ther  a local analyt ic  

first integral  in i ts neighborhood,  nor a formal one. In [13], Moussu gives another  example  of a 

real polynomial  differential system having a degenerate  center for which does not  exist a local 

analyt ic  first integral.  
A limit cycle of system (1) is a periodic orbit  isolated in the  set of per iodic  orbi ts  of system (1). 

Let W be the domain  of definition of a C 1 vector field (P, Q), and let U be an open subset  of W. 

A function V : U --+ IR tha t  satisfies the  l inear par t ia l  differential equation,  

pOV Q O V = ( O P  OQ) 
5-~z + Oy ~ + ~ 17, (2) 

is called an inverse integrating factor of the  vector field (P, Q) on U. We note tha t  {V = 0} is 
formed by orbi ts  the  vector field (P, Q). This function V is very impor t an t  because R = 1/V 
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defines on U \ {V = 0} an integrating factor of system (1) (which allows to compute a first 
integral of the system on U \ {V = 0}) and {V = 0} contains the limit cycles of system (1) which 
are in U, see [14]. 

A differential system is completely integrable if all solutions to well-posed initial or bound- 
ary value problems can be presented beginning with elementary functions, using finitely many 
algebraic operations and compositions of functions, and evaluating limits. Thus, this definition 
holds for the cases in which solutions can be constructed explicitly and generalizes the notion of 
integrability by quadratures or Liouville integrability, see [15-17]. A particular case of Liouville 

integrability is the notion of Darboux integrability. A function of the form f~'  . . .  f ~  exp(h/g), 
where fi, g and h are polynomials in C[x, y] and the Ai are complex numbers, is called a Darboux 
function. System (1) is called Darbouz integrable if the system has a first integral or an integrating 
factor which is a Darboux function (for a definition of a first integral and of an integrating factor, 
see for instance [3,18]). The problem of determining when a polynomial differential system (1) is 
Darboux integrable is, in general, open. 

Inside the class of the differential systems (1), we will characterize a new subclass of Darboux 
integrable systems, and under an additional assumption over the inverse integrating factor we 
shall show that  they have at most 1 linfit cycle and this upper bound is reached. Moreover, 
inside this family, we identify new examples of degenerate centers which, in general, are neither 
Hamiltonian nor time-reversible. 

In order to present our results we need some preliminary notat ion and results. Thus, in polar 
coordinates (r, 0), defined by 

x = r cos0, y = r sin 0, (3) 

system (1) becomes 

where 

7', = A + ~ ( 0 ) <  + L~+2(o)< +1 + f.+a(o)~ ~+2, 

~) = g n + l ( 0 ) 7  "n-1 -[- gn+2(O)r n -[- gn+3(O)r n+l, 
(4) 

f.~ (0) = cos 0P i - ,  (cos 0, sin 0) + sin OQi-, (cos O, sin 0), 

9i (0) = cos OQi_ 1 (cos 0, sin 0) - sin OPi- 1 (cos 0, sin 0). 

We remark that  fi and gi are homogeneous trigonometric polynomials in the variables cos0 
and sin 0 having degree in the set {i, i - 2, i - 4 , . . .  } N N, where N is the set of nonnegative 
integers. This is due to the fact tha t  f~(O) can be of the form (cos 2 0 + sin 2 0)sf~_2~ with J~-2~ a 
trigonometric polynomial of degree i - 2s _> 0. A similar situation occurs for gi(O). 

If we impose g,~+2(O) - g,~+a(0) = 0 and g~+l(0) either > 0 or < 0 for all 0, then system (4) 
becomes the following Abel differential equation, 

dr 1 
[f~+l (0) r +  fi~+2 (0) r 2 + f~+a (0) r a ] .  (5) 

dO gn+l(O) 

These kind of differential equations appeared in the studies of Abel on the theory of elliptic 
fnnctions. For more details on Abel differential equations, see [19-21]. 

We say that  all polynomial differential systems (1) forms the class F if 

( i)  g ~ + 2 ( 0 )  = g ,~+3(0 )  = 0; 
(ii) either g~+l(0) > 0, or g~+l(0) < 0, for all 0; and 

(iii) the following equality holds, 

g~+l(o)  (£,+3(o)f ,~+2(o) - f~+3 (o )Y+2 (o ) )  = af~+2(o)  - f . + l ( O ) f . + 2 ( o ) / . + 3 ( o ) ,  (6) 

for some a E R, w i t h ' =  d .  Here, f'~(O) means [f(O)] n. 
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Since g,,+i(0) either > 0 or < 0 for all 0, it follows that the polynomial differential systems (1) 
in the class F must satisfy that n + 1 is even. 

We shall prove that all polynomial differential systems (1) in the class F are Darboux integrable. 
We have found the subclass f thanks to cases (a), (b), (c), and (d) of Abel differential equations 
studied in [19, pp. 24-25]. Using similar techniques in [22,23] are found new Darboux integrable 
systems for polynomial systems with a center or a focus at the origin. 

Our main result is the following one. 

THEOREM 1. For polynomial differential systems (1) in the class F the following statements 
hold. 

(a) /f  f,,+l(O)f,+2(O)fi~+3(O) is not identically zero, then the system is Darboux integrable 
with the first integral ~I(z, y) = H(r, O) obtained from 

rexp ( -  f ~u)/"+l(°) .ink exp [ _ ~ l  arctan [[(l+2rf~+a(0)/f~+2(0))]]~ J] if a >  1, 

4 i 2 2 2 r f;{+a(O)/fX+2(O) + rfn+a(O)/fn+2(O) + a 

rexp ( - - f  f"+a(O)do~ 1 1 ~ ] e x P ( l + 2 r f ~ + 3 ( - ° ) / f ~ + 2 ( ° ) )  i f a =  ~, 
1 + 2rf,~+3(O)/f.+2(O) 

r e x p ( _  I ~,.+~(o,~ ( , / 1 - 4 ~ + 1 +  ~ " + ~ ° ' ~  -~(-'+ ~ - ' ~ )  
~ = ~  I.-~+2~-0T ] i f a # 0  < 1, 

4 
, / 1  - 4 a  - 1 ) 

( -  f f,~+,(°).4A'~ ~ )  fn+3(o) rexp 
\ 

fn+2(O) , if a = 0, 

through the change of variables (3). 
(b) I f  fn+l(0) is not identically zero, a = 0 and fi~+a(O)fn+2(O) is identically zero, then the 

system is Darboux integrable with the first integral H(x,  y) = H(r, O) obtained from 

exp(ff'~+~(°)3A~ / e x p ( f f ~ + i ( ° ) d A )  
~]r + gn+i(O) dO, if fn+3(O) ~ O, 

( r  exp \ 2 o ~  ) g.t_Ll(O)~/] f~+a(0) 
r2 + 2 J gn+l(O) dO, if fn+2(O) ~- O, 

through the change of variables (2). 

Theorem 1 will be proved in Section 2. 

THEOREM 2. For a polynomial differential system (1) in the c/ass F the following statements 
hold. 

(a) If  fn+l(O)f~+2(O)fn+3(O) is not identically zero, then in the domain of definition of the 
inverse integrating factor, 

V(r, O) = r(r2 f2+3(O)/f~+2(O ) + rf,~+a(O)/fn+2(O) + a) , (7) 

system (1) has no limit cycles. 
(b) I f  fn+l(0)f~+3(0) is not identically zero, a = 0 and fn+2(0) is identically zero, then the 

maximum number of its limit cycles contained in the domain of definition of the inverse 
integrating factor, 

//2 f I.+,(0)dA~ exp \ j ~ j  fn+3(O) 
d O  , ( 8 )  

g,~+i(O) 
r r3 ( - 2  /" f~+a(O) dO'~ / v< ,o )=~+  exp\ Jg,~+l(O) ) 

iS one. 
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(C) fffn_t_l(O)fn+2(O) iS not identically zero, a = 0 and f~+3(0) is identically zero, then in the 
domain of definition of the inverse integrating factor, 

V(r,O) = r + r 2 e x p  [ / -  f f~+l(O)do~ f 
\ Jgn+l(O) /] 

system (1) has no limit cycles. 

Theorem 2 will be proved in Section 3. 

exp ( f  :~+~(°)ZA~ 

o,~+t(O) 
dO, (9) 

Theorem 1 are related to the results obtained in [24] about  the Darboux integrability of a 
system x P n ( x , y ) + P , ~ ( x , y ) , ~ ) = Q ~ ( x , y ) + Q m ( x , y ) w i t h m > n a n d w h e r e P i a n d Q i a r e  
homogeneous polynomials of degree i verifying P,~ = xA(x,  y) and Q,~ = yA(x,  y) where A is a 
homogeneous polynomial of degree m - 1. 

It is easy to check that  systems (1) with n = 1 satisfying g3(0) = g4(0) = 0 for all 0 can be 
written into the form, 

= alOX + holy + x ((~x + ~y + Ax 2 + Bxy  + Cy 2) , 

ij : bloz + boly + y (ax + ~y + Ax 2 + Bxy  + Cy 2) , (10) 

where a~j, bij, a , ~ ,  A, B and C are arbitrary constants. In the first corollary of the Appendix, 
we provide new classes of Darboux integrable systems (10) satisfying Statements (a) and (b) of 
Theorem 1. The case when the linear part  of (10) is a focus, is studied in [23]. 

Systems (1) with n = 3 satisfying gh(0) = g6(O) = 0 for all 0 can be written into the form, 

:~ = a30 x3 + a21x2y + a12xy 2 + ao3Y a 

+ x (ax  3 +/~xey + 7xy 2 + @3 + Ax 4 + Bxay + Cx2ye + Dxy3 + Ey4),  

~) = aaox 3 + a21x2y + alexy 2 + a°3y 3 (11) 

+ Y (ax 3 + #xey + Vxy2 + @3 + Ax4 + Bx3y + Cx2y2 + Dxy3 + Ey4) , 

where aij , bij, o6 ~, % 5: A, B, C, D and E are arbitrary constants. In the second corollary of the 
Appendix, we provide new classes of Darboux integrable systems (11) satisfying Statements (a) 
and (b) of Theorem 1. The proofs of the first and second corollaries involve tedious computat ions 

using a computer-algebra program. 
A characteristic direction for the origin of system (1) is a root (Ax, Ay) for all A E ~ of the 

homogeneous polynomial x@~(x, y ) -  yP~(x, y), which can be writ ten by w* = [cos ¢*, sin¢*] 
where ¢* is the argument of x + iy. It is obvious that,  unless xQ,~(x,y) - y P ~ ( x , y )  =- O, the 
number of characteristic directions for the origin of system (1) is less or equal than n + 1. It 
is well-known (see [25]) that  if v(t) is a characteristic orbit for the origin of system (1) and 
~* = limt-~+~ 7(t)/llT(t)ll, then ~* is a characteristic direction for system (1). In particular, 
if all the roots of the polynomial xQ,~(x, y) - yP~(x, y) have nonzero imaginary part, then the 
origin is a monodromic singular point of system (1). 

Systems (1) in the class F for n > 2 have a linearly zero singular point at the origin. It is 
obvious that  n must be odd and greater or equal 3 in order tha t  systems (1) in the class F have a 
linearly zero monodromic singular point at the origin. If a Darboux integrable system has a first 
integral defined in a neighborhood of the origin and the singular point is monodromic,  then the 
system has a degenerate center at the origin. In the second corollary of the Appendix, we provide 
new classes of Darboux integrable systems (1) in the class F for n = 3 satisfying Statements (a) 

and (b) of Theorem 1 which have a degenerate center at the origin. 

2. P R O O F  OF T H E O R E M  1 

PROOF OF THEOREM la. Following Case (d) of Abel differential equation studied in [19, p. 25], 
we do the change of variables (r, 0) -~ (~, ~) defined by r = u(0)~(~), where 

~(O) ; exp ( /  [ A+I (°) (0) ] dO) 
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and ~ = f[u(O)fi~+2(O)/gn+l(O)]dO. This transformation writes the Abel differential equation (5) 
into the form, 

r~'(~) = g(~) [r~(~)] a + [)7(~)] 2, (12) 

where 9(~) = u(O)f,~+a(O)/f,,+2(O) a n d / =  ~ .  
Doing the change ~ ~ t in the independent variable defined by ~' = -1/( t r / (~)) ,  where now 

d equation (12) takes the form, 

t2~"(t) + g(~(t)) = 0. (13) 

Note tha t  g(~) = a~ means u(O)f~+3(O)/f~+2(O) = a f[u(O)fn+2(O)/9~+a(O)]dO , or equivalently 
differentiating with respect to 0, we get 

d a 
u(O)-~ \fi,+2(O)J = gn+x(O) f,~+2(O)" 

Taking into account tha t  u'(0) : u(O)fl~+l(O)/gn+l(O), we obtain 

d (fn+a(O)'~ = In+2(0) fn+l(O) fn+3(O) (14) 
dO k.fn+2(O) J a 9,+1(0) 9,,+1(0) fn+2(O) ' 

which is equivalent to condition (6). So, we have g(~) = a~. Now we note tha t  equation (13) is an 
Euler differential equation. Therefore, doing the change t = exp(r)  in the independent variable, 
equation (13) becomes the linear ordinary differential equation with constant coefficients, 

~"(T) - ~'(T) + a~(~-) = 0, (15)  

where here ~ = d .  Equation (15) has the characteristic equation k 2 k+a = 0, hence, its general 
solution is ~(~-) = C1 exp(~-/2) + C2~- exp(T/2) if a = 1/4, and ~(w) = C1 exp(k : - )  + C~ exp(k2~-) 
if a :fi 1/4, where hi and k2 are the two roots of the characteristic equation. Going back to 
the independent variable t = exp(T) the solution of the Euler differential equation is ~(t) = 
CIV/t ~- C2v/tlnt if a = 1/4, and ~(t) = Clt k~ + C2t k2 if a ¢ 1/4. 

Finally, going back to the variables (r, 0) and taking into account if the roots kl and k2 are 
real or complex, after some tedious computations, we obtain the first integrals of Statement (a) 
according with the values of a. 

Now, we are going to prove that  systems of Statement (a) are Darboux integrable. For sys- 
tems (1) in the class F with fi~+l(O)f~+2(O)fi~+a(O) not identically zero, it is easy to check that  an 
inverse integrating factor for its associated Abel differential equation (5) is given by (7). As this 
inverse integrating factor V(r, 0) is an elementary function in cartesian coordinates (see [16,17] 
for more details and a definition of elementary function), then systems (1) in the class with 
fn+x(O)f~+2(O)f~+a(O) not identically zero have a Liouvillian first integral according with the 
results of Singer, see [17], and this completes the proof of Statement (a). | 

PROOF OF THEOREM lb. If f~+3(0) is identically zero or f,~+2(0) is identically zero, the Abel dif- 
ferential equation (5) is the Bernoulli differential equation d~ = r2fi,+2 (O)/gn+x (0)+rf,~+a (0)/9,,+1 

dr (0), or 2~ = raf~+a(O)/9,,+l(O) + rf,~+l(O)/g,,+l(O); respectively. Solving these Bernoulli equa- 
tions we obtain the first integrals of Statement (b). 

Systems of Statement (b) are Darboux integrable because their first integrals are obtained by 
integrating elementary functions, see, for more details, [17]. | 

Now, we study if it is possible to find other integrable subclasses from the well-known integrable 
cases of the Abel differential equation. Following the Case (a) of Abel differential equation 
studied in [19, p. 24], first we do the change of variables (r, 0) ~ (77, ~) defined by r = w(O)rl(~) - 
fn+2(O)/(3fi~+a(O)), where 

( f  [f,,+x(0) ]dO) 
%0) = exp [ ~  3f~+a(O)gn+~(O)J 
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and ~ = f[fi~+a(O)w2(O)/g,~+~(O)] dO. This t ransformat ion writes the Abel equation (5) into the 
normal  form, 

,/(~) = [~(~)]~ + z(o), (16) 
where 

[(0) gn+l(O) [~0 ( fn+2 (0) x~ f~'t-Fl(O)frt+2(O) 
fn+3(O)w3(O) k ~ / I  3fn+3(O)gn+l(O) 

2fX+~(0) ] 
+ 2 7 f ~ ~ 1  (0) J" 

From the definition of w(O), we have 

lnlw(0)l = / [fn+l(O) f2+2(0) ]dO 
kgn+l(0) 3f,~+a(O)gn+~(O) 

[ fn+2(O) [fi~+l(O)f,,+a(O) f,~+2(O) ] 
f~+3(O) L ~  39~--~(o)J dO. J 

(17) 

In the case a ¢ 0, using (6) or equivalently (14) in (17), we obtain 

1 fn+a(o)k~JdO (1 1)/fi~+l(O)a.l~_l(O) + - ~ d O  
gn+~( ) Y~+2 (o) 

1 

3a 

Using this result, we get tha t  

In f~+3(O) + (1  1 )  f f~,+l(O)do 
- - -  ~ 1  - gn+~(0)  

w(o) = A+3(o)-1/3a F f~+l(°)] dO] exp [(1 - 1/(3a)) / l ~ J  

and therefore I(O) becomes 

f(0) = L ~ j  k ~ )  - - f  fn-t-l(O) 
gn_l_l (0) " 

It  is easy to see tha t  for a = 2/9 and for a = 1/3 we have I(O) = 0 and I(O) = - 1 / 2 7 ,  
respectively. For these two eases, the differential equation (16) is of separable variables and we 
can obtain the associated first integrals. But I(O) = 0 and I(O) = - 1 / 2 7  implies tha t  equality (6) 
holds with a = 2/9 and for a = 1/3, respectively. So, we obtain cases already studied. New cases 
of integrability would be able to appear  for I(O) # O, 1/27. 

We must  mention tha t  Cases (b) and (c) of Abel differential equation studied in [19, p. 25] 
provide again the case studied for a = 2/9. 

3 .  E X I S T E N C E  O F  L I M I T  C Y C L E S  I N  T H E  C L A S S  F 

In order to s tudy the existence and nonexistence of the limit cycles of system (1), we shall use 
the following result. 

THEOREM 3. Let (P, Q) be a C 1 vector field defined in the open subset U ofR 2, Let V = V(x, y) 
be a C 1 solution of the linear partial differentiM equation (2) defined in U. If 7 is a limit cycle 
of (/9, Q) in the domain of definition U, then ~/ is contained in {(x, y) c U: V(x, y) = 0}. 

PROOF. See Theorem 9 of [1,14]. | 

We recall tha t  under the assumptions of Theorem 3, the function 1/V is an integrating factor 
in U \ {V(x, y) = 0}. Again, for more details, see [3,18]. As we have seen, the function V is called 
an inverse integrating factor. In fact, using this notion, recently it is proved tha t  any topological 
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finite configuration of limit cycles is realizable by algebraic limit cycles of a Darboux  integrable 
polynomial differential systems, see [1]. 

P a o o F  OF THEOREM 2a. For systems (1) in the class F with fn+l(O)fn+2(O)fn+3(O) n o t  identi- 
cally zero, it is easy to check tha t  an inverse integrating factor of its associated Abel differential 
equation (5) is given by (7). By Theorem 3, if sys tem (1) and consequently its associated 
Abel equation (5) have limit cycles, those of the Abel equation must  be contained into the set 
{V(r, 0) = 0}. From the expression of the inverse integrating factor, the unique possible limit 
cycles must  be given by 

{ ( - 1 +  l~/i--L~-4a) f~+2(0)  i f a <  41-, 
2/,~+~ (0) 

r (0) = f~+2 (0) if a = -.1 

2/~+3 (0) '  4 

Since n + 2 is odd, the function fn+2 (0) has zeroes, therefore the above expressions of r(O) cannot 
be positive for all 0. Consequently, there are no limit cycles in the domain of definition of V. | 

PROOF OF THEOREM 2B. For systems (1) in the class F with f~+l(O)f,~+3(O) not identically 
zero, a = 0 and fn+2(0) is identically zero, it is easy to check tha t  an inverse integrat ing factor 
of its associated Abel differential equation (5) is given by (8). By Theorem 3, if system (1) and 
consequently its associated Abel equation (5) have limit cycles, those of the Abel equation must 
be contained into the set {V(r,  0) = 0}. From the expression of the inverse integrating factor, 
the unique possible limit cycles must be given by 

I F  f~+l(0) dO) exp \ j  
,-(o) : + 

- 2 f  k o~+l,o, dO g,~+l(o) 

In order tha t  this expression of r(O) define limit cycles, we must  have r(O) > 0, for all 0. Conse- 
quently, the max imum number  of possible limit cycles in the domain of definition of V(r,  O) is at 
most 1. 

Now it only remains to prove tha t  this upper  bound for the number  of the limit cycles is reached. 
Systems (1) in the class F with fn+~(O)f~+3(O) not identically zero and f~+2(O) identically zero, 
which first integrals are given in Theorem lb,  can have limit cycles as the following examples show. 
For n = 1, the system ~ = - y  - x (x  2 + y2 _ 1), [t = x - y(x  2 + y2 _ 1) has exact ly one limit cycle 
given by the circle x 2 + y2 _ 1 = 0. For n - 3, the system :~ = - x  3 + x2y - y3 + x3 (x 2 + y2 _ 2xy), 

= x a - x 2 y + x y 2 + x 2 y ( x 2 + y  2 - 2 x y ) ,  has the limit cycle given by the circle x 2 + y 2 - 1  = 0. This is 
due to the fact tha t  this circle is an invariant algebraic curve and the system has a monodromie 
point at the origin because it has not characteristic directions since x Q n ( x , y )  - y P ~ ( x , y )  = 
x 4 + y4. Both systems have a focus at the origin. These systems for n = 1 have been studied 
in [23]. II 

PROOF OF THEOREM 2C. For systems (1) in the class F with f~+l(O)f,~+2(O) not identically 
zero, a = 0 and f~+3(O) is identically zero, it is easy to check tha t  an inverse integrating factor 
of its associated Abel differential equation (5) is given by (9). By Theorem 3, if system (1) and 
consequently its associated Abel equation (5) have limit cycles, those of the Abel equation must 
be contained into the set {V(r,  0) = 0}. From the expression of the inverse integrating factor, 
the unique possible limit cycles must  be given by 

f~+l(O) ( 
~ ( o )  - 

f ~+~(o) dO 

Since n +  2 is odd, the function f~+2(O) has zeroes, therefore the above expressions of r(O) cannot 
be positive for all 0. Consequently, there are no limit cycles in the domain of definition of V. | 
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4. T H E  A P P E N D I X  

Sys tems  (1) w i th  n = 1 sa t is fying g3(O) = g4(O) = 0 inside the  class F (i.e., the  cubic  sys- 

t ems  (10)) hav ing  a focus or  a center  at the  origin were s tud ied  in [23]. T h e  fol lowing corol la ry  

provides  t he  cubic  po lynomia l  sys tems  (10) which  be long  to  t he  class F w i t h o u t  a focus or a 

center  at t he  origin.  

COROLLARY 4. Cubic  sys t ems  (10) w i thou t  a focus or a center at the  origin belong to the  class 

F i f  and only  i f  one o f  the fol lowing s ta t emen t s  holds. 

(a) ~ = / 3 = o .  
(b) a lo  = 51o = c~ -- 0, A = 0, and a = ( a o l B  + bo lC) / f l  2. 

(c) blo -- c~ - O, A = B = O, and a = (bo lC) / f l  2. 

(d) cx = 0, A = 0, C = - ( a l o B ) / b l o  , and a = (aolblo - a lobol )B/ (b lo f l2) .  

(e) bzo = c~ = 0, bol = 2alo,  B = - ( 2 a o l A ) / a l o  ,and a = 2(a~oB - ag lA) / (a lo f l2 ) .  

(f) B = A ( a l o a f l  - aol a2 + bola/3 - b lo f l2 ) / (a(bola  - blofl)), C = A/3(alofl  - a o l a ) / ( a ( b o l a  - 

blofl)),  and a = A(alobol - ao lb lo ) / (a (abo l  - fl51o)). 

(g) bol = ( b w f l ) / a ,  A = 0, C = ( f l B ) / a ,  and  a = b l o B / a  2. 

(h) aol  = (a lo f t ) /a ,  bol = (blofl)/ct, C = fl(c~B - f l A ) / a  2, and a = ( a l o a A  + b loaB  - 

blof lA ) / a  a. 
(i) aol = f l - B = C = 0 ,  a n d a = a l o A / c t  2. 

(j) aol = bol = fl = C = O, and a = ( a toA + bloB)/(~ 2. 

(k) axo = 2bol, blo = - ( b o l B ) / ( 2 C ) ,  aol = / 3  = 0, and  a = bo t (4AC - B 2 ) / ( 2 C ~ 2 ) .  

(m) aol  = bxo = bol = 0, A = 0, C = (flB)/c~, and a = O. 

(n) aol = 0, blo = ((xalo)/fl ,  bol = 2alo,  C = (f lB)/(2c~),  and a = ( a l o B ) / ( a f l ) .  

(o) 51o = cx(amfl - 2 a o l a ) / f l  2, bol = ( 2 a l o f t -  3aolc~)/fl ,  A = ( 2 a l o a f l B  - 4aol a 2 B  - a lo f l2C  -- 

3aolc~flC)/(2aolf l2),  and  a = (2a lo f lC  - 4aoxaC + a o l 3 B ) / f l  3. 

S y s t e m  (a) is Da r b o u x  integrable wi th  the first integral given by T heorem  l (b )  wi th  n = 1 

and where fa(0)  = 0. The  other sys tems  are  Darboux  integrable wi th  the first integrM given by 

Theorem l (a)  wi th  n = 1. 

Sys tems  (1) w i t h  n = 3 sa t is fying gs(O) = g6(O) = 0 inside t he  class F has  a l inear ly  zero 

s ingular  po in t  at  t he  origin.  T h e  following corol la ry  provides  some qu in t i c  po lynomia l  sys tems  

of t he  form (11) which be long  to  t he  class F .  

COROLLARY 5. S y s t e m s  (1) wi th  n - 3 sat is fying 95(0) = 96(0) = 0 belong to the  e/ass F i f  one 

o f  the following s ta t emen t s  holds. 

(a) a = ¢ 3 = 7 - 5 - 0 .  

(b) b30 = b12 = boa - O, b21 = afl2 / C ,  a = y = J = O, and A = B = D = E = O. 

(c) A - B = C = D = E = O a n d a = O .  

S y s t e m s  (a) and (c) are  Da r b o u x  integrable wi th  the  first integral given by Theorem l b  wi th  

n = 3 and  where  fs(O) = 0 and fa(O) = O, respectively. S y s t e m  (b) is D a r b o u x  integrable wi th  

the first integral given by Theorem la  wi th  n = 3. Consequently ,  these quint ic  s y s t ems  wi th  a 

l inearly zero singular po in t  at the origin are  Darboux  integrable. 

Inside F a m i l y  (a) of  Coro l l a ry  5 we have examples  w i t h  a degene ra t e  center .  For  ins tance ,  t he  

sys tem ~ = y (x  2 - y2) _ 2x4y, !) = x(  x2 + y2) _ 2xay2 has  a m o n o d r o m i c  s ingular  po in t  at  t he  

origin because  it  has  no t  charac te r i s t i c  direct ions.  There fore ,  the  sys t em has a center  or  a focus 

at  the  origin.  Moreover ,  th is  sys tem has a degene ra t e  center  at  t h e  or igin  because  it  is a t ime-  

revers ible  sy s t em (i.e., i t  is invar ian t  under  t he  change (x, y, t) --4 ( x , - y , - t ) .  I ts  first in tegra l  is 

g iven by H = (x 4 + y4) exp[2 a r c t a n ( x  2 - y2 /x2  + y i ) ] / ( x2  + y2 _ 1)2. A n o t h e r  examp le  is the  

sys tem,  
= - y ( ~  + y~) - ~ ( ( 3 a  + b)~ 4 - 3 c ~ 3 y  - 3 b x = y  ~ - 3 & y  ~ - 3 a ¢ ) / 3 ,  

= x ( z  2 + y2) _ y( (3a  + b)x 4 - 3cxay - 3bx2y 2 - 3dxy  z - 3ay4) /3 .  (18) 



1462 J. GINE AND J. LLIBRE 

System (18) has a monodromic singular point at the origin because it has not characteristic 
directions. Moreover, this system has a degenerate center at the origin because it has the first 
integral H = (x 2 + y 2 ) 2 / f ( x ,  y) where f ( x ,  y) = - 4 8 ( x  2 + y2) + 3(3d + 5c)x 4 + 32(3a + b)~y + 

18(d - c)x2y 2 + 96azy  3 - 3(5d + 3c)y 4 which is well defined at the origin. We note that  this 
degenerate center is neither time-reversible nor Hamiltonian. 

Therefore, an exhaustive s tudy of the family F will give a lot of examples of degenerate centers 
which are Darboux integrable. 

The proof of Corollaries 4 and 5 follows doing tedious computat ions and using a computer- 
algebra program and Statements (a) and (b) of Theorem 1 when n = 1 and n = 3, respectively. 
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