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a b s t r a c t 

The long-term impact of air pollution on human health can be estimated from small-area 

ecological studies in which the health outcome is regressed against air pollution concen- 

trations and other covariates, such as socio-economic deprivation. Socio-economic depriva- 

tion is multi-factorial and difficult to measure, and includes aspects of income, education, 

and housing as well as others. However, these variables are potentially highly correlated, 

meaning one can either create an overall deprivation index, or use the individual charac- 

teristics, which can result in a variety of pollution-health effects. Other aspects of model 

choice may affect the pollution-health estimate, such as the estimation of pollution, and 

spatial autocorrelation model. Therefore, we propose a Bayesian model averaging approach 

to combine the results from multiple statistical models to produce a more robust repre- 

sentation of the overall pollution-health effect. We investigate the relationship between 

nitrogen dioxide concentrations and cardio-respiratory mortality in West Central Scotland 

between 2006 and 2012. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Air pollution has repeatedly been shown to have a

detrimental impact on human health, with one of the ear-

liest prominent examples being the London smog episode

of 1952 ( Health, 1954 ), which resulted in more than 30 0 0

excess deaths compared with previous years. High pollu-

tion episodes such as this have lead to the implementa-

tion of air pollution legislation, such as the Clean Air Acts

in 1956 and 1993 in the UK, and the 2008 Ambient Air

Quality Directive in the European Union (EU). These pol-
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icy practices have lead to a reduction in air pollution con-

centrations in many parts of the world, however a recent

report by the World Health Organisation estimates that

outdoor air pollution contributed to 3.7 million premature

deaths in people under the age of 60 in 2012 ( Organisation,

2014 ). Air pollution remains a serious public health prob-

lem in the UK, as nitrogen dioxide (NO 2 ) concentrations

currently do not meet the targets set by EU legislation.

For example, in West Central Scotland, where the study

presented in this paper is based, NO 2 concentrations are

predicted to exceed these targets until 2020 ( Department

for the Environment and Affairs, 2015 ). 

The impacts of both long-term (chronic) and short-term

(acute) exposure to pollution have been much researched,

with the latter being estimated from daily ecological
article under the CC BY license 
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time-series studies (see Willocks et al., 2012 ). The long- 

term health impact of pollution is most often estimated 

from cohort studies (see Cesaroni et al., 2014 ), which make 

use of individual-level pollution and disease data. How- 

ever, cohort studies are expensive and time consuming to 

implement due to the required follow-up period. This has 

led to spatial ecological study designs being used (see Lee 

et al., 2009; Maheswaran et al., 2005 ), which make use 

of routinely available small-area data such as from the 

Scottish Neighbourhood Statistics ( http://www.sns.gov.uk/ ) 

database, and the Health and Social Care Information Cen- 

tre ( http://www.hscic.gov.uk/ ). Due to their ecological na- 

ture these studies cannot be used to determine individual- 

level causality, but they contribute to and independently 

corroborate the body of evidence provided by cohort stud- 

ies. 

Spatial ecological studies are based on partitioning the 

study region into n contiguous small areas determined by 

administrative boundaries, such as electoral wards or cen- 

sus tracts. For each small area the response is the number 

of disease cases in a fixed time period, such as the num- 

ber of deaths due to respiratory disease in one year. These 

disease cases are adjusted for varying population demo- 

graphics across the study region using indirect standardi- 

sation, and then regressed against air pollution concentra- 

tions and other confounders, such as socio-economic de- 

privation. Typically, Poisson log-linear models are used to 

estimate the pollution-health effect, and any residual spa- 

tial autocorrelation in the data is accounted for by intro- 

ducing a set of spatially autocorrelated random effects into 

the model. This residual spatial autocorrelation could be 

due to numerous factors, including unmeasured confound- 

ing (where an important spatially correlated variable is not 

included in the model or is unknown), neighbourhood ef- 

fects (where the behaviour of subjects is influenced by sur- 

rounding subjects), and grouping effects (where subjects 

of similar characteristics group together). The health im- 

pact of numerous pollutants have been estimated in these 

studies, such as particulate matter (PM 2.5 , Lawson et al., 

2012 and PM 10 , Rushworth et al., 2014 ), ozone (O 3 , Wang 

et al., 2009 ), sulphur dioxide (SO 2 , Elliott et al., 2007 ), and 

nitrogen dioxide (NO 2 , Maheswaran et al., 2012 ). In this 

study, we focus on NO 2 , since it is a good marker for 

traffic-related pollution and because measured NO 2 data, 

via diffusion tubes which only measure NO 2 , are more spa- 

tially prevalent across our study region than for other pol- 

lutants. 

As with all statistical modelling endeavours, estimating 

the effects of air pollution on health requires a number of 

modelling choices to be made, which are likely to affect 

the results. This variation in effect estimates due to model 

uncertainty is typically ignored, as results from a single ‘fi- 

nal’ model are often presented. However, it is likely to be 

crucial in this context because the estimated effect sizes 

are small and their significance will depend on the final 

model chosen (this is highlighted in Table 2 ), thus it is 

likely that statistically significant or non-significant results 

could be presented depending on the choices made by the 

investigators. 

In this paper we investigate the impact of three such 

modelling choices, namely estimation of NO 2 concentra- 
tions, the measure of socio-economic deprivation used, 

and the method of control for residual spatial autocor- 

relation. Pollution concentrations have been estimated in 

small-area studies using atmospheric dispersion models 

(see Haining et al., 2010; Lee et al., 2009 ), since they pro- 

vide complete spatial coverage of the study region. How- 

ever, these modelled concentrations are known to contain 

biases, and thus statistical fusion models ( Berrocal et al., 

2010; Fuentes and Raftery, 2005; McMillan et al., 2009 ) are 

increasingly being used, which calibrate the modelled con- 

centrations with observed pollution measurements. Socio- 

economic deprivation is the major confounder in these 

studies, and existing studies have either used individual 

variables such as job seekers allowance or house price ( Lee 

et al., 2014 ) or composite indexes such as the Townsend 

index ( Maheswaran et al., 2005 ) to account for it. Finally, 

residual spatial autocorrelation can be ignored by fitting a 

simple Poisson log-linear model to the data, while a com- 

mon adjustment is to add a set of random effects repre- 

sented by a conditional autoregressive (CAR, Besag et al., 

1991 ) prior to the linear predictor. However, Clayton et al. 

(1993) and Paciorek (2010) have shown this may lead to 

collinearity between the fixed and random effects, and a 

number of extensions have been proposed such as Hughes 

and Haran (2013) and Lee and Sarran (2015) . 

Therefore, in this paper we present a new study of 

NO 2 concentrations and cardio-respiratory mortalities in 

West Central Scotland, in which we quantify empirically 

how robust the estimated pollution-health effect sizes are 

to these factors, and present a Bayesian model averag- 

ing (BMA, Hoeting et al., 1999; Raftery, 1995 ) approach 

to estimating the overall effect size whilst accounting 

for model uncertainty. Section 2 describes our motivating 

study, along with descriptions of the disease, air pollu- 

tion and deprivation data. Section 3 presents the statisti- 

cal models described above for taking into account residual 

spatial autocorrelation and estimating NO 2 concentrations. 

This section also presents the BMA methodology for com- 

bining the estimated air pollution effects from the range of 

models considered. Our results from the individual models 

and BMA are presented in Section 4 , while Section 5 pro- 

vides a concluding discussion. 

2. Motivating study 

The methodology developed in this paper is motivated 

by a new epidemiological study investigating the health 

impact of long-term exposure to air pollution in West Cen- 

tral Scotland, for the seven year period 2006 to 2012. 

West Central Scotland is centred around the Greater Glas- 

gow conurbation, which has a population of around 1.1 

million people and a land area of 386 km 

2 . West Cen- 

tral Scotland is partitioned into n = 2089 non-overlapping 

data zones, which are the key small area geography in 

Scotland comprising between 500 and 1000 residents of 

similar social characteristics. These data zones are de- 

scribed at the Scottish Neighbourhood statistics website 

(SNS, http://www.sns.gov.uk/ ). The layout of the study re- 

gion is presented in Fig. 1 , where the city of Glasgow is 

the set of small data zones in the middle north of the 

figure. 

http://www.sns.gov.uk/
http://www.hscic.gov.uk/
http://www.sns.gov.uk/
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Fig. 1. Display of the data. The top left panel shows background NO 2 concentrations provided by DEFRA from an atmospheric dispersion model averaged 

across 2006–2012, while the top right panel shows estimates from a statistical fusion model. The bottom left panel displays the Standardised mortality 

ratio (SMR) for cardio-respiratory disease aggregated over 2006–2012, while the bottom right panel displays the SIMD score (without health domain), 

where a high score indicates deprivation and a low score indicates affluence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Description of the data 

The disease data comprise counts of the numbers of

cardio-respiratory mortalities (International Classification

of Diseases, 10th Revision: I0 0-I99, J0 0-J99) within each

of the 2089 data zones during the seven year period 2006

to 2012. These death records were obtained from National

Records Scotland. In order to take into account the het-

erogeneity of the population within each data zone in

terms of their size and demographic structure, the ex-

pected numbers of cardio-respiratory mortalities were cal-

culated by indirect standardisation, using age- and sex-
specific cardio-respiratory mortality rates for the whole of

West Central Scotland. However, due to the low numbers

of cardio-respiratory mortalities occurring in a single year

(mean of 4.093 for 2006), the cardio-respiratory deaths

have been aggregated across the seven year period. The

spatial distribution of disease risk is shown in the bot-

tom left panel of Fig. 1 , which displays the standardised

mortality ratios (SMR, observed numbers/expected num-

bers) across West Central Scotland for the aggregated years

2006 to 2012. A SMR of 1.2 corresponds to a 20% increase

in the risk of disease compared to what is expected. The

highest SMRs are found in areas with the highest level of
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deprivation, and range between 0 and 4.747, with a mean 

SMR of 1.0 6 6, and a standard deviation of 0.440. Data 

zones have a SMR of zero when there have been no deaths, 

which occurs mostly in the centre of Glasgow as it consists 

mainly of shopping districts. 

Concentrations of NO 2 are available from two sources: 

measured data from automatic monitors and diffusion 

tubes, and modelled concentrations from an atmospheric 

dispersion model. The set of measured data are more spa- 

tially dense than corresponding data for other pollutants 

(mainly thanks to the inclusion of diffusion tubes), but 

still do not give complete spatial coverage of all 2089 data 

zones in West Central Scotland. Therefore the simplest ap- 

proach is to only use the modelled concentrations, which 

are annual mean background concentrations available at a 

1km × 1km resolution for the seven year period from the 

Department for Environment, Food and Rural Affairs (DE- 

FRA, http://uk-air.defra.gov.uk/ ). These concentrations are 

temporally aggregated over the seven years by averaging, 

and are spatially aggregated to the data zone level using 

NO 2 i = 

∑ n i 
j=1 

exp (−d i j ) ˜ NO 2 j ∑ n i 
j=1 

exp (−d i j ) 
, (1) 

where NO 2 i 
is the averaged concentration for data zone i . 

Here ˜ NO 2 1 , . . . , 
˜ NO 2 n i 

are the modelled NO 2 concentrations 

at the n i grid squares within data zone i , and d ij is the Eu- 

clidean distance between the population weighted centroid 

of data zone i and the centroid of grid square j . This is 

to ensure that the data zone takes a representative value 

according to the location at which the population density 

is greatest. Data zones containing no grid square centroids 

were assigned the NO 2 concentration nearest the popula- 

tion weighted centroid of the data zone. These data zone 

averaged modelled concentrations are displayed in the top 

left panel of Fig. 1 , and the city of Glasgow has the high- 

est level of background concentrations, as expected. How- 

ever, these modelled concentrations are known to contain 

biases, and in this paper we compare the health effects es- 

timated from using them to those obtained from predicting 

NO 2 with a statistical fusion model. A number of statisti- 

cal fusion models have been proposed for combining mea- 

sured and modelled pollution data, including Berrocal et al. 

(2010) ; Fuentes and Raftery (20 05) ; McMillan et al. (20 09) . 

However, the model we use here is that of Pannullo et al. 

(2015) , which uses a similar approach to that of Berrocal 

et al. (2010) and was developed for the West Central Scot- 

land study region. The general form of the model is given 

by 

 (s k ) ∼ N (b (s k ) 
� α + φ(s k ) , ν

2 σ 2 ) , k = 1 , . . . , m, 

φ = (φ(s 1 ) , . . . , φ(s m 

)) ∼ N (0 , σ 2 �(ρ)) , (2) 

where V ( s k ) is the measured NO 2 concentration at spatial 

location s i for i = 1 , . . . , m spatial locations. The m mea- 

surements are modelled by a set of covariates b ( s k ) with 

regression parameters α, and the former include the mod- 

elled concentration in the nearest grid square and the lo- 

cal environment in which the site is located (e.g. roadside, 

urban background, rural). The second term in the mean 

model is a spatial random effect φ = (φ(s 1 ) , . . . , φ(s m 

)) , 

which accounts for residual spatial autocorrelation in the 
measured data and are modelled by a Gaussian process 

with a spatial exponential correlation matrix �(ρ) where 

ρ denotes the range parameter. Full details of this model 

are available from Pannullo et al. (2015) . 

This model calibrates the modelled concentrations ac- 

cording to urban background and rural environments since 

the West Central Scotland study region has a large propor- 

tion of rural areas, while allowing the effect of the mod- 

elled concentrations to vary across space. Pannullo et al. 

(2015) showed that their fusion model produced improved 

predictions of the measured data in a cross-validation ex- 

ercise compared to using the modelled concentrations in 

isolation, and predictions were made from the model on a 

1 km × 1 km resolution for each year separately. These 

predictions were then temporally aggregated by averag- 

ing and spatially aggregated up to data zone level using 

the same form as (1) . The resulting concentrations are dis- 

played in the top right panel of Fig. 1 , which is structurally 

similar to the modelled concentrations as expected. 

The main confounding factor in ecological health stud- 

ies is socio-economic deprivation ( Mackenbach et al., 

1997 ), in which populations with higher levels of depriva- 

tion may be more susceptible to the effects of air pollu- 

tion ( Laurent et al., 2007 ), for example due to them hav- 

ing worse underlying health on average compared with 

more affluent communities. However, deprivation is multi- 

factorial and difficult to measure, and is commonly rep- 

resented by a composite index. Here we make use of the 

Scottish Index of Multiple Deprivation (SIMD, http://www. 

gov.scot/Topics/Statistics/SIMD ), which is a composite in- 

dex containing seven domains, namely: access to services; 

crime; education, skills and training; employment; income; 

health; and housing. The health domain is not used in 

this study since it contains an indicator of the Compara- 

tive Mortality Factor, and therefore includes deaths which 

are part of the outcome in our study. Correlations between 

the remaining six domains are displayed in Table 1 , where 

there are high correlations between income, employment, 

and education; and weak to moderate correlations with 

the access, housing and crime domains. The overall SIMD 

index is not appropriate for this study since it contains the 

health domain. Therefore, we re-weighted the overall index 

to remove the health domain based on the original index 

methodology, details of which can be found here http:// 

www.gov.scot/Publications/20 04/10/20 089/45173 . The bot- 

tom left panel of Fig. 1 displays the re-weighted overall in- 

dex, where it is clear that the city of Glasgow contains the 

majority of the most deprived areas, as expected. 

Initially, a simple Poisson log-linear model (without 

any spatial random effects) was fitted to the data with 

NO 2 (DEFRA modelled concentrations) and income de- 

privation as covariates, and the overdispersion parame- 

ter was estimated as 4.35, suggesting substantial overdis- 

persion with respect to the Poisson assumption of equal 

mean and variance. The residuals from this model were 

then tested for spatial autocorrelation, using a permuta- 

tion test based on Moran’s I statistic ( Moran, 1950 ). The 

null hypothesis of this test is no spatial autocorrelation, 

and Moran’s I statistic was 0.036 with a p-value of 0.003, 

suggesting that spatial autocorrelation is present in the 

residuals. 

http://uk-air.defra.gov.uk/
http://www.gov.scot/Topics/Statistics/SIMD
http://www.gov.scot/Publications/2004/10/20089/45173
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Table 1 

Correlations between the six deprivation measures, where EST denotes the education, skills and training domain. 

Variable Access Crime EST Employment Income Housing 

Access 1 −0.252 −0.250 −0.287 −0.321 −0.411 

Crime – 1 0.411 0.436 0.430 0.351 

EST – – 1 0.833 0.860 0.680 

Employment – – – 1 0.946 0.436 

Income – – – – 1 0.658 

Housing – – – – – 1 
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3. Statistical models for estimating air pollution and 

health effects 

The aim of this paper is to estimate the sensitivity

of the estimated relationship between NO 2 concentrations

and cardio-respiratory mortality in the West Central Scot-

land region between 2006 and 2012. In doing this we es-

timate the sensitivity of the effect to changing the esti-

mation of NO 2 concentrations, control for socio-economic

deprivation, and allowance for residual spatial autocorrela-

tion in the mortality data after adjusting for the covariate

effects. We com pare three specific Poisson log-linear mod-

els in this sensitivity analysis, which differ in their con-

trol for residual spatial autocorrelation. These models are

then combined to estimate an overall pollution-health ef-

fect using Bayesian model averaging, with inference based

on Markov chain Monte Carlo (McMC) simulation. These

models are implemented in the R software environment

( R Core Team, 2015 ), using the CARBayes ( Lee, 2013 )

and ngspatial ( Hughes and Cui, 2015 ) packages, while

Bayesian model averaging was implemented using code

written by the authors. Sensitivity to the estimation of NO 2

and control for socio-economic deprivation is assessed by

fitting different covariate combinations in all of the three

models described below. 

3.1. Data and likelihood model 

The vector of the observed numbers of cardio-

respiratory mortalities is denoted by Y = (Y 1 , . . . , Y n ) , while

the expected numbers of mortalities are computed us-

ing indirect standardisation based on age- and sex-specific

cardio-respiratory mortality rates in West Central Scotland.

These expected counts are denoted by E = (E 1 , . . . , E n ) ,

where for data zone i , E i = 

∑ 

r N ir γr , where N ir is the num-

ber of people in age-sex group r in data zone i , and γ r

denotes the region-wide age-sex mortality rate. The vec-

tor of NO 2 concentrations is denoted by x = (x 1 , . . . , x n ) for

all n data zones, while each measure of socio-economic

deprivation is denoted by u = (u 1 , . . . , u n ) . Thus, for the

i th data zone the vector of covariates is given by z � 
i 

=
(1 , x i , u i ) while the corresponding parameters are given by

β = (β1 , β2 , β3 ) , so that β1 is the intercept term while

β2 is the key parameter in this model, namely the ef-

fect of NO 2 on cardio-respiratory mortality risk. A general

Bayesian Poisson log-linear model for these data is given

by 

 i | E i , R i ∼ Poisson (E i R i ) for i = 1 , . . . , n, 

ln (R i ) = z � β + φi , 
i 
β ∼ N (m , V ) , (3)

where R i is the risk of disease in data zone i . The regres-

sion parameters β are assigned a weakly informative mul-

tivariate Gaussian prior with hyperparameters ( m, V ), typ-

ically with mean zero and a large diagonal variance ma-

trix. The final term in the linear predictor φ = (φ1 , . . . , φn )

controls for the residual spatial autocorrelation in the data

after accounting for the covariate effects, and we consider

three modelling specifications here. 

3.2. Model 1 – no spatial autocorrelation 

The simplest approach is to ignore the presence of

any residual spatial autocorrelation and assume φi = 0 for

all data zones i , which is equivalent to fitting a Pois-

son generalised linear model to the data. This model

naively assumes the cardio-respiratory counts are indepen-

dent conditional on the covariates, which as illustrated in

Section 2 is not true for our case study. Additionally, the

model does not allow for overdispersion relative to the

Poisson likelihood, and thus makes the restrictive assump-

tion that E [ Y i ] = Var [ Y i ] , which was shown in Section 2 to

be unrealistic. This model is thus included here for com-

parison purposes with the other models described below. 

3.3. Model 2 – globally smooth spatial autocorrelation 

The standard approach to accounting for residual spa-

tial autocorrelation and overdispersion in this context is

to model φ by a set of globally spatially smooth (au-

tocorrelated) random effects φ = (φ1 , . . . , φn ) . A number

of models can be specified for these random effects, in-

cluding conditional autoregressive (CAR), simultaneous au-

toregressive (SAR) or geostatistical models. However, CAR

priors are the most common in this field, and examples

of their use include Maheswaran et al. (2005) and Lee

et al. (2009) . A number of globally smooth CAR priors

have been proposed, and a review by Lee (2011) concluded

that the model proposed by Leroux et al. (1999) was the

most appealing. This model can be specified by a set of

n univariate full conditional distributions f (φi | φ−i ) , where

φ−i = (φ1 , . . . , φi −1 , φi +1 , . . . , φn ) . Spatial autocorrelation is

imposed using a binary n × n neighbourhood matrix W ,

whose ij th element w i j = 1 if areas ( i, j ) share a com-

mon border, and w i j = 0 otherwise. This specification as-

serts that neighbouring areas have random effects that are

partially autocorrelated, otherwise the random effects are
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conditionally independent. The model has the form 

φi | φ−i ∼ N 

(
ρ

∑ n 
j=1 w i j φ j 

ρ
∑ n 

j=1 w i j + 1 − ρ
, 

τ 2 

ρ
∑ n 

j=1 w i j + 1 − ρ

)
, (4) 

where ρ controls the level of spatial autocorrelation, with 

ρ = 0 corresponding to spatial independence with mean 

zero and constant variance, and ρ = 1 corresponding to 

strong spatial autocorrelation (and simplifying to the in- 

trinsic CAR model). Weakly informative hyperpriors are as- 

signed for τ 2 and ρ; typically an inverse-gamma( a, b ) dis- 

tribution for τ 2 , and a uniform distribution on the unit in- 

terval for ρ . 

3.4. Model 3 – orthogonal smoothing 

One problem with traditional CAR models such as (4) , is 

that the spatially smooth random effects have been shown 

to be correlated with the spatially smooth fixed effects, 

such as air pollution ( Paciorek, 2010 ). This spatial con- 

founding between the fixed and random effects leads to 

variance inflation and the model parameters becoming un- 

interpretable. Much research has been conducted on con- 

trolling for this spatial confounding, in which the random 

effects are instead modelled with a series of basis func- 

tions that are orthogonal to the covariates, thus mitigating 

this confounding ( Hughes and Haran, 2013; Reich et al., 

2006 ). In this paper, we utilise the orthogonal smoothing 

model proposed by Hughes and Haran (2013) due to the 

low dimensionality of the random effects, which leads to 

fast computation. This model replaces the random effects 

φi in Eq. (3) with a linear combination of basis functions 

that are orthogonal to the fixed effects. Let the matrix of 

p covariates be denoted by Z = (z � 1 , . . . , z 
� 
n ) 

� , then the or- 

thogonal projection matrix (hat matrix) onto the column 

space of the design matrix Z is defined by 

P = Z (Z 

� Z ) −1 Z 

� , (5) 

and let the residual projection matrix onto the space or- 

thogonal to Z be defined by 

P 

′ = I n − P . (6) 

The residual projection matrix is then used to create a 

set of eigenvectors, from the matrix product P 

′ WP 

′ , which 

combines covariate orthogonality given by P 

′ with spatial 

adjacency given by W . The eigenvectors of P 

′ WP 

′ contain 

all possible mutually distinct spatial patterns of cluster- 

ing orthogonal to Z . Furthermore, spatial dependence is re- 

lated to both positive and negative eigenvalues, where pos- 

itive eigenvalues correspond to positive spatial autocorre- 

lation. The size of the eigenvalue associated with a given 

eigenvector determines the relative importance of its spa- 

tial pattern, so Hughes and Haran (2013) suggest only se- 

lecting the first q < < n eigenvectors corresponding to the 

largest positive eigenvectors. This matrix is denoted by M , 

where m 

� 
i 

= (m i 1 , . . . , m iq ) . The chosen number of eigen- 

vectors q acts as a tuning parameter, which determines the 

extent of dimensionality reduction in the model, and the 

authors suggest using q = 50 as a default choice. The or- 

thogonal smoothing model replaces the random effects in 

the linear predictor in Eq. (3) by 

ln (R i ) = z � β + m 

� δ, 
i i 
δ ∼ N (0 , τ 2 Q (W ) −1 
s ) , (7) 

where the random effects δ are assigned a Gaussian prior 

with mean 0 , and precision matrix given by Q (W ) s = 

M 

T Q (W ) M , where Q (W ) = diag (W1 ) − W corresponds to

the precision matrix for the intrinsic CAR prior ( Besag 

et al., 1991 ). 

3.5. Bayesian model averaging 

Bayesian model averaging provides a coherent frame- 

work for combining the estimates of the same quantity of 

interest from a number of different Bayesian models into 

a single overall estimate, which accounts for model un- 

certainty. Such model uncertainty is often ignored in ex- 

isting studies, and as we show in the next section can 

have a large impact on the results. Recall that β2 is the 

key parameter of interest in this model, namely the effect 

of NO 2 concentrations on cardio-respiratory mortality risk. 

Consider the case of having K candidate models, where in 

our study we have K = 42 (see next section for details). 

Denote these models by (M 1 , . . . , M K ) and their respective 

sets of model parameters by ( θ1 , . . . , θK ) . Let β2 denote 

the true unknown parameter of interest and 

ˆ β2 k 
denote 

the estimate (posterior median) from the k th model. Then 

the posterior distribution of interest is 

f (β2 | Y ) = 

K ∑ 

k =1 

f (β2 | M k , Y ) f (M k | Y ) . (8) 

Here f ( β2 | M k , Y ) is the posterior distribution of β2 from

model K , and f ( M k | Y ) is the posterior probability of model

M k . This equation essentially averages the posterior dis- 

tributions for β2 under each model weighted by their 

posterior model probabilities. The posterior probability for 

model M k is given by 

f (M k | Y ) = 

f (Y | M k ) f (M k ) ∑ K 
l=1 f (Y | M l ) f (M l ) 

, (9) 

where f ( M k ) is the prior probability for model M k . We

specify our prior ignorance via a discrete uniform prior for 

f ( M k ), that is f (M k ) = 1 /K. This specification simplifies the

posterior probability for model M k in Eq. (9) to 

f (M k | Y ) = 

f (Y | M k ) ∑ K 
l=1 f (Y | M l ) 

. (10) 

The marginal (averaged over the parameters) probability of 

the data given model M k is computed by 

f (Y | M k ) = 

∫ 
θk 

f (Y | θk , M k ) f ( θk | M k ) d θk , (11) 

which can be approximated by J McMC samples as 

f (Y | M k ) ≈
1 

J 

J ∑ 

j=1 

f (Y | θ( j) 
k , M k ) f ( θ

( j) 
k | M k ) , (12) 

where θ
( j) 
k 

is the j th McMC sample for model M k . Once 

these quantities have been computed the posterior mean 

and variance of β2 are given by: 

E (β2 | Y ) = 

K ∑ 

k =1 

ˆ β2 k f (M k | Y ) , (13) 
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Table 2 

Posterior median relative risks (RR) and 95% credible intervals for a 5 

μgm 

−3 increase in NO 2 concentrations on cardio-respiratory mortality. 

The results displayed relate to models varying in their estimation of NO 2 , 

control for deprivation and allowance for residual spatial autocorrelation. 

The results in bold are substantial effects at the 5% level. 

Deprivation Model RR (95% CI) 

Fusion DEFRA 

Access GLM 1.036 (1.016, 1.056) 1.050 (1.026, 1.075) 

Leroux 1.033 (1.006, 1.059) 1.045 (1.015, 1.075) 

OS 1.029 (1.020, 1.039) 1.041 (1.030, 1.051) 

Crime GLM 1.038 (1.018, 1.058) 1.053 (1.033, 1.074) 

Leroux 1.039 (1.015, 1.063) 1.053 (1.027, 1.079) 

OS 1.034 (1.025, 1.043) 1.046 (1.037, 1.057) 

Education GLM 1.006 (0.988, 1.024) 1.019 (0.999, 1.039) 

Leroux 1.007 (0.991, 1.024) 1.019 (1.002, 1.041) 

OS 1.006 (0.998, 1.015) 1.021 (1.011, 1.030) 

Employment GLM 1.010 (0.990, 1.030) 1.020 (1.0 0 0, 1.040) 

Leroux 1.015 (0.998, 1.033) 1.025 (1.007, 1.044) 

OS 1.014 (1.006, 1.023) 1.025 (1.016, 1.036) 

Housing GLM 0.992 (0.973, 1.012) 0.989 (0.968, 1.011) 

Leroux 0.990 (0.971, 1.009) 0.980 (0.959, 1.002) 

OS 0.992 (0.983, 1.002) 0.987 (0.977, 0.997) 

Income GLM 1.003 (0.985, 1.021) 1.010 (0.990, 1.030) 

Leroux 1.008 (0.992, 1.108) 1.012 (0.995, 1.030) 

OS 1.007 (0.998, 1.015) 1.013 (1.004, 1.023) 

SIMD GLM 1.007 (0.989, 1.025) 1.017 (0.997, 1.037) 

Leroux 1.013 (0.997, 1.030) 1.021 (1.003, 1.040) 

OS 1.011 (1.003, 1.020) 1.021 (1.011, 1.030) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Var (β2 | Y ) = 

K ∑ 

k =1 

[ Var (β2 | M k , Y ) + 

ˆ β2 
2 k 

] f (M k | Y ) 

− E (β2 | Y ) 2 , (14)

where Var( β2 | M k , Y ) is the posterior variance of β2 from

model M k . Based on a normal approximation to the poste-

rior, an approximate 95% credible interval can be obtained

for β2 that accounts for model uncertainty. 

4. Results from the West Central Scotland study 

We now present the results of our study investigat-

ing the long-term effects of NO 2 concentrations on cardio-

respiratory mortality in West Central Scotland between

2006 and 2012. Section 4.1 describes the set of results ob-

tained from fitting the range of models described in this

paper, which illustrates the sensitivity of the results due to

model choice. Then Section 4.2 presents our overall esti-

mate of the effect of NO 2 on cardio-respiratory mortality

using the Bayesian model averaging approach outlined in

the previous section. Inference for all models described in

this section is based on running 5 parallel Markov chains

for 120,0 0 0 iterations, which included a burn-in period of

20,0 0 0 iterations. The remaining samples were thinned by

10 to reduce their autocorrelation, thus producing a final

set of 50,0 0 0 posterior samples across the five chains. 

4.1. Results – sensitivity to model choice 

We empirically investigate the sensitivity of the esti-

mated pollution-health effect to three modelling choices.

The first is the estimation of spatially averaged NO 2

concentrations for each data zone, and we compare av-

eraging the raw output from the atmospheric dispersion

model used by DEFRA ( http://uk-air.defra.gov.uk/ , denoted

DEFRA ) to averaging predictions from the fusion model

proposed by Pannullo et al. (2015) (denoted Fusion ). The

second modelling choice is how to control for the con-

founding effects of socio-economic deprivation, and we

compare using the composite Scottish Index of Multiple

Deprivation (SIMD, minus the health domain), with indi-

vidual indicators from its sub-domains, namely access to

services, crime, education, employment, housing and in-

come. Finally, we compare three approaches to controlling

for residual spatial autocorrelation, ignoring it (denoted

GLM ), modelling it using random effects represented by

the globally smooth model proposed by Leroux et al.

(1999) (denoted Leroux ), and modelling it using a set of

orthogonal random effects proposed by Hughes and Haran

(2013) (denoted OS ). 

All combinations of these factors gives a set of 42 possi-

ble models, and the results are summarised in Table 2 and

3 , which respectively display the posterior median relative

risks and 95% credible intervals, and the Deviance Informa-

tion Criterion (DIC, Spiegelhalter et al., 2002 ) together with

the effective number of parameters ( p D ) for each model

and the root mean square error (RMSE) of the data Y . All

pollution-health effects are presented on the relative risk

scale for a 5 μgm 

−3 increase in NO 2 concentrations (for

both DEFRA and Fusion ), as this is a realistic change in
long-term exposure. Overall, there is evidence that increas-

ing NO 2 concentrations is associated with small but pos-

itive increases in the risk of cardio-respiratory mortality,

as 36 out of the 42 models estimate the relative risk to

be greater than 1. However, the range of the effects esti-

mated across the 42 models is large, being between a 2%

decreased risk (0.980) to a 5.3% increased risk (1.053) asso-

ciated with a 5 μgm 

−3 increase in NO 2 . This suggests that

the results are highly sensitive to model choice, and that

if we had presented results from a single model then we

could have shown either a positive or a negative effect of

NO 2 on mortality risk. Focusing on the 95% credible inter-

vals shows that 23 of the 42 intervals are wholly above the

null risk of 1, which is just over 57% of the models consid-

ered. 

The three modelling choices considered here all ap-

pear to have the potential to substantially effect the es-

timated relative risks, as the estimates from varying one

factor at a time can lead to large changes in risk. For ex-

ample, changing the NO 2 metric from that produced by the

fusion model to that produced by DEFRA resulted in the

risks changing by between −1% and 5.3%, and in all but 3

cases these changes were positive. This indicates that over-

all using the DEFRA concentrations resulted in increased

risks compared with using the predictions from the fusion

model. Changing the control for socio-economic depriva-

tion also had a large impact on the results, with changes

in relative risk of between 3.8% and 7.3% across the 7

measures considered depending on the combination of DE-

FRA/Fusion and GLM/Leroux/OS . In general, using the hous-

http://uk-air.defra.gov.uk/
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Table 3 

Model fit for each of the 42 models, measured by the Deviance Information Criterion (DIC), the effective number of 

parameters ( p D ), and the root mean square error (RMSE). 

Deprivation Model DIC ( p D ) RMSE 

Fusion DEFRA Fusion DEFRA 

Access GLM 20219 (2) 20182 (2) 13.560 13.519 

Leroux 13797 (1508) 13799 (1507) 2.518 2.525 

OS 19130 (76) 19115 (74) 12.614 12.604 

Crime GLM 20017 (2) 19967 (2) 13.471 13.429 

Leroux 13793 (1498) 13791 (1497) 2.511 2.510 

OS 19222 (67) 19201 (66) 12.707 12.697 

Education GLM 18240 (2) 18224 (2) 12.742 12.724 

Leroux 13601 (1369) 13600 (1367) 2.687 2.688 

OS 17964 (62) 17942 (62) 12.336 12.319 

Employment GLM 18373 (2) 18359 (2) 12.811 12.812 

Leroux 13600 (1378) 13597 (1377) 2.655 2.658 

OS 18010 (66) 17996 (65) 12.323 12.318 

Housing GLM 19107 (2) 19106 (2) 12.989 12.993 

Leroux 13737 (1451) 13736 (1450) 2.522 2.522 

OS 18336 (69) 18352 (69) 12.302 12.323 

Income GLM 18139 (2) 18135 (2) 12.638 12.623 

Leroux 13589 (1362) 13589 (1362) 2.693 2.692 

OS 17743 (66) 17729 (60) 12.128 12.129 

SIMD GLM 18277 (2) 18267 (2) 12.701 12.694 

Leroux 13609 (1374) 13606 (1373) 2.672 2.670 

OS 17900 (62) 17898 (64) 12.242 12.240 
ing indicator resulted in the lowest effect sizes, while us- 

ing crime resulted in the highest estimates. Finally, varying 

the control for spatial autocorrelation had a slight effect on 

the results, with differences in relative risk between the 

three models considered ranging between 0.1% and 0.9%. 

The only pattern of note is that the effect sizes are atten- 

uated for the OS models compared to the Leroux models 

in 10 out of the 14 models, with 2 models comprising the 

same effect size. 

Finally, Table 3 summarises the fit of each model via 

the DIC and RMSE, which shows that in all cases the Ler- 

oux model fits the data best compared with the other alter- 

natives. This is surprising considering the globally smooth 

model has the potential for correlation between the fixed 

and random effects and thus one would expect the OS 

model to outperform the Leroux model. The OS model 

has many fewer effective number of parameters compared 

to the Leroux model, which makes it more parsimonious. 

However, it is this reduction in dimensionality that has 

resulted in a poorer fit to the data (in terms of DIC). In 

most cases, the DIC is lower for the DEFRA concentra- 

tions compared to the Fusion concentrations, while the in- 

come domain provides the best fit to the data of all the 

socio-economic indicators considered here. Furthermore, 

the RMSE allows us to assess the closeness of the mod- 

els fitted values to the observed health outcomes (with 

the lowest values indicating better performance), and to 

give a sense of scale the 25th and 75th percentiles of 

the observed cardio-respiratory deaths were 14 and 33 re- 

spectively. The Leroux models have the lowest RMSE val- 

ues compared to the GLM s and OS models, which is due 

to their increased number of effective parameters. For the 

Leroux models the relationship between RMSE and depriva- 
tion is opposite to that observed for the GLM s and OS mod- 

els, with income, the best deprivation covariate in terms of 

DIC, having the highest RMSE compared to the other de- 

privation measures (2.693 compared to 2.518 for access). 

The reason is that after adjusting for income deprivation 

there is less residual spatial variation in the model com- 

pared to using the other deprivation covariates. Thus, the 

random effects have less spatial variation, and thus less 

impact on the fitted values. For example, the variance τ 2 

is 0.230 for the access covariate compared to 0.094 for in- 

come. This is also observed in the effective number of pa- 

rameters p D , which is smallest for the model with income. 

In contrast, the DIC is an overall measure of model quality 

that penalises more complex models containing more pa- 

rameters, hence higher DIC values for access (and others) 

compared to income. 

4.2. Results – BMA 

The previous section shows clear sensitivity of the re- 

sults to the model fitted, and one solution would be to 

choose a single ‘best’ model, for example by minimising 

the DIC. However this clearly ignores model uncertainty, 

which can be accounted for using BMA as described in 

Section 3.5 by combining the estimated effect sizes from 

the 42 models considered here. When this was done the 

overall estimated relative risk was 1.011 together with as- 

sociated 95% uncertainty interval of (0.993, 1.029). This 

small but positive effect indicates that for a 5 μgm 

−3 in- 

crease in NO 2 concentrations cardio-respiratory deaths in- 

crease by an estimated 1.1%, although the lower end of the 

95% credible interval is below the null risk of 1. In fact, 

the posterior probability that the relative risk is greater 
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than 1 is 0.884. This result is essentially a mixture between

the effect estimates from the Leroux model including in-

come and DEFRA NO 2 concentrations, and the effect esti-

mate from the Leroux model including income and Fusion

model NO 2 concentrations. The former had the most in-

fluence on the overall effect size since its posterior model

probability f ( M k | Y ) was 67.82%, whilst it was 32.17% for the

latter. So in this example the large differences in fit across

the 42 models has resulted in only two models contribut-

ing to the overall effect estimate. 

5. Discussion 

In this paper we investigated the sensitivity of the

pollution-health relationship in West Central Scotland to

the impact of three modelling choices: the estimation of

NO 2 concentrations, control for socio-economic depriva-

tion, and control for residual spatial autocorrelation after

accounting for the covariate effects. Our main finding is

that the choice of these three factors can have a major im-

pact on the resulting pollution-health effects, which means

that if only a single model was presented researchers could

show a wide range of effect sizes depending on which

model is chosen. The estimated pollution-health effect in

this study varies considerably across the 42 models (ef-

fect sizes range from 0.980–1.053), highlighting the esti-

mated pollution-health effect sizes are not robust to the

three aforementioned factors. 

We then utilised BMA to combine the results from

all 42 models into an overall pollution-health effect size,

whilst taking into account model uncertainty. Our fi-

nal estimated effect size shows a 5 μgm 

−3 increase in

NO 2 concentrations is associated with 1.1% higher cardio-

respiratory deaths in West Central Scotland between 2006

and 2012. However, this effect is (borderline) not substan-

tial at the 5% level, as the resulting 95% credible interval

contains the null risk of 1. This could be due to the fact

that the majority of the NO 2 concentrations are relatively

low, and thus greater variation in the exposure would be

needed to observe substantial health impacts. 

A second finding from our study is the attenuation of

the pollution-health effects when the NO 2 concentrations

were estimated using the geostatistical fusion model, com-

pared to when the NO 2 concentrations were estimated

by the DEFRA diffusion model. The estimated health ef-

fects changed between −1% and 5.3%, indicating that in-

creased risks are observed when the DEFRA concentrations

are utilised. This is an interesting result considering the

majority of spatial ecological studies in Scotland (and in-

deed in the UK) make use of modelled concentrations be-

cause of their wide availability and fine scale spatial cover-

age. Furthermore, the correlation between residual disease

(after adjustment from income deprivation) and pollution

from both the fusion and DEFRA models is 0.041 and 0.029

respectively. This highlights that the DEFRA pollution con-

centrations are more correlated with residual disease, thus

explaining why it has a stronger effect size (see Table 2 )

compared to the pollution concentrations from the fusion

model. However, in terms of pollution predictive perfor-

mance, Pannullo et al. (2015) show that the DEFRA data

are not as good at predicting measured pollution concen-
trations at the point level, since the root mean square pre-

diction error (RMSPE) is 0.337 compared to 0.255 for the

fusion model. Furthermore, a recent study conducted in

mainland Scotland by Huang et al. (2015) concluded that

the estimated health effects of NO 2 were largely consistent

when estimated from a fusion model compared to mod-

elled concentrations from the DEFRA. 

A third finding from our study is that the global spa-

tial autocorrelation model comprising the DEFRA concen-

trations and income deprivation dominated the overall

pollution-health effect size when combining models using

BMA. The posterior model probability was 67.82%, while

for the model with the fusion model concentrations it was

32.17%. It is interesting to note that only 2 out of the 42

models had a considerable influence, suggesting that the

global spatial autocorrelation model with the income de-

privation and DEFRA concentrations are the most impor-

tant factors for investigating the impact of air pollution

on health in West Central Scotland. In addition, the global

spatial autocorrelation model, which has been under much

scrutiny by Reich et al. (2006) and others , outperformed

the orthogonal smoothing model proposed by Hughes and

Haran (2013) in terms of model fit via the DIC. 

There are a few drawbacks to our study. Firstly, we had

to aggregate our cardio-respiratory deaths over a 7 year

period to ensure there was enough variation in the disease

data. This meant only a purely spatial study could be per-

formed and it would be important to investigate how the

pollution-health risks have changed over time. In addition,

there may not be enough cardio-respiratory deaths at the

data zone level, thus upgrading to a larger spatial resolu-

tion, such as intermediate geographies (average population

of 4300 inhabitants), may improve the power of the study

to detect an association. Furthermore, hospital admission

data could be used instead as the health outcome since

there will be more events and thus no need to aggregate

over multiple years. Secondly, the DEFRA modelled con-

centrations come with no measure of uncertainty and this

could impact the analysis. The predicted concentrations

from the geostatistical fusion model do have measures of

prediction uncertainty, however, in this study we treated

the predicted NO 2 concentrations as the known and true

values, which again could impact our results. Therefore,

an avenue for future work will be to incorporate the un-

certainty surrounding the predicted NO 2 concentrations in

a combined Bayesian framework, which estimates the ex-

posures and health risks simultaneously. Finally, our key

message is that due to the small effect sizes, a range of

pollution-health effects can be estimated depending on the

modelling choices made, and thus accounting for this is vi-

tal to provide robust evidence of the damaging effect of air

pollution on health. 
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