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Low-frequency onset of the fundamental branches in piezoplates is studied with a view to identify the
impact of piezoelectric coupling. General analytical expressions for the zero- and leading-order terms
of the velocity versus wavenumber expansion in an anisotropic homogeneous piezoplate are obtained.
On this ground, it is shown what types of anisotropy and electric boundary conditions enable the onset
parameters of fundamental branches to be piezoactive. Particular attention is given to the linear disper-
sion at the origin of two upper fundamental branches. This property is entirely caused by the piezoeffect,
being ruled out for elastic plates. An invariant hierarchy is established between the zero-order velocities
of the fundamental waves under different electric boundary conditions in homogeneous and functionally
graded plates. It is shown that some of these velocities in a metallized plate become piezoactive specif-
ically if the piezoplate is functionally graded.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Analytical insight into the low-frequency long-wave dispersion
in a traction-free plate is of interest from both applied and theoret-
ical viewpoints. This spectral range is an output of a number of
experimental techniques aimed at the non-destructive evaluation
of plate material. Also the low-frequency dispersion coefficients
are essential ingredients for various asymptotic and engineering
plate theories. Much work continues to be done on this subject
for piezoelectric plates (see Johansson and Niklasson, 2003; Cheng
and Reddy, 2003; Krommer, 2003; Wang and Rokhlin, 2004; Joshi
et al., 2006; Mauritsson et al., 2008; Kuznetsova et al., 2008; Maur-
itsson, 2009). However, there remain certain unexplored aspects,
particularly those related to anisotropy. They have a direct practi-
cal implication for piezomaterial characterization, where one of
the primary targets is the strength of piezoelectric coupling. It
can be inferred from the low-frequency experimental data if the in-
volved modes are piezoactive for the given plate geometry. This
depends on the anisotropy. Additional diversity is brought about
by the possibility to change the electric boundary conditions
(EBC) through metallizing the plate faces. Knowing explicit expres-
sions for low-frequency dispersion is therefore helpful for a judi-
cious choice of the plate orientation and of the type of EBC for
measuring the desirable piezoelectric coefficient. It is also interest-
ll rights reserved.
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ing to establish the invariant inequalities that compare the onset of
the fundamental branches in a given plate under different types of
EBC.

Another motivation for the present study is to analyze the
new features of the low-frequency dispersion that are entirely
caused by the piezoelectric effect. This concerns the unusual, lin-
ear onset of the SH0 and/or S0 branches and in particular an
upgoing slope of the S0 branch, which have been observed
numerically and experimentally (Yang and Chimenti, 1995; Yang
and Huang, 2003). Both these features, the linear onset of these
branches of itself and the upward trend of S0, are fundamentally
ruled out in a purely elastic plate of any anisotropy (Shuvalov,
2004; Shuvalov, 2006).

The paper is organized as follows. Section 2 outlines the back-
ground, whose technicalities are further detailed in the Appendix.
Section 3 describes the low-frequency (long-wave) onset of funda-
mental branches in a homogeneous piezoelectric plate. In Sec-
tion 3.1, the effect of piezoelectricity on the initial slope of the
flexural branch v1(k) is discussed, and Mindlin’s type approxima-
tion of the full extent of this branch is demonstrated. Section 3.2
deals with the two upper fundamental velocity branches v2,3(k)
(termed SH0 and S0 if the plate is cut along a symmetry plane). Par-
ticular attention is given to their linear dispersion that does not ex-
ist in purely elastic plates. A detailed analysis and examples are
provided in this Section for the azimuthal dependence of the
long-wave dispersion in piezoelectric plates of typical orientations.
Section 4 is concerned with a functionally graded piezoelectric
plate, for which the slope of the flexural branch and the zero-
frequency limiting velocity of two other fundamental waves are
derived and analyzed.
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2. Background

2.1. Governing equations

Consider an infinite anisotropic piezoelectric plate and denote
the lateral and transverse coordinates by x = m � r and y = n � r,
where m and n are unit vectors parallel and orthogonal to the plate
faces, respectively (Fig. 1). We are concerned with plane harmonic
acoustic waves travelling along m with the amplitude depending
on y and with the phase factor exp[ik(x � vt)], in which k is wave
number, v = x/k phase velocity, and x angular frequency. For a
given plate with a fixed normal n, the propagation direction m is
defined through its azimuth angle h.

The state-vector formalism of piezoacoustics (Lothe and
Barnett, 1976; Lothe and Barnett, 1977) enables writing the
governing equations in the suitable form

ikNgðyÞ ¼ dgðyÞ
dy

ð1Þ

with

N ¼
N1 N2

N3 � qv2diagðI;0Þ NT
1

� �
;

gðyÞ ¼ AðyÞ; /ðyÞ; ik�1FðyÞ; ik�1DyðyÞ
� �T

;

ð2Þ

where T means transposition and I is the 3 � 3 identity matrix. The
8 � 8 system matrix N contains the density q of the plate material
and its elastic, piezoelectric and dielectric coefficients cijkl, eijk, eij,
which are contracted with components of m and n. The 8-compo-
nent state vector g(y) consists of the amplitudes A and F(=nr) of
the elastic displacement and traction, and of the amplitudes /
and Dy of electric potential and (normal) displacement taken, for in-
stance, as the 4th and 8th components (the U-representation of
Lothe and Barnett, 1976; Lothe and Barnett, 1977).

Following Ting (1996), it is convenient to further partition 4 � 4
blocks of N to the form

N1 ¼
n̂1 a1

a0T1 b1

 !
; N2 ¼

n̂2 a2

aT
2 b2

 !
¼ NT

2; N3 ¼
n̂3 a3

aT
3 b3

 !
¼ NT

3;

ð3Þ

where the 3 � 3 matrices n̂, 3-component vectors a, and scalars b
are defined as follows:

n̂1 ¼NðelsÞ
1 þ 1

b2
a2�a01; n̂2 ¼NðelsÞ

2 þ 1
b2

a2�a2; n̂3 ¼NðelsÞ
3 þ 1

b2
a01�a01;

a1 ¼NðelsÞ
2 ðemnþb1ennÞ; a01 ¼ b2 NðelsÞT

1 ennþenm

� �
; a2 ¼ b2NðelsÞ

2 enn;

a3 ¼NðelsÞT
1 ðemnþb1ennÞþemmþb1enm; b1 ¼ b2 �enmþemn �NðelsÞ

2 enn

� �
;

b2 ¼ enn�enn �NðelsÞ
2 enn

� ��1
; b3 ¼

b2
1

b2
�emmþemn �NðelsÞ

2 emn;

ð4Þ
y

d

0

n

t

m(θ)

plate

Fig. 1. Geometry of the problem.
� and �denote the outer (dyadic) and inner (scalar) products, N(els) is
the 6 � 6 Stroh matrix of elasticity, and epq, epq denote the auxiliary
‘piezoelectric vectors’ and ’dielectric scalars’ depending on n and m:

NðelsÞ ¼
NðelsÞ

1 NðelsÞ
2

NðelsÞ
3 NðelsÞT

1

 !
;

NðelsÞ
1 ¼�c�1

nncnm; NðelsÞ
2 ¼�c�1

nn ;

NðelsÞ
3 ¼ cmm�cmnc�1

nncnm;
;

ðcpqÞjk¼ picijklqk; ðepqÞj ¼pieijkqk; epq¼ pieijqj with p;q¼m or n:

ð5Þ

In the case of pure elasticity (eijk = 0), all vectors epq and hence a
vanish, and so the 3 � 3 blocks n̂ become ‘purely elastic’, i.e.
n̂i ¼ NðelsÞ

i , i = 1, 2, 3. By (4),

n̂3n ¼ NðelsÞ
3 n ¼ 0; n̂1n ¼ NðelsÞ

1 n ¼ �m;a01 � n ¼ a3 � n ¼ 0;

b2 > 0; b3 < 0: ð6Þ

Symmetric matrices NðelsÞ
2 and n̂2 are negative definite, and symmet-

ric NðelsÞ
3 and n̂3 are positive semi-definite with a common null vec-

tor n. Denote their remaining (apart from n) eigen-pairs by

n̂3fa ¼ gafa; NðelsÞ
3 fðelsÞ

a ¼ gðelsÞ
a fðelsÞ

a ; a ¼ 2;3; ð7Þ

where each set of eigenvectors is orthogonal (fa � fb = dab, fa � n = 0
and fðelsÞ

a � fðelsÞ
b ¼ dab; fðelsÞ

a � n ¼ 0) and the eigenvalues, numbered
in the increasing order, satisfy the inequality

g3 P gðelsÞ
3 P g2 P gðelsÞ

2 > 0: ð8Þ

The eigenspectra of NðelsÞ
3 and n̂3 play an essential role in the low-

frequency long-wave asymptotics, see Section 3.

2.2. Propagator matrix and dispersion equation

According to (1), the state vectors at the opposite faces y = 0 and
y = d of either homogeneous or vertically inhomogeneous plate of
thickness d satisfy the relation

gðdÞ ¼Mðd;0Þgð0Þ; ð9Þ

where M(d,0) is the propagator matrix defined in the homogeneous
or inhomogeneous case as, respectively, a matrix exponential or a
Peano series:

Mðd;0Þ ¼
expðikdNÞ;
Iþ ik

R d
0 NðyÞdyþ ðikÞ2

R d
0 NðyÞdy

R y
0 Nðy1Þdy1 þ � � �

(
ð10Þ

Introduce the 4 � 4 blocks of the 8 � 8 propagator M(d, 0) and de-
note their similar to (3) partitioning as follows:

Mðd;0Þ ¼
M1 M2

M3 M4

� �
; Mi

i¼1;...;4
¼

m̂i li

l0Ti gi

 !
; ð11Þ

where m̂, l, and g are 3 � 3 matrices, vectors, and scalars, respec-
tively. Applying the traction-free condition F(0) = 0 and F(d) = 0 at
the plate faces and using (22), (9), (11) yields the dispersion
equation

det m̂3 �
l4 þ i

eð�Þ0

l3

� �
� l01 þ i

eðþÞ0

l03

� �
g2 þ i

eð�Þ0

g1 þ i
eðþÞ0

g4 � 1
eð�Þ0 eðþÞ0

g3

2664
3775 ¼ 0; ð12Þ

where m̂3 ¼ m̂T
3; l01 ¼ l4; l3 ¼ l03; g1 ¼ g4 if the plate is homoge-

neous. A detailed derivation of Eq. (12) can be found in Shuvalov
et al. (2008). It is written in the form which incorporates different
types of the electric boundary conditions (EBC), which are fixed
by way of appropriate choice of the dielectric constants eð�Þ0 and
eðþÞ0 of the exterior on both sides of the plate. The plate with
non-metallized faces maintaining continuity of / and Dy (which
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then decrease away from the plate) implies setting eð�Þ0 ¼ eðþÞ0 ¼ e0.
The plate with ‘electrically closed’ (/ = 0) faces that are metallized
and short-circuited is described by setting eð�Þ0 ¼ eðþÞ0 !1. A plate
with one face, upper or lower, being metallized and the other face
non-metallized corresponds, respectively, to eð�Þ0 !1; eðþÞ0 ¼ e0, or
vice versa (both latter options are indeed equivalent for homoge-
neous plates; it is also so at the leading order in kd� 1 for function-
ally graded plates). Note that disregarding positive definiteness of
the dielectric constant and formally taking zero eð�Þ0 leads to another
type of the ‘closed’ EBC: Dy = 0, which is not pursued in this paper.

By (2) and (10), M(d,0) expands in power series of kd with coef-
ficients depending on v. Inserting this expansion by way of (11)
into Eq. (12) and resolving it for v successively in each order of
kd� 1 determines the Taylor series of three fundamental velocity
branches va(k), a = 1, 2, 3. In particular, M(d,0) truncated after
(kd)2-order enables finding the linear in kd slope of the flexural
branch and the dispersion of the two upper fundamental branches
to the quadratic order in kd� 1. The following explicit analysis is
focussed on the coefficients of this long-wave expansion the funda-
mental branches va(k) (which can readily be recast to the equiva-
lent form of low-frequency expansion of va(x) in powers of xd/
va(0)). The general procedure of deriving the coefficients in ques-
tion is similar to the well-elaborated case of pure elasticity (e.g.
Shuvalov, 2000; Poncelet et al., 2006); however, there is an essen-
tial difference which is that the piezoeffect lifts a restriction on
v2(k) to expand in even powers of kd and hence permits a linear
dispersion at the onset of the two upper fundamental branches.
It is also noteworthy that taking an infinite or zero limit for eð�Þ0 ,
which enables easy re-adjustment of Eq. (12) from ‘open’ to
‘closed’ EBC, reshuffles the powers of kd in the dispersion equation
and hence cannot be applied for the same purpose to the power-
series solution v(k) of (12).

3. Low-frequency dispersion in a homogeneous piezoplate

3.1. Flexural branch

Given an arbitrary anisotropic homogeneous piezoelectric plate,
consider the leading-order dispersion at the onset of the flexural
branch

v1ðkÞ ¼ jkdþ � � � ð () v1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
jxd
p

þ � � �Þ: ð13Þ

We are concerned with the coefficient j that defines the initial
slope of the branch v1(k). Interestingly, j is same for all types of
the EBC in question, i.e. it does not depend on whether one or both
faces are non-metallized or metallized. Its value is found to be

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12q
m � n̂3m

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðelsÞ2 þ

a01 �m
� �2

12qb2

s
with

jðelsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12q
m �NðelsÞ

3 m

s
; ð14Þ

where (43) was used to express j via the well known evaluation of
the slope j(els) of the flexural branch v ðelsÞ

1 ðkÞ in the purely elastic
plate. By (14),

j P jðelsÞ; ð15Þ

i.e. the piezoeffect either increases the initial slope of the flexural
branch v1(k), or retains it when a01 �m ¼ 0. In particular, j = j(els)

for any propagation direction m in a plate which is either parallel
to the symmetry plane m (n \ m), or orthogonal to the symmetry
axis 6, or parallel to the basal plane of the axial symmetry group
G = 32, 422 or 622, see Table in Appendix.

Fig. 2a,b demonstrates dependence of the flexural-branch slope
j on the orientation h of the propagation direction m = m(h) in the
X1-cut and X2-cut LiNBO3 plates (the material constants are taken
from Dieulesaint and Royer, 1980). As noted above, the symmetry
3m of LiNBO3 implies that j = j(els) for any h in the X1-cut where
n \ m (Fig. 2a), and j > j(els) for any h in the X2-cut which is neither
parallel to a symmetry plane, nor orthogonal to a symmetry axis
(Fig. 2b). According to (141), the dependence j(h) is governed by
that of the quadratic form m � n̂3m of the matrix n̂3ðhÞ. In particu-
lar, j(h) attains its extreme values, given by m � n̂3m ¼ gaðhÞ, for
the angles h such that render m(h) parallel to fa(h), where ga and
fa \ n (a = 2,3) are the eigenvalues and eigenvectors of n̂3, see
(7). Further general analysis, resting on the aggregate zero or ±2p
rotation of the frame f2(h) \ f3(h) as m(h) makes a complete circle
about the given n, can be developed similarly to Shuvalov (1999). It
is, however, obvious that if the planar anisotropy is not very strong,
then the shape of the curve j(h) is close enough to that of the
square root of the eigenvalue g3(h) > g2(h) associated with the qua-
si-longitudinal eigenbranch of n̂3ðhÞ. This is observed on comparing
the curves j(h) in Fig. 2a,b to the curves v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3ðhÞ=q

p
in Fig. 4b and

Fig. 5b, which are displayed and discussed below (Section 3.2.3).
In contrast to other anisotropic plate settings, the coefficient j

in a trigonal or cubic plate with the normal nk3 is independent
of the orientation of m. This is because any m(h) \ 3 is the (longi-
tudinal) eigenvector of n̂3ðhÞ corresponding to a constant eigen-
value m � n̂3m � gL. Therefore j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gL=12q

p
¼ const for any h. Its

explicit form specifies by appeal to Section A.1 of Appendix as

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðelsÞ2 þ ðe31 � e33c13=c33Þ2

12q e33 þ e2
33=c33

� �s
with

jðelsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12q
c11 �

c2
13

c33
� c2

14 þ c2
25

c44

� �s
: ð16Þ

Such isotropy of the leading-order coefficient j in the plane, which
is not a plane of transverse isotropy of itself, does not indeed extend
to the whole flexural branch v1(k).

By analogy with Mindlin’s approximation for purely elastic
plates (see Poncelet et al., 2006 for the details), knowing j can
be used for fitting a full extent of the flexural branch v1(k) as
follows

v1ðkÞ 	
jkdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðjkdÞ2=v2
SAW

q ; ð17Þ

where vSAW is the value of surface wave velocity along m which is
approached by v1(k) at high frequency. Fig. 2c shows the flexural
branch and its approximation (17) with j given by (16) for the
X3-cut LiNBO3 plate. Note that the numerical difference between
the actual slope j and its ’purely elastic’ value j(els) happens to be
very small (
10�3). For a comparison, Fig. 2d demonstrates the flex-
ural-branch onset for the same geometry in the PMN–33%PT plate
(the material constants are taken from Zhang et al., 2003), for which
Eq. (16) gives j 	 0.997 while j(els) 	 0.817.

Finally, note that the displacement amplitude of the flexural
wave taken to the first order in kd remains not piezoactive:

A1ðyÞ ¼ n� ikmðy� d=2Þ: ð18Þ

All the other amplitudes ik�1F1, /1, ik�1Dy constituting the state
vector (2)2 for the flexural wave are of the leading order (kd)2.

3.2. Upper fundamental branches

3.2.1. Arbitrary anisotropy
Consider the low-frequency long-wave dispersion of the two

upper fundamental velocity branches in a homogeneous piezoelec-
tric plate,



a b

c d

Fig. 2. Azimuthal variation of the flexural-branch slope j(h) (14) in the (a) X1-cut and (b) X2-cut LiNBO3 plates. The angle h is counted from X3k3 (as in (50)). In the case (a),
j = j(els); in the case (b), j and j(els) are displayed by black and grey lines, respectively. Fig. (c) shows the exact flexural branch v1(k) (black line) and its the approximation (17)
(dashed line) for the propagation direction mkX1 in the X3-cut LiNBO3 plate; the grey line is the same branch computed without account for piezoeffect. Fig. (d) shows the
flexural-branch onset with and without account for piezoeffect (black and grey lines, respectively) for the X3-cut PMN–33%PT plate; the slopes evaluated by (16) are indicated
by a dashed line.

3380 A.L. Shuvalov, E. Le Clezio / International Journal of Solids and Structures 47 (2010) 3377–3388
vaðkÞ ¼ v0a½1þ BaðkdÞ þ CaðkdÞ2 þ � � ��; a ¼ 2;3: ð19Þ

Note that (19) can be recast to the form va(x) by replacing k with
x/v0a and Ca with Ca � B2

a. The zero-order velocities v0a and the dis-
persion coefficients Ba, Ca generally depend on the type of EBC and
thus need to be labeled accordingly. In the following we use the
superscript (f/f) for a non-metallized (free of charge) plate, (f/m) for
a plate with one face metallized, and (m/m) for a plate with metal-
lized and short-circuited faces; while, as before, (els) indicates the
purely elastic case.

The zero-order velocity v0a and polarization vector A0a corre-
sponding to the x, k ? 0 limit are given by the eigenvalues and
eigenvectors (7) of either n̂3 or NðelsÞ

3 , the choice depending on
the type of EBC as follows:

v ðf=fÞ
0a ¼ v ðf=mÞ

0a ¼
ffiffiffiffiffiffiffiffiffiffiffi
ga=q

q
; v ðm=mÞ

0a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðelsÞ

a =q
q

¼ v ðelsÞ
0a

� �
;

Aðf=fÞ
0a ¼ Aðf=mÞ

0a ¼ fa; Aðm=mÞ
0a ¼ fðelsÞ

a ¼ AðelsÞ
0a

� �
; a ¼ 2;3:

ð20Þ

The linear-dispersion coefficients Ba are

Bðf=fÞ
a ¼ 1

4ga

ða3 � faÞ2

e0
� e0 a01 � fa

� �2

" #
;

Bðf=mÞ
a ¼ �

e0 a01 � fa
� �2

2ga
; Bðm=mÞ

a ¼ 0; a ¼ 2;3; ð21Þ

where sign of Ba is set w.r.t. k > 0 as understood hereafter. By the
definition (4) of the vectors a01 and a3, the coefficients Bðf=fÞ

a and
Bðf=mÞ

a in a non-metallized and one-side metallized plate are of
the order of the piezoelectric-coupling parameter e2/ec. Due to
Bðm=mÞ

a ¼ 0, the leading-order dispersion (19) in a short-circuited
plate is quadratic in kd (the same holds true for the model type of
EBC Dy = 0, see Wu et al., 2005). The quadratic-dispersion coefficient
Cðm=mÞ

a is

Cðm=mÞ
a ¼CðelsÞ

a þ 1

24gðelsÞ
a b2

b2a3þNðelsÞT
1 a01�b1a01

� �
� fðelsÞ

a

h i2

with CðelsÞ
a ¼ 1

24gðelsÞ
a

fðelsÞ
a �NðelsÞT

1 NðelsÞ
3 �gðelsÞ

a I
� �

NðelsÞ
1 fðelsÞ

a ; a¼2;3:

ð22Þ

Expressions of Cðf=fÞ
a and Cðf=mÞ

a for generally anisotropic plates are
rather lengthy and therefore omitted. Benchmarks of the zero-
and first-order parameters (20) and (21) for various plate orienta-
tions are listed in Table in Appendix.

Eqs. (20)–(22) (see also (8)) enable the following general observa-
tions on the onset of the upper fundamental branches va(k), a = 2, 3,
in an arbitrary anisotropic homogeneous piezoelectric plate.

� The hierarchy of the zero-order velocity values v0a is
v ðf=fÞ
03 ¼ v ðf=mÞ

03 P v ðm=mÞ
03 ¼ v ðelsÞ

03 P v ðf=fÞ
02 ¼ v ðf=mÞ

02

P v ðm=mÞ
02 ¼ v ðelsÞ

02 : ð23Þ

Note that, for any fixed propagation direction m, the velocity
increment occurring due to the piezoelectric coupling cannot
yet lead to mina¼2;3fv0ag > maxa¼2;3fv ðelsÞ

0a g.
� The linear onset of the branches v2,3(k) in a metallized short-cir-

cuited plate remains disallowed like for the elastic plates:
Bðm=mÞ

a ¼ BðelsÞ
a ¼ 0. By contrast, if one or both faces are non-met-

allized, then the linear dispersion is generally non-zero and pro-
portional to piezoelectric coupling. The coefficient Bðf=fÞ

a is not
sign-definite but is always greater or equal than the coefficient
Bðf=mÞ

a which is non-positive:
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Bðf=fÞ
a P Bðf=mÞ

a ; Bðf=mÞ
a 6 0: ð24Þ

� Let v ðelsÞ
3 ðkÞ in a purely elastic homogeneous plate satisfy

v ðelsÞ
03 > v ðelsÞ

02 if both v ðelsÞ
2;3 ðkÞ are dispersive, otherwise let

v ðelsÞ
3 ðkÞ be the in-plane polarized branch if {m,n} is a symmetry

plane (where the other branch is SH0 v ðelsÞ
2 ¼ const). The onset of

v ðelsÞ
3 ðkÞ is known to always go downwards, in consequence of

the theorem stating that v ðelsÞ
03 is an invariant bound, above

which all the branches v(els)(k) of the given plate spectrum are
decreasing (Shuvalov, 2004; Shuvalov, 2006). None of these
properties are generally valid for a non-metallized piezoelectric
plate due to possibly positive Bðf=fÞ

a .
� For a plate with short-circuited faces, the coefficient of leading-

order (quadratic) dispersion is always greater or equal than its
value calculated without regard for piezoeffect,
Cðm=mÞ
a P CðelsÞ

a : ð25Þ

3.2.2. Plate orthogonal to the threefold axis ðnk3Þ
Consider a piezoelectric plate which is cut orthogonally to the

threefold axis 3 (see Section A.1 of Appendix). The zero-order
velocity v0a and polarization A0a (20) for such a plate are isotropic,
i.e., v0a is the same and A0a(\n) is pure longitudinal and transverse
for any azimuthal orientation of the propagation direction
m = m(h). It is therefore suitable to replace the branch labels

a ¼ 2;3) a ¼ T; L; ð26Þ

so that A0Tkt = n �m and A 0Lkm. The given plate normal nk3 im-
plies a01 ¼ 0 for plates of the 32 class and a01km for other trigonal
or cubic piezoplates. In the former case, by (4), the matrix n̂3 coin-
cides with NðelsÞ

3 and so the zero-order velocity is not piezoactive for
both branches: v ðf=fÞ

0a ¼ v ðelsÞ
0a , a = T, L. In the latter case, the longitudi-

nal wave velocity is piezoactive whereas transverse wave velocity is
not: v ðf=fÞ

0L > v ðelsÞ
0L and v ðf=fÞ

0T ¼ v ðelsÞ
0T .

Assume the plate material of the class G = 3m and set X3k3. As
mentioned above, v ðf=fÞ

0T ¼
ffiffiffiffiffiffiffiffiffiffiffi
gT=q

p
and v ðf=fÞ

0L ¼
ffiffiffiffiffiffiffiffiffiffiffi
gL=q

p
are defined

through the eigenvalues of n̂3 that are constant (independent of
h) and have an explicit form

gT ¼ gðelsÞ
T ¼ c66 �

c2
14

c44
; gL ¼ gðelsÞ

L þ a021
b2
;

gðelsÞ
L ¼ c11 �

c2
13

c33
� c2

14

c44
: ð27Þ

The coefficients (21) of linear dispersion for the non-metallized and
one-side metallized plate are

Bðf=fÞ
T ðhÞ ¼ a2

3 cos2 3h

4e0gðelsÞ
T

; Bðf=fÞ
L ðhÞ ¼ 1

4gL

a2
3 sin2 3h

2e0
� e0a021

 !
;

Bðf=mÞ
T ¼ 0; Bðf=mÞ

L ¼ � e0a021
2gL

: ð28Þ

The coefficients (22) of the leading-order (quadratic) dispersion for
the short-circuited plate are

Cðm=mÞ
T ðhÞ ¼ CðelsÞ

T þ 1

24gðelsÞ
T

c14

c44

� �2 a021
b2

cos2 3h;

Cðm=mÞ
L ðhÞ ¼ CðelsÞ

L � 1

24gðelsÞ
L b2

b2a3 þ
c14

c44
a01

� �2

sin2 3h;

where : CðelsÞ
T ðhÞ ¼ 1

24
c14

c44

� �2 gðelsÞ
L

gðelsÞ
T

� 1

 !
cos2 3h;

CðelsÞ
L ðhÞ ¼ � 1

24
c13

c33

� �2

þ 1� gðelsÞ
T

gðelsÞ
L

 !
c14

c44

� �2

cos2 3h

" #
:

ð29Þ

In the above expressions, the azimuth h is counted from X1 \ m and
b2 ¼
1

e33 þ e2
33=c33

; a01 ¼
e31c33 � e33c13

e33c33 þ e2
33

; a3 ¼ e22 þ
e15c14

c44
:

ð30Þ

Lengthy expressions for Cðf=fÞ
a and Cðf=mÞ

a are omitted.
Fig. 3a-d shows the angular dependence of the coefficients of

linear and quadratic dispersion Bðf=fÞ
T;L ðhÞ and Cðf=fÞ

T;L ðhÞ in the non-met-
allized X3-cut LiNbO3 plate. The zero-order (for k = 0) velocities
v ðf=fÞ

0T and v ðf=fÞ
0L are not presented since they are independent of h,

see (27). Moreover, v ðf=fÞ
0L is almost not piezoactive for the case in

hand due to a numerically small term a021 =b2 in (27). According to
Eq. (281,2), the linear-dispersion coefficients Bðf=fÞ

T ðhÞ and Bðf=fÞ
L ðhÞ

have maximum values for the periodically repeated orientations
h = 0 and h = 30� of m(h), respectively. These are the orientations
for which the unusual, linear trend of the long-wave dispersion
of one or the other branch vT(k), vL(k) is most prominent. Corre-
spondingly, since the linear dispersion is entirely due to the piezo-
effect, these orientations yield the most noticeable departure of the
long-wave onset of the exact dispersion curve vT(k) or vL(k) from its
‘would-be’ shape that disregards the piezoeffect. This is demon-
strated in Fig. 3e,f. Note that v ðf=fÞ

0L 	 v ðelsÞ
0L as mentioned above. Also

note that the linear dispersion of vL(k) is lessened in the present
case due to the fact that Bðf=fÞ

L given in (28) contains two terms of
the opposite sign (cf. (32)). At the same time, comparing the values
of Bðf=fÞ

T;L ðhÞ and Cðf=fÞ
T;L ðhÞ ða ¼ T; LÞ displayed in 3a,b and c,d reveals

that a general predominance of the linear over the quadratic dis-
persion in small kd is enhanced by the overall numerical predom-
inance of the corresponding coefficients Bðf=fÞ

T;L over Cðf=fÞ
T;L . This

feature is also typical for other orientations of the LiNbO3 plate,
see Figs. 4,5 below.

3.2.3. Plate parallel to the symmetry plane m (n \ m)
If a piezoelectric plate is cut along the symmetry plane m, then

a01 ¼ 0 and hence, for any propagation direction m = m(h) in m, the
limit x, k ? 0 of both upper fundamental branches va(k) is not af-
fected by the piezoelectric coupling:

v ðf=fÞ
0a ðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðelsÞ

a ðhÞ=q
q

¼ v ðelsÞ
0a ðhÞ;

Aðf=fÞ
0a ðhÞ ¼ fðelsÞ

a ðhÞ ¼ AðelsÞ
0a ðhÞ; ð31Þ

where a = 2, 3 (chosen so that v02 < v03 for a given h). The coeffi-
cients (21) of linear dispersion reduce to the form

Bðf=fÞ
a ðhÞ ¼ ða3 � fðelsÞ

a Þ2

4e0gðelsÞ
a

ðP 0Þ; Bðf=mÞ
a ¼ 0: ð32Þ

The coefficients of the quadratic dispersion are

Cðf=fÞ
a ðhÞ ¼ CðelsÞ

a þ
a3 � fðelsÞ

a

� �2

8gðelsÞ
a

b2

3
� 1

e0
þ b3

e2
0

þ
a3 � fðelsÞ

b

� �2

e2
0 gðelsÞ

a � gðelsÞ
b

� �
264

375
ða;b ¼ 2;3; a – bÞ;

Cðf=mÞ
a ðhÞ ¼ CðelsÞ

a þ
b2 a3 � fðelsÞ

a

� �2

6gðelsÞ
a

P Cðm=mÞ
a ðhÞ ¼ CðelsÞ

a þ
b2 a3 � fðelsÞ

a

� �2

24gðelsÞ
a

P CðelsÞ
a ðhÞ ¼ �

n � NðelsÞ
1 fðelsÞ

a

� �2

24
: ð33Þ

The entries of these equations are detailed in Section A.2 of
Appendix.



a b c

d e f

Fig. 3. Azimuthal variation of the coefficients of (a,b) linear dispersion Bðf=fÞ
T;L ðhÞ and (c,d) quadratic dispersion Cðf=fÞ

T;L ðhÞ at the long-wave onset of (quasi-) transverse and
longitudinal branches vT, L(k) in the non-metallized X3-cut LiNbO3 plate. The angle h is counted from X1\m (as in (47)). Black and grey lines show the evaluation with and
without account for piezoeffect, respectively; the polar diagrams display the absolute values. Figs. (e) and (f) zoom in on the branches vT(k) < vL(k) plotted for h = 0 and h = 30�;
here black and grey lines show the results of exact calculation with and without account for piezoeffect, and the dashed line demonstrates the asymptotics (19) with the
found coefficients (due to the scale, the grey and dashed lines merge with the black ones for vL in (e) and for vT in (f)).
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Fig. 4a-f shows the azimuthal variation of the above-defined
zero-order velocity v ðf=fÞ

0a ðhÞ and dispersion coefficients Bðf=fÞ
a ðhÞ

and Cðf=fÞ
a ðhÞ in the non-metallized X1-cut LiNbO3 plate. In differ-

ence to the case of X3-cut (Section 3.2.2), the velocity values at
the x, k ? 0 limit are anisotropic: v ðf=fÞ

0a ¼ v ðf=fÞ
0a ðhÞ, see Fig. 4a,b. A

similarity of the shape of the curve v ðf=fÞ
03 ðhÞ (Fig. 4b) to that of

the curve j(h) for the flexural-branch slope (Fig. 2a) has been ex-
plained in Section 3.1. From Fig. 4c,d, it is seen that each of the lin-
ear-dispersion coefficients Bðf=fÞ

2 ðhÞ and Bðf=fÞ
3 ðhÞ caused by the

piezocoupling has a distinctive peak with a maximum near
h = 90� and h = 60�, respectively, and is relatively small away from
this peak. Such ’angular selectivity’ of the effect of piezocoupling is
in agreement with the numerical modelling reported for the X1-cut
LiNbO3 plate in Yang and Chimenti (1995), Yang and Huang (2003),
where the linear trend at the onset of branches v ðf=fÞ

2 ðkÞ and v ðf=fÞ
3 ðkÞ

clearly shows up for the propagation directions m(h) restricted to
the sector Dh 	 ±15� about, respectively, h = 90� and h = 60� (the
present notation h for the azimuth angle corresponds to w = h in
Yang and Chimenti (1995) and to U = p/2 + h in Yang and Huang
(2003)). The long-wave dispersion curves v ðf=fÞ

2;3 ðkÞ for h = 90� and
h = 60� and the comparison with their ‘would-be’ shape v ðelsÞ

a ðkÞ
in disregard of piezoelectricity are demonstrated in Fig. 4g,h.

For completeness, Fig. 5 presents the same results for the non-
metallized X2-cut LiNbO3 plate. In this case, the zero-order velocity
v ðf=fÞ

0a ðhÞ for both branches a = 2, 3 can be piezoactive. Fig. 5a,b
shows that the maximum effect of piezocoupling at x, k ? 0 is ob-
served for the upper velocity v ðf=fÞ

03 at h = 90�. As in the previous
cases, the linear-dispersion coefficients Bðf=fÞ

a ðhÞ (Fig. 5c,d) are in
general greater than the quadratic-dispersion coefficients Cðf=fÞ

a ðhÞ
(Fig. 5e,f). Angular dependence of Bðf=fÞ
a ðhÞ is similar to that in

Fig. 4c,d in that it has a relatively narrow extremum. It occurs for
both branches at h = 90� as a maximum for a = 2 and a numerically
less distinctive minimum for a = 3. The resulting linear trend of the
long-wave dispersion curves v ðf=fÞ

2;3 ðkÞ for h = 90� is demonstrated in
Fig. 5g (where the dashed black and grey lines display the asymp-
totics (19) with and without account for piezoeffect, respectively).

3.2.4. Plate orthogonal to the twofold axis 2 (nk2)
Pure elastic wave parameters of this case are the same as in the

above case n \ m but the piezoelectric properties are different.
Now a3 = 0 for any orientation h of m (h), while the vector a01 is gen-
erally non-zero and hence n̂3 – NðelsÞ

3 . Therefore the zero-order lim-
it v ðf=fÞ

0a of the upper fundamental branches v ðf=fÞ
a ðkÞ, a = 2, 3, in a

non-metallized plate with the normal nk2 is generally piezoactive,
as given by (20) with gaðhÞ; faðhÞ– gðelsÞ

a ; fðelsÞ
a ðhÞ. The linear- and

quadratic-dispersion coefficients are as follows:

Bðf=fÞ
a ðhÞ ¼ �

e0 a01 � fa
� �2

4ga
¼ 1

2
Bðf=mÞ

a ðhÞ 6 0;

C f=fð Þ
a ðhÞ ¼ CðelsÞ

a þ
a01 � fa
� �2

8ga

b3

3
þ 1

e0
þ e2

0b2 þ
e2

0 a01 � fb

� �2

ga � gb

" #
;

Cðf=mÞ
a ðhÞ ¼ CðelsÞ

a þ
a01 � fa
� �2

2ga

b3

3
þ e2

0b2 þ
e2

0 a01 � fb

� �2

ga � gb

" #
;

Cðm=mÞ
a ðhÞ ¼ CðelsÞ

a ðhÞ ¼ �
n � NðelsÞ

1 fðelsÞ
a

� �2

24
; ð34Þ
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d e f

g h

Fig. 4. Azimuthal variation of (a,b) the zero-order velocity v ðf=fÞ
0a ðhÞ ¼ v ðelsÞ

0a ðhÞ
� �

, (c,d) linear-dispersion coefficients Bðf=fÞ
a ðhÞ, and (e, f) quadratic-dispersion coefficients Cðf=fÞ

a ðhÞ
at the long-wave onset of the upper fundamental branches va(k) (a = 2,3) in the non-metallized X1-cut LiNbO3 plate. The angle h is counted from X3k3. Figs. (g) and (h) zoom
in on the branches v2,3(k) plotted for h = 90� and h = 60�. The polar diagrams in (a)–(f) display the absolute values; the black and grey lines show the exact evaluation with and
without account for piezoeffect, respectively. To the scale of (g) and (e), the asymptotics (19) with the found coefficients (see Eqs. (31)–(33)) merge with the exact data except
for v2 in (g) where (19) is shown by a dashed line.
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where a, b = 2, 3, a – b. For more explicit details, see Section A.2 of
Appendix.
4. Functionally graded plate

4.1. Averaged auxiliary matrices

Consider a functionally graded (FG) plate with material proper-
ties depending on y. Denote their averaging through the plate
thickness by the symbol

h� � �i ¼ 1
d

Z d

0
. . . dy ¼

Z 1

0
. . . d1; where 1 ¼ y

d
: ð35Þ

In the following, the anisotropic quantities are written without an
explicit reference to the azumuth angle h of m(h) as their argument.
The leading order of the low-frequency long-wave approximation in
elastic FG plates is based on the Stroh block NðelsÞ
3 ðyÞ and on its

through-plate average (e.g. Zakharov and Becker, 2000; Shuvalov
et al., 2005). The impact of piezoeffect brings in the matrix
n̂3ðyÞ ¼ NðelsÞ

3 � 1
b2

a01 � a01 and also another matrix ~n3ðyÞ,

~n3ðyÞ¼ n̂3�
a01� a01

	 

hb2i

¼ ~nT
3; h~n3i¼ hn̂3i�

1
hb2i

a01
	 


� a01
	 


; ð36Þ

where b2(y) > 0 and a01ðyÞ � n ¼ 0 (see (6)). Each of the averaged
matrices hNðelsÞ

3 i; hn̂3i and h~n3i is symmetric and has a null vector
n. Denote the remaining eigen-pairs as follows:

NðelsÞ
3

D E
�fðelsÞ
a ¼ �gðelsÞ

a
�fðelsÞ
a ; hn̂3i�fa¼ �ga

�fa; hen3i�ga¼ �la�ga; a¼2;3:

ð37Þ

For any fixed h, the eigenvalues (37) numbered in the increasing or-
der satisfy the inequality



(a) (b) (c)

(d) (e) (f)

(g)

Fig. 5. The same as in Fig. 4 for the non-metallized X2-cut LiNbO3 plate (the angle h is counted from X3k3).
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�g3 P �l3 P �gðelsÞ
3 P �g2 P �l2 P �gðelsÞ

2 > 0: ð38Þ

Indeed, �g3 P �gðelsÞ
3 P �g2 P �gðelsÞ

2 and �g3 P �l3 P �g2 P �l2 by the def-

initions of hn̂3i through hNðelsÞ
3 i and h~n3i. At the same time,

h~n3i � hNðelsÞ
3 i ¼ h 1

b2
a01 � a01i � 1

hb2i
ha01i � ha01i is positive semi-definite

by virtue of the Cauchy–Schwarz inequality, and therefore �l3 P
�gðelsÞ

3 , �l2 P �gðelsÞ
2 . Combining the above inequalities yields (38).

The eigenvalues of averaged matrices are certainly not equal to
the averaged eigenvalues of the varying matrices, unless the corre-
sponding eigenvectors are independent of y. This occurs due to the
appropriate symmetry rendering the eigenvectors pure longitudi-
nal and transverse, i.e. parallel to m and t = n �m, whence

�gðelsÞ
T ¼ gðelsÞ

T

D E
¼ t �NðelsÞ

3 t
D E

; �gðelsÞ
L ¼hgðelsÞ

L i¼ m �NðelsÞ
3 m

D E
;

�gT ¼hgTi¼ hg
ðelsÞ
T iþ 1

b2
a01 � t
� �2

� �
; �gL ¼hgLi¼ gðelsÞ

L

D E
þ 1

b2
a01 �m
� �2

� �
;

�lT ¼hlTi¼ hgTi�
1
hb2i

a01 � t
	 
2

; �lL ¼hlLi¼ hgLi�
1
hb2i

a01 �m
	 
2

;

ð39Þ
where we follow (26) in using a = T, L instead of a = 2, 3. Note that
the vector a01ðyÞ in such symmetric cases is either zero or has a con-
stant orientation parallel to m or to t = n �m, see Table in
Appendix.

4.2. Onset of the flexural branch

Unlike the case of a homogeneous plate, the onset slope (13) of
the flexural branch v1(k) in a FG plate becomes sensitive to the type
of EBC applied at its faces. Specifically, the coefficient j(f/f) = j(f/m)

for a FG plate with non-metallized or one-side metallized faces be-
comes different from j(m/m) for the same plate with shorted-cir-
cuited faces. The corresponding values are given by

hqijðf=fÞ2 ¼
X
a¼2;3

1
�ga
hbFað1Þi

Z 1

0
12bFað1Þd1�

Z 1

0
1bFað1Þd1

� �2" #

¼
X
a¼2;3

1
�ga

Z 1

0

Z 1

0
ð1� 11Þ

2bFað1ÞbFa 11ð Þd1d11

 �
; ð40Þ

where bFaðyÞ �m � n̂3ðyÞ�fa, and
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hqijðm=mÞ2 ¼
X
a¼2;3

1
�la

eFað1Þ
D EZ 1

0
12eFað1Þd1�

Z 1

0
1eFað1Þd1

� �2" #

þ 1
b2h i

"
a01ð1Þ �m
	 
 Z 1

0
12a01ð1Þ �md1

� �

�
Z 1

0
1a01ð1Þ �md1

� �2#

¼
Z 1

0

Z 1

0
ð1� 11Þ

2

"X
a¼2;3

1
�la

eFað1ÞeFa 11ð Þ

þ
a01ð1Þ �m
� �

a01 11ð Þ �m
� �

b2h i

#
d1d11; ð41Þ

where eFaðyÞ ¼m � ~n3ðyÞ�ga. For instance, if a01ðyÞ �m is an odd func-
tion w.r.t. the plate midplane, then eFaðyÞ ¼ bFaðyÞ and so

jðm=mÞ2 ¼ j f=fð Þ2 � 1
hqi b2h i

Z 1

0
1a01ð1Þ �md1

� �2

: ð42Þ

Without regard for piezoeffect a01 ¼ 0) n̂3; ~n3 ¼ NðelsÞ
3

� �
, Eqs. (40)

and (41) reduce to the known expression for the ’purely elastic’
j(els). Similarly to homogeneous plates, the flexural-branch
slope in FG plates is not piezoactive, j(f/f) = j(m/ m) = j(els), when
a01 �m ¼ 0 (see Table). In general,

jðf=fÞð¼ jðf=mÞÞP jðm=mÞ

for any fixed n and m according to the formal proof of the ’slowing’
effect of the metallization (Shuvalov et al., 2008). At the same time,
it is not evident that the coefficient j for an arbitrary FG piezoplate
is always bounded from below by j(els), as it is the case for homo-
geneous plates.

For the symmetric cases rendering the eigenvectors of
NðelsÞ

3 ; n̂3; ~n3 parallel to m and t = n �m, Eqs. (40), (41) simplify
in view of (39) to

jðf=fÞ2 ¼ 1
hqihgLi

Z 1

0

Z 1

0
ð1�11Þ

2gLð1ÞgLð11Þd1d11;

jðm=mÞ2 ¼jðf=fÞ2� 1
hqihlLihgLihb2i

Z 1

0

Z 1

0
ð1�11ÞgLð1Þða01ð11Þ �mÞd1d11

 �2

;

ð43Þ

where gLðyÞ ¼ gðelsÞ
L þ ða01 �mÞ

2
=b2. In particular, Eq. (43) holds for

transversely isotropic values j(f/f) and j(m/m) in any propagation
direction m in the plate with the normal n along the threefold axis
3. Fig. 6 shows the long-wave onset of the flexural branch v1(k)
computed for the non-metallized and metallized X3-cut FG plate
of 3m symmetry, whose material is modelled by multiplying the
set of constants q, cijkl, eijk, eij of PMN–33%PT (Zhang et al., 2003)
Fig. 6. The flexural-branch onset for mkX1 in the X3-cut FG plate of 3m symmetry
with non-metallized faces v ðf=fÞ

1

� �
and with short-circuited faces v ðm=mÞ

1

� �
. Dashed

lines show the slopes j(f /f) and j(m/m) given by (43).
by the factor [1 + 9(1 � y/d)2]. The observed slopes j(f/f) 	
0.850 > j(m/m) 	 0.788(>j(els) 	 0.697) verify (43) with gL(y) defined
through the given FG material parameters according to (39), see
also Section A.1 of Appendix.

In conclusion, it is noted that the displacement vector A1(y) of
the flexural wave taken to the first kd-order in a FG plate is, con-
trary to the case of a homogeneous plate, neither always non-
piezoactive, nor always confined to the sagittal plane {n,m}. For
a non-metallized FG piezoplate, this vector is

Aðf=fÞ
1 ðyÞ ¼ n� ikymþ ikd

X
a¼2;3

�fa

�ga

Z 1

0
1bFað1Þd1; ð44Þ

where the last term is generally piezoactive and may provide the
anti-plane component Aðf=fÞ

1 � t ¼ OðkdÞ (even if the plate is purely
elastic). For a homogeneous plate, (44) reduces indeed to (18).

4.3. Origin points of the upper fundamental branches

Dealing with the two upper fundamental branches in a FG
piezoplate, we confine to their origin points at x, k ? 0. The
zero-order velocity and polarization are defined by the eigenvalues
and eigenvectors (37) (see also (39)) of either hn̂3i if the plate is
non-metallized or one-side metallized, or of the averaged matrix
h~n3i if the plate is short-circuited, namely,

v ðf=fÞ
0a ¼ v ðf=mÞ

0a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ga=hqi

p
; v ðm=mÞ

0a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�la=hqi

p
;

Aðf=fÞ
0a ¼ Aðf=mÞ

0a ¼ �fa; Aðm=mÞ
0a ¼ �ga; a ¼ 2;3;

ð45Þ

whereas v ðelsÞ
0a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðelsÞ

a =hqi
q

and AðelsÞ
0a ¼ �fðelsÞ

a for purely elastic FG
plates. It is seen that the values v ðm=mÞ

0a for a FG short-circuited plate
become generally piezoactive, unlike the case of homogeneous
plates where v ðm=mÞ

0a ¼ v ðelsÞ
0a (see (20)). By virtue of (38), the general

hierarchy of the zero-order velocity values in any FG piezoplate is

v ðf=fÞ
03 ¼ v ðf=mÞ

03 P v ðm=mÞ
03 P v ðelsÞ

03

P v ðf=fÞ
02 ¼ v ðf=mÞ

02 P v ðm=mÞ
02 P v ðelsÞ

02 : ð46Þ

If a01ðyÞ �m is an odd function w.r.t. the plate midplane, then the def-
inition (36) implies n̂3 ¼ ~n3ð– NðelsÞ

3 Þ and so v ðf=fÞ
0a ¼ v ðm=mÞ

0a P v ðelsÞ
0a .

If a01 �m ¼ 0 then all three matrices n̂3; ~n3; NðelsÞ
3 coincide.

Hence the zero-order velocity v0a in FG plates is non-piezoactive
for the same symmetric orientations as for homogeneous plates,
see Table. Also the isotropy (azimuthal invariance) of the limit x,
k ? 0 in a plate with the normal nk3 remains valid for FG plates.
In this case, except for the 32 class, the zero-order longitudinal
wave velocity v0L is piezoactive, now for both non-metallized and
short-circuited plates: for example, Eqs. (39) and (45) yield
v ðf=fÞ

0L ¼ 3:452; v ðm=mÞ
0L ¼ 3:094; v ðelsÞ

0L ¼ 2:830 mm/ls for any m in
the X3-cut FG plate exemplified in Fig. 6. Note that the discrepancy
between the above values of v ðm=mÞ

0L and v ðelsÞ
0L is an indicator of the

material heterogeneity.

5. Conclusions

Impact of piezoelectricity on the low-frequency long-wave on-
set of the fundamental plate branches at kd� 1 can raise the slope
j of the flexural branch v1(k), increase the zero-order velocity v0a
at x, k ? 0 for the two upper branches va(k) (a = 2,3) and induce
their linear dispersion. The latter feature is especially significant
because it is ruled out ’by the first principles’ in purely elastic
plates; therefore it is of itself an instantaneous indicator that the
plate material is piezoelectric. The low-frequency effect of piezo-
electricity depends on the plate-wave geometry and, in certain
cases, on the type of electric boundary conditions (EBC) supplied
at the plate faces. For instance, the flexural-branch slope and the
x, k ? 0 limit of the upper branches va(k) are non-piezoactive in
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a plate parallel to the symmetry plane, and so are the zero- and
first-order parameters of these branches in a short-circuited homo-
geneous piezoplate.

The paper presents a detailed analysis of the problem for arbi-
trary anisotropy and various types of the EBC. Explicit expressions
for the onset of the fundamental branches are obtained, and their
azimuthal variation is exemplified for different plate orientations.
Certain invariant inequalities between the long-wave parameters
for a plate under different EBC are established. The flexural-branch
slope j and the zero-order velocity v0a are also derived for the
functionally graded (FG) plates. It is noted that the FG plates are
more sensitive to the type of EBC: in contrast to any homogeneous
plate, the slope j for a non-metallized plate becomes generally dif-
ferent from j for this plate being short-circuited and the velocity
v0a in a short-circuited plate becomes generally piezoactive en-
tirely due to the material heterogeneity. At the same time, the
plate-wave geometrical settings, for which j and v0a are non-
piezoactive under any EBC, remain intact, i.e. are the same for both
homogeneous and FG plates, see Table. Note also that j and v0a are
azimuthally invariant in the X3-cut trigonal or h111i-cut cubic
homogeneous and FG plates.
Appendix A

A.1. Background parameters for nk3

Let n be fixed along the threefold axis 3 of a trigonal or cubic
piezoelectric medium. Choose the crystallographic basis with
X3k3 as the reference for the components of material tensors and
take

m ¼ ðcos h; sin h;0ÞT; t � n�m ¼ ð� sin h; cos h; 0ÞT: ð47Þ

Consider the background parameters introduced in (4), (5). Interest-
ingly, the Stroh-matrix block NðelsÞ

3 for the case in hand is trans-
versely isotropic:
NðelsÞ
3 ¼ gðelsÞ

L m�mþ gðelsÞ
T t� t

with gðelsÞ
L ¼ c11 �

c2
13

c33
� c2

14 þ c2
25

c44
; gðelsÞ

T ¼ c66 �
c2

14 þ c2
25

c44
:

ð48Þ
The vectors a and scalars b specify as
a1 ¼�
1

c44
ðe15mþe14tÞ; a01 ¼

e31c33�e33c13

e33c33þe2
33

m; a2 ¼�
e33

e33c33þe2
33

n;

a3 ¼ e11þ
e15c25

c44
�e14c14

c44

� � cos2h

�sin2h

0

0B@
1CA� e22þ

e15c14

c44
þe14c25

c44

� � sin2h

cos2h

0

0B@
1CA;

b1 ¼0; b2 ¼
1

e33þe2
33=c33

; b3 ¼�e11�
e2

14þe2
15

c44
;

ð49Þ
where certain coefficients vanish for the higher-symmetry piezo-
electric classes. In particular, a01 ¼ 0 for the 32 symmetry class
due to e31 = e33 = 0. In turn, Eqs. (48), (49) with c25 = 0,
e11 = e14 = 0 correspond to the 3m and 23, 43m classes, with a stan-
dard use of ’rotated’ constants in X3k3kh111i for the cubic case.

By virtue of a01km (unless it is zero for 32), the matrix
n̂3 ¼ NðelsÞ

3 þ 1
b2

a01 � a01 is also transversely isotropic likewise NðelsÞ
3 .

As a result, the leading-order dispersion coefficient j at the flex-
ural-branch onset and the limit x, k ? 0 for the two upper funda-
mental branches are transversely isotropic in any homogeneous or
FG plate which is cut orthogonally to the threefold axis 3, see Sec-
tions 3, 4.
A.2. Background parameters for n ? m and nk2

Suppose that n is orthogonal to the symmetry plane m in a
monoclinic medium. Assume the reference basis with X1kn and
take

m ¼ ð0; sin h; cos hÞT; t � n�m ¼ ð0;� cos h; sin hÞT: ð50Þ

Explicit form of the Stroh matrix N(els) for m varying in m may be
found in Shuvalov (2000). In particular

NðelsÞ
3 ¼

0 0 0
0 C cos2 hþEsin2hþF sin2 h Bcos2 hþ 1

2 Dsin2hþEsin2 h

0 Bcos2 hþ 1
2Dsin2hþEsin2 h Acos2 hþBsin2hþC sin2 h

0B@
1CA;

where
A¼ c33�

c2
13

c11
; B¼ c34� c13c14

c11
; C¼ c44�

c2
14

c11
;

D¼ c23þ c44�
c12c13þc2

14
c11

; E¼ c24� c12c14
c11

; F¼ c22�
c2

12
c11
:

ð51Þ

The (non-zero) eigenvalues gðelsÞ
2;3 and the corresponding eigenvec-

tors fðelsÞ
2;3 of NðelsÞ

3 define the zero-order velocity (31). The vectors a
and scalars b specify as follows:

b1 ¼0; b2 ¼ e33þ
c55e2

16�2c56e15e16þc66e2
15

c55c66� c2
56

� ��1

; b3 ¼ e11�
ðe31 coshþe21 sinhÞ

c11

2

;

a01 ¼0; a1 ¼�
1

c11
e31 coshþe21 sinhð Þn; a2 ¼�

b2

c55c66�c2
56

0
c55e16�c56e15

�c56e16þc66e15

0B@
1CA;

a3 ¼

0
e34� c14 e31

c11

� �
cos2 hþ 1

2 e24þe32� c14 e21
c11
� c12 e31

c11

� �
sin2hþ e22� c12 e21

c11

� �
sin2 h

e33� c13 e31
c11

� �
cos2 hþ 1

2 e23þe34� c13 e21
c11
� c14 e31

c11

� �
sin2hþ e24� c14 e21

c11

� �
sin2 h

0BB@
1CCA:
ð52Þ

Next let n be parallel to the twofold axis 2 in a monoclinic medium.
This case is equivalent to the above case n\m within the framework
of pure elasticity, but is different from it with regard for the piezo-
effect. Keeping the basis X1knðk2Þ and the azimuth angle h as in
(50), it now follows that

b1 ¼ 0; b2 ¼
1

e11 þ e2
11=c11

;

a01 ¼ b2

0
e14 � e11

c14
c11

� �
cos hþ e12 � e11

c12
c11

� �
sin h

e13 � e11
c13
c11

� �
cos hþ e14 � e11

c14
c11

� �
sin h

0BB@
1CCA;

a2 ¼ �b2
e11

c11
n; a3 ¼ 0;

ð53Þ

where lengthy expressions for b3 and a1(\n) are omitted.

A.3. Overview of the symmetric cases

The benchmarks of the auxiliary vectors a01; a3 and of the eigen-
vectors fðelsÞ

a ; fa and eigenvalues gðelsÞ
a ; ga of the matrices NðelsÞ

3 and
n̂3 are recapped in Table (where a = 2, 3) a = T, L when fðelsÞ

a ; fa

coincide with t � n �m and m) (See Table 1). According to (14),
(20) and (21), this data provides quick basic insight into the zero-
and first-order parameters at the onset of the fundamental
branches in a homogeneous piezoelectric plate under different
types of EBC at its faces. Moreover, the non-piezoactive cases
j ¼ jðelsÞ;v0a ¼ v ðelsÞ

0a pointed out in Table qualify as such for FG
plates as well.

It is noted that the strong-inequality signs in the upper rows of
Table correspond to an arbitrary, generic orientation of the
propagation direction m (indicated as ’"m’) in the fixed plane with
a given normal n. The settings which assume a fixed symmetric
orientation of m in this plane are considered in the four
lower rows. The properties of vectors a01; a3 certainly follow the



Table 1
Benchmarks of the auxiliary vectors a01 ; a3; the slope j (14) of the flexural branch v1(k); the zero-order polarization A0a and velocity v0a (20) of the upper fundamental
branchesva(k), a = 2, 3, and their linear-dispersion coefficients Ba (21) in a homogeneous piezoplate.

Orientation a01 a3 j, j(els)
Aðf=fÞ

0a ; AðelsÞ
0a v ðf=fÞ

0a ; v ðelsÞ
0a Bðf=fÞ

a Bðf=mÞ
a

n?m, "m 0 , m,t = = , , m,t = > 0 0

nk2, �4, "m , m,t 0 > – , , m,t > < 0 2Bðf=fÞ
a

nk3, "m km , m,t >
A0T = t = > 0 0

G – 32 A0L = m > 7 0 < 0

nk3, "m
0 , m, t =

A0T = t
= > 0 0

G = 32 A0L = m

nk�6; 8m 0 , m,t =
A0T = t

= > 0 0
A0L = m

nk4, "m km 0 > = , , m,t > < 0 2Bðf=fÞ
a

G – 422

nk6, "m km 0 >
A0T = t = 0 0

G – 622 A0L = m > < 0 2Bðf=fÞ
a

nk4, G = 422
0 0 =

= , , m,t
= 0 0

nk6, G = 622 A0T,0L = m,t

n?2, mk2 kt km =
A0T = t > < 0 2Bðf=fÞ

a

A0L = m = > 0 0

n? 2, tk2 kt kt =
A0T = t > 7 0 < 0
A0L = m = 0 0

nkm, m?m km kt >
A0T = t = > 0 0
A0L = m > < 0 2Bðf=fÞ

a

nkm, t?m km km >
A0T = t = uncoupled SH0

A0L = m > 7 0 < 0
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symmetry subordination implying that, e.g., a conjunction of the
cases n \m and nk3 yields the results for nk�6, same for nk3 and
nk2 leads to nk6, etc. Some other high-symmetry cases not men-
tioned in Table are similarly evident on these grounds.

A.4. Wave-field dispersion at the onset of upper fundamental branches

The leading-order dispersion of the amplitudes of elastic dis-
placement, potential and electric displacement associated with
two upper fundamental branches v2,3(k) in a non-metallized plate
y 2 [0,d] is

Aðf=fÞ
a ðyÞ ¼ Aðf=fÞ

0a þ ik y� d
2

� �
n̂1fa þ ik

d
2

faðfa � n̂1faÞ

þ k
d
2

fb
e�1

0 ða3 � faÞða3 � fbÞ � e0ða01 � faÞ a01 � fb

� �
ga � gb

; a; b ¼ 2;3;a – b;

/ðf=fÞ
a ðyÞ ¼ ik y� d

2

� �
a01 �m
� �

þ k
d
2

a3 �m
e0

;

k�1Dðf=fÞ
ya ðyÞ ¼ k y� d

2

� �
ða3 �mÞ þ ik

d
2
e0 a01 �m
� �

;

ð54Þ

where Aðf=fÞ
0a ¼ fa, see (20). The traction amplitude ik�1Fa is, as usual,

of the order (kd)2. For a short-circuited plate, Aðm=mÞ
a is given by (541)

without piezoelectric terms, i.e. Aðm=mÞ
a ¼ AðelsÞ

a up to the first order in
kd, and the dispersion of /ðm=mÞ

a starts from the (kd)2-order (due to /
= 0 at the faces), while ik�1Dðm=mÞ

ya starts from the term 1
b2

a01 � f
ðelsÞ
a

which, when non-zero, is of the order of piezoelectric coupling.
The vectors n̂1fa and NðelsÞ

1 fðelsÞ
a ða ¼ 2;3Þ appearing in the first-

order perturbation of the elastic displacement Aðf=fÞ
a and AðelsÞ

a may
generally have any orientation with respect to the reference frame
of orthogonal vectors n and f2,3 or fðelsÞ

2;3 . At the same time, a ’pure
piezoelectric’ component of this perturbation can be singled out
for plates of certain symmetric cuts. For example, this is the case
if the plate is parallel to the symmetry plane or orthogonal to the
twofold axis, so that n\m or nk2. Then n̂1fakn for a = 2,3 and
hence Eq. (541) with reference to Table yields
Aðf=fÞ
a ðyÞ¼ fðelsÞ

a þ ik y�d
2

� �
NðelsÞ

1 fðelsÞ
a þk

d
2

fðelsÞ
b

e�1
0 a3 � fðelsÞ

a

� �
a3 � fðelsÞ

b

� �
gðelsÞ

a �gðelsÞ
b

for n?m;

Aðf=fÞ
a ðyÞ¼ faþ ikyn̂1faþk

d
2

fb
e0 a01 � fa
� �

a01 � fb

� �
ga�gb

for nk2;

ð55Þ

whereas AðelsÞ
a ðyÞ ¼ fðelskÞ

a þ ik y� d
2

� �
NðelsÞ

1 fðelsÞ
a , in which NðelsÞ

1 fðelsÞ
a

ð¼ n̂1fa for n ? mÞ is also parallel to n. Therefore, for both plate
orientations n\m and nk2, the departure of the first-order pertur-
bation of Aðf=fÞ

a from the plane spanned by the zero-order polariza-
tion Aðf=fÞ

0a and the plate normal n is entirely caused by the
piezoeffect.
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