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1. INTRODUCTION

This paper is devoted to a problem of nonlinear oscillations of an elastic
plate in a potential supersonic gas flow. The case when the inertial forces
are essentially weaker than the resistance ones is called a quasistatic case.
This problem can be described by a class of retarded quasilinear partial
differential equations

� u22� u � � u � f �u x , t dx �u � � � q u � d x ,Ž . Ž . Ž .˙ H t 0ž / � x� 1

x � � , t � 0 1Ž .

with the boundary conditions

� �u � �u � 0. 2Ž .� � � �

2 Ž .Here � is a bounded domain in R , x � x , x , � , �, are positive1 2
� uparameters of the system, u � , and � is the Laplace operator. Assump-˙ � t

Ž .tions on the scalar function f s will be given below. We rely here on the
� � Ž � � Ž . .Berger approach to large deflection 1 , in 1 f s is a linear function .
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The retarded term has the form

�2
x1 � �2�1

q u ; x � d	 d
 a � b uŽ . H Ht 
 
ž /2� k � x � x�� 0 1 2

x � 	1
� 	 , x � cos 
 , t � � x � 	Ž .2 
 1ž /k 3Ž .
 sin 
 � 1 k � cos 


a � , b � ,
 
 � sin 
  � sin 


	
� 	 �  � sin 
 ,Ž . Ž .
 2k

� Ž . Ž .where � x is the extension of � x by zero outside of �, and the
2' Ž .parameter  � 1 represents the gas velocity, k �  � 1 . Formula 3

Ž .shows that the value of retarded term at time t uses values of u s for
Ž . Ž .�1s � t � t�, t , where t� � l  � 1 is a time retardation and l is the

length of � along x axis. That is why here and below we use the notation1
Ž . Ž . Ž .u � u 
 � u t � 
 , 
 � �t�, 0 .t t

The investigation of the considered problem with a Cauchy initial
conditions was begun in second order in a time nonretarded setting
Ž Ž . .q u � 0 . The existence and uniqueness theorems have been obtainedt

� �in 2 ; the long-time behaviour for the one dimensional case was investi-
Ž � � .gated by various authors see, e.g., 3�5 and the references therein . The

� �analysis of influence of potential supersonic flow carried out in 6, 7 leads
Ž .to the retarded equation 1 . The Cauchy problem for second order in the

� �time retarded case has been investigated in 8, 9 , where the existence and
properties of solutions in different spaces were studied. For a quasistatic

� � � � Ž . Ž .formulations see 10, 11 . In 11 the author considered problem 1 � 3
Ž � �.with the following initial conditions cf. 12 :

� �u � u , u � � x , t . 4Ž . Ž .t�0� t � Ž� t� , 0.o

Ž .In general we do not assume any compatibility conditions between � s
and u . So even if � is continuous or piecewise continuous, we do noto

Ž . Žassume that lim � s � u . For mechanical models as in our case, thes� 0 o
.model of oscillations of a plate such initial conditions can describe a strike

Ž . Žshock at time moment t � 0 see the discussion of such initial conditions
� �. � �in the finite dimensional case, e.g., in 13 . It was proved 11, Theorem 2.1

Ž . Ž .that 1 � 4 have an unique solution which is continuous for all t � 0.
From the point of view of applications it is not convenient to evaluate a

Ž .function in a moment of the strick a point of discontinuity of solution ; it
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is more convenient to evaluate it in some moment t � b � 0 when the
solution is continuous. To this end, in finite dimensional problems, i.e.,

u � f u , u t � Rn , t 	 0,Ž . Ž .˙ t

Žone can consider the boundary value problem with conditions see, e.g.,
� �.13

� �u � � x , t , u � u , b � 0.Ž .t � Ž� t� , 0. t�b b

In the present paper we formulate an analogous boundary value problem
Ž . Ž . Ž .for the infinite dimensional system 1 � 3 such that Cauchy conditions 4

are a partial case. As an another motivation of the considered infinite
dimensional boundary value problem we note that our investigation of
systems with impulses has a common background with investigations of
continuous dynamical systems based on the recently introduced concept of

� �inertial manifold with delay 15 . However, our methods are different from
� �13, 15 .

Let us first introduce the function spaces we need.

2. FORMULATION OF THE PROBLEM AND RESULT

� 4� 2Ž .Let e be an orthonormal basis of L � consisting of the eigen-k k�1
functions of the Dirichlet problem for �:

�e � � e � 0, e x � 0 if x � � � , 0 � � 
 � 
 ��� .Ž .k k k k 1 2

We use the following scale of spaces:

� �
2 s 2� �FF � u � u e : u � � u � � , s � � . 5Ž .Ý Ýss k k k k½ 5

k�1 k�1

� � Ž . 2Ž .We denote by . and . , . the norm and the inner product in FF � L � .o
Let us define by P the orthoprojection in the space FF on the subspaceN s

� 4spanned by e , . . . , e and we set Q � I � P .1 N N N
Now we are in a position to give our initial boundary conditions

� � �u � � x , t , Q u � q , P u � p , b � 0,Ž .t � Ž� t� , 0. t�0� t�bN 0 N b

6Ž .

where N is some nonnegative integer.

Ž . Ž .Remark 2.1. The Cauchy conditions 4 are a partial case of 6 when
N � 0.
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Ž . Ž . Ž .DEFINITION. A strong solution of problem 1 � 3 , 6 on an interval
� � Ž . Ž . 2Ž .0, T is a vector-function u t � C 0, T ; FF � L �t�, T ; FF with deriva-1 2

Ž . 2Ž . Ž .tive u t � L 0, T ; FF if Eq. 1 is satisfied almost everywhere in t on˙ �2
� � Ž .0, T as an equality in FF and conditions 6 hold.�2

Our result is the following
2Ž .THEOREM. Let q � Q FF , p � P FF , � � L �t�, 0; FF , d � FF ,0 N 1 b N 0 2 0 0

and let f be a local Lipschitz and satisfying the condition

inf lim f s 	 �C ,Ž . f
s��

with some constant C . Then there exists b such that for any b 
 b thef 0 0
Ž . Ž . Ž . � �problem 1 � 3 , 6 has a strong solution on any inter�al 0, T . This solution

Ž . 2Ž .is unique and satisfies the property u t � L 0, T ; FF .3

Proof of Theorem. Introduce the space

2 �Y � C �t�, b; FF � L �t�, b; FF : y � 0 7Ž . Ž . Ž .� 4t � Ž� t� , 0.1 2

with the norm

b2 22� �y � max y s � y t dt .Ž . Ž .Y H1 2
� �s� 0, b 0

2Ž .In the space Y � P L � we will use the following norm:N

b2 2 2 2� �y ; p � max y s � y s ds � p .Ž . Ž . Ž .H 11 20 0Y N � �s� 0, b 0

Ž � �.The next assertion is of importance to us see 7, 8 :

Ž . 2Ž .LEMMA 2.1. If u t � L �t�, T ; FF then2�2 �

t2 2 1q u 
 Ct� u � d� , 0 
 � � ,Ž . Ž .H 2�2 �t 42 �
t�t�

Ž . 2Ž .and the map u � q u, t is linear and continuous from L �t�, T ; FF to2�2 �
2Ž .L 0, T ; FF .2 �

Ž .Rewrite 1 in the form

u t � Au t � M u � 0. 8Ž . Ž . Ž . Ž .˙ t
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Ž .2 �1Here A � �� � andD

� u tŽ .2 �1M u � �f �u t �u t � � � q u � d � .Ž . Ž . Ž . Ž .Ž .t t o� x1

Ž .Write the variation of constants formula for the solution of 8 :

t�t A �Ž t�� . Au t � e u � e M u d� .Ž . Ž .H0 �
0

Ž . Ž . Ž .If we write u t � y t � � t , where

e�t Au if t 	 0,0� t � 9Ž . Ž .½ � t , if t � �t�, 0 ,Ž . Ž .

Ž .then y t should satisfy

t� �Ž t�� . A� e M y � � d� , if t 	 0,Ž .H � �y t �Ž . 0�0 if t � �t�, 0 .Ž .

i � i � i 2Ž .LEMMA 2.2. Let y � Y such that y 
 C and let p � P L � ,Y T 0 N
� �i � 1, 2. Then there exists constant D � 0 such that for all � � 0, b one hasT

�1�4 1 1 2 2 1 1 2 2A M y � � � M y � � 
 D y ; p � y ; p .Ž . Ž . Ž . Ž .Ž .� � � � T 0 0 Y N

i Ž . i iHere D is some constant; � is defined by 9 with u � p � q .T 0 0 0

Proof of Lemma 2.2. Using Lemma 2.1 we obtain

�1�4 1 1 2 2A M y � � � M y � �Ž . Ž .Ž .� � � �

1�4 1 2 1�4 1 2
 C A y � � y � � C A � � � � �Ž . Ž . Ž . Ž .Ž . Ž .T T

1�2
� 21�2 1 2� Ct� A y s � y s dsŽ . Ž .Ž .Hž /��t�

1�2
� 21�2 1 2� Ct� A � s � � s ds .Ž . Ž .Ž .Hž /��t�
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2 ŽDenote � � � eigenvalues of the operator A, and using estimate see,i i
� �.e.g., 14

���� � �
� �t A �t� �1� � � �A e u 
 � � e A u 10Ž .1ž /t

iŽ . Ž .and definition of � t by 9 , we get

� 21�2 1 2A � s � � s dsŽ . Ž .Ž .H
��t�

� 21�2 �s A 1 2
 A e p � p dsŽ .H 0 0
0

1�4
� 1 2�s� 1 21 � �
 � � e p � p dsH 11 0 0ž /4 s0

1�4
� 1 12 21 2 �s� 1 21� � � �
 p � p � � e ds � p � p � � ; .1H 10 0 1 0 0ž / ž /4 s 40

Here we have denoted

kkb �s�1� b; k � � � e ds. 11Ž . Ž .H 1ž /s0

Ž .Note that for k � 1, � b; k � 0 when b � 0. So we have

�1�4 1 1 2 2A M y � � � M y � �Ž . Ž .Ž .� � � �

1�2
b 2	 1 2 1 2 1 2� � � �
 C max y � y � p � p � y s � y s dsŽ . Ž .1 1 H 2T 0 0 ž /ž � �0, b 0

1�211 2� �� p � p � b; .Ž .10 0 4 /
This completes the proof of Lemma 2.2.

2Ž . 2Ž .Let us fix � � L �t�, 0; FF , q � Q FF , and p � P L � . Consider2 0 N 1 b N
Ž . 2Ž . 2Ž .the map F y; p : Y � P L � � Y � P L � defined as follows:0 N N

t� �Ž t�� . A� e M y � � d� , if t 	 0;Ž .H � � 0�0 if t � �t�, 0Ž .F y ; p � .Ž .0

bA b � A� 0e p � e P M y � � d� .Ž .Hb N � �
0
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Ž . Ž .Here the function � t is defined by 9 with u � p � q � FF . Note that0 0 0 1
q is fixed but p is a variable of F. We deduce the second coordinate of0 0
F from the equation

b�A b �Žb�� . Ap � P u b � e p � e P M u d� .Ž . Ž .Hb N 0 N �
0

A b b � A Ž .Hence p � e p � H e P M u d� .0 b 0 N �

Ž .A fixed point of operator F gives unknown coordinates P u 0 of initialN
Ž . � � Ž .data u 0 and the solution on the interval 0, b . Having � and full u 0 we

Ž .arrive at initial conditions 4 and hence one can use all results on the
� �continuation of the solution and its properties obtained in 11 .

2Ž .Let us show that F is contaction in Y � P L � . We will denote twoN
Ž .T Ž .coordinates of F as F ; F . Let us estimate F , using Lemma 2.2, 10 ,1 2 1

Ž .and 11 :

1�4 1 1 2 2A F y ; p t � F y ; p tŽ . Ž .Ž . Ž .Ž .1 0 1 0

t 1�4 �Ž t�� . A 1 1 2 2
 A e M y � � � M y � � d�Ž . Ž .Ž .H � � � �
0

1�21t �Ž t�� .� �1�4 1 11
 � � e A M y � �Ž .ŽH 1 � �ž /2 t � �Ž .0

2 2�M y � � d�Ž . .� �

1
1 1 2 2
 � b , D y ; p � y ; p .Ž . Ž .T 0 0 Y Nž /2

In the same way, we deduce

1�2 1 1 2 2A F y ; p t � F y ; p tŽ . Ž .Ž . Ž .Ž .1 0 1 0

3
1 1 2 2
 � b , D y ; p � y ; p .Ž . Ž .T 0 0 Y Nž /4

� i �Remark 2.2. We need an a priori estimate y 
 C to use LemmaY T
� �2.2. It can be obtained as in 11, Theorem 2.1 .
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Now let us estimate the second coordinate F :2

1�4 1 1 2 2A F y ; p t � F y ; p tŽ . Ž .Ž . Ž .Ž .2 0 2 0

b 1�4 A� 1 1 2 2
 A e P M y � � � M y � � d�Ž . Ž .Ž .H N � � � �
0

b1�2 � � �1�4 1 1 2 2N
 � e A M y � � � M y � � d�Ž . Ž .Ž .HN � � � �
0

� N be � 1
1 1 2 2
 D y ; p � y ; p .Ž . Ž .T 0 0 Y N1�2�N

Combine the last three estimates to get

21 1 2 2F y ; p � F y ; pŽ . Ž .0 0 Y N

22 21 3 �1 � bN
 � b , � � b , � � e � 1Ž .Ž . Ž . N2 4

22 1 1 2 2� D y ; p � y ; p .Ž . Ž .T 0 0 Y N

Choosing b small enough, we obtain a contraction of the map F. The
proof of the theorem is complete.

� �COROLLARY. We consider here the same class of strong solutions as in 11
and under the same conditions as nonlinear function f. So all results on

Ž . Ž . Ž .long-time asymptotic beha�iour of solutions to 1 � 3 , 6 , including the
existence of a finite dimensional attractor, are �alid.
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