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Abstract 

This article adopt bivariate GARCH model with TAR to investigate the extent of volatility as well as return 
transmission between S&P 500 (NASDAQ 100) and VIX (VXN) since their introduction of VIX and VXN. 
Results show that the performance of VIX index is the best among the four indices during the whole sample period. 
But the volatility of VIX is also higher than other index. Further, only lagged negative return (change) has a 
bidirectional casual effect in the low-fear regime for the SP500/VIX series. The results also indicate that VIX 
index market has a stronger pricing effect on SP500. However, there is no obvious lead-lag relationship between 
NASDAQ100 and VXN index. Moreover, the return and volatility responses to high-fear and low-fear gauge are 
asymmetrical. 
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1. Introduction 

As the implied volatility index exhibits the viewpoint on the expected future realized stock index 
volatility, it is therefore referred to as the investors fear gauge. Besides, when a negative or positive 
shock to the market, which will induce adjustments in the hedging and trading strategies and 
consequently launch changes in the prices of put or call option. The implied volatility index then moves 
in the direction of the market demand of option and underlying asset. Accordingly, the implied 
volatility index is a superior device to investigate the relationship between market risk and returns.  

Although many studies have showed that the relationship between returns and changes in the 
implied volatility index is strongly negative and asymmetric (Whaley, 2000[1]; Simon, 2003[2]; 
Skiadopoulos, 2004[3]; Giot, 2005[4]; Bollerslev and Zhou, 2006[5]; Hibbert et al., 2008[6]; Badshah, 
2009[7]), most of their analysis are confined to the consideration of one-way direction. However, if 
implied volatility index represents the market volatility prediction, then changes in the volatility index 
may be related to future spot returns (Whaley, 2000[1]). Oppositely, spot returns also can determine the 
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changes in current implied volatility (Hibbert et al., 2008[6]). Nevertheless, the direction of the 
causality between the return and implied volatility index is important if investors aim to profit from the 
two markets.  

S&P 500 index is a free-float capitalization-weighted index compiled based on the stock prices of 
500 large-capitalization common stocks actively traded in the United States. Comparatively, 
NASDAQ-100 index includes 100 of the largest domestic and international non-financial securities 
listed on the NASDAQ stock market based on market capitalization. In view of the description, the 
market characteristics between the two indexes might be different. We therefore further compare the 
difference of relationship between S&P 500 index versus VIX along with NASDAQ-100 index versus 
VXN to provide the investors with thorough comprehension in the dynamic variation of the two 
markets.   

On the basis of previous statement, the objective of this paper is to employ a bivariate GARCH 
model with TAR to examine the extent of volatility as well as return transmission between S&P 500 
(NASDAQ 100) and VIX (VXN) since their introduction of VIX and VXN. In this way, we can not 
only examine the asymmetric and dynamic phenomenon between return and implied volatility indexes, 
but also investigate the investors’ behaviors when confronting different fear regime. 

2. Data and Methodology 

2.1.  Data  

We obtain the daily time series price data for the S&P 500 index, NASDAQ-100 index, VIX and 
VXN from the Yahoo! Finance website. The daily data for S&P 500 stock and VIX covers an eleven-
year period, from January 1, 2001 to October 5, 2011, a total of 2,707 trading days; that for the 
NASDAQ-100 index and VXN is form January 23, 2001 to October 5, 2011, a total of 2,689 trading 
days. All the analysis is conducted on return data.1                                         

2.2. Methodology 

As the possibility to allow for the simultaneous analysis of return and volatility transfer in the model, 
we employ a bivariate GARCH model with VIX Threshold effect to investigate the dynamic 
relationships between S&P 500 (NASDAQ-100) index and VIX (VXN). In the mean equation, we 
include positive and negative returns or percentage changes of other markets in addition to threshold 
effect to examine if transmission effects across markets exist. Additionally, we check the spillover 
effect of price shocks through lagged squared residuals from other markets in the variance equation. 
Hence, we construct the conditional mean equation of the bivariate GARCH model with Threshold 
effect as follows.  
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where ,spot tr and ,iv tr represent the return of S&P 500 (NASDAQ-100) index and the change in the 
VIX (VXN) at time t. ,spot tr , ,spot tr ,iv tr and ,iv tr denote the positive and negative changes of S&P 500 
(NASDAQ-100) returns and VIX (VXN) index at time t, respectively. .

I is the indicator function, 

 

1 Unit root tests (ADF and PP tests) are conducted for the four series. As the results show that both series have unit roots, we use 
first-order difference (return) to implement our empirical study. To save space, the related results are not shown here. All results 
are available on request. 
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tVIX  is a threshold variable and  is the threshold value. t is a mean-zero innovation with a normal 
stochastic process and is assumed to be t t th z , ~ 0,1tz NID .  

If the estimation results of 10b ,
12b , 20b and 22b are significant, we can infer that the changes in return 

can influence the other. Besides, the significance or insignificance of threshold-related variables could 
help us judge the participants’ behaviors when they run into different fear regime. 

In the following, we consider the transmission of price shocks through lagged squared residuals from 
other markets in the variance equation. The model considers the asymmetric volatility transmission 
from other markets in the variance equation to investigate if the reaction of volatility to bullish news 
and bearish news is the same across markets. The specification for the variance equations are as follows.  
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where tH  denotes the conditional volatility of S&P 500 (nasdaq-100) returns at time t, t is a mean-
zero innovation with a normal stochastic process and is assumed to be t t th z , ~ 0,1tz NID . In 
addition, we utilize the maximum likelihood estimation (MLE) to estimate the parameters of the model. 
The concise log likelihood function is stated as follows.  
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where θ is the vector of all parameters; T is the number of observations. [8] 

3. Estimation Results 

Table 1 presents the estimated results of bivariate GARCH model with threshold effect. For the 
mean equation of SP500 series, we find that the relationship between SP500 and VIX is negative in the 
low-fear periods. However, in the high-fear period, the impact of VIX index change on SP500 reverses.  

Relatively, for the mean equation of VIX index, the change of VIX series is significantly negatively 
affected by its own lagged change and positively influenced by the lagged negative return of SP500 
index in the low-fear regimes. But in the high-fear period, the impact of SP500 index on the change of 
VIX index is indifferent from the low-fear period. These results imply that VIX index market has a 
stronger pricing impact on that of SP500.  

For the mean equation of NASDAQ100 series, we find that the return of NASDAQ100 series is 
significantly negatively affected by its own lagged return and by the lagged positive change of VXN 
series in the low-fear periods. But in the high-fear period, the impact of VXN index on NASDAQ100 is 
indifferent from the low-fear period. Oppositely, for the mean equation of VXN index, the influence of 
VXN lagged change and the return of NASDAQ100 index on the VXN index is insignificant in the 
low-fear regime.  

For the variance equation of SP500 series, the result of 10 indicates that the previous unexpected 
impulse of SP500 to its current volatility is significant in the low-fear regime. In the high-fear period, 
the impact is even stronger. Besides, though the previous volatility of SP500 has significant impact on 
its current volatility in the low-fear regime, the effect decreases in the in the high-fear regime.  

For the variance equation of VIX series, the result of 20 also indicates that the previous unexpected 
impulse of VIX to its current volatility is significant in the low-fear regime. In the high-fear period, the 
impact is stronger. In addition, although the previous volatility of VIX has significant impact on its 
current volatility in the low-fear regime, the effect decreases in the in the high-fear regime. These con- 

 
Table 1 Parameter estimates of bivariate GARCH model with threshold effect for S&P 500/VIX  and  
NASDAQ100/VXN model  
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Variables 
SP500/VIX NASDAQ100/VXN 

Coeff. S.E. Coeff. S.E. 

Conditional mean equation 

10 0.0684 *** 0.0177 0.0936 *** 0.0230 

11 -0.3345 *** 0.1022 -0.2479 * 0.1413 

10a -0.0850 *** 0.0245 -0.0646 *** 0.0236 

11a 0.0736  0.0588 0.0712 0.0644 

10b -0.0076 ** 0.0038 -0.0132 ** 0.0058 

11b 0.0411 ** 0.0171 0.0064 0.0425 

12b -0.0078 * 0.0045 -0.0087 0.0068 

13b 0.0350 * 0.0190 0.0599 0.0456 

20 -0.1933  0.1191 -0.2166 * 0.0884 

21 1.3731 *** 0.3112 -0.0956 0.2621 

20a -0.0470 ** 0.0239 0.0103 0.0243 

21a -0.0857  0.0602 -0.0695 0.0659 

20b -0.0093  0.1569 0.1300 0.0891 

21b -0.3005  0.2605 -0.0706 0.1425 

22b 0.3130 * 0.1717 0.1586 0.1111 

23b 0.0631  0.2186 -0.5079 *** 0.1755 

10 0.0112 *** 0.0016 0.0128 *** 0.0030 

10 0.0853 ** 0.0368 0.4133 *** 0.1333 

10 0.0612 *** 0.0057 0.0538 *** 0.0051 
Condition variance equation 

11 0.0509 *** 0.0182 0.0390  0.0254 

11 0.9241 *** 0.0059 0.9373 *** 0.0058 

11 -0.0482 *** 0.0135 -0.0873 ** 0.0361 

12 -0.0798 *** 0.0133 -0.0579 *** 0.0119 

12 -0.2473 ** 0.1045 -0.3865 ** 0.1509 

12 0.0546 *** 0.0055 0.0463 *** 0.0046 

13 0.0224 0.0139 0.0150  0.0162 

13 0.9257 *** 0.0073 0.9395 *** 0.0062 

13
 -0.0309 ** 0.0156 -0.0566 ** 0.0283 

20  0.9788 *** 0.1628 0.5044 *** 0.1036 

20  0.9566 * 0.5785 0.6190 * 0.3555 

20  0.0576 *** 0.0060 0.0477 *** 0.0055 

21  0.0189 0.0146 0.0162  0.0125 

21  0.9146 *** 0.0092 0.9326 *** 0.0082 

21
 -0.0405 * 0.0223 -0.0553 ** 0.0228 

Diagnostics on standard residuals 

INDEX SP500 VIX NASDAQ100 VXN 

Q(1) 0.419 0.0192 0.04663 0.236 

Q2(1) 9.770*** 0.211 8.084*** 1.934 
LogL -11070.1363 -11627.8372 

Note: 
1.* indicates significance at the 10% level; ** indicates significance at the 5% level; and *** 

indicates significance at the 1% level. 
2. Q(1) represents Ljung-Box’s Q statistics of the standard residuals. 
3. Q2(1) is Ljung-Box’s Q statistics of the squared standard residuals. 
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ditions are the same as those in the SP500 market. Similarly, we can reach the same result through the 
outcome of NASDA100 and VXN variance equation.  

4. Conclusion 

This article adopt bivariate GARCH model with TAR to investigate the extent of volatility between 
S&P 500 (NASDAQ 100) and VIX (VXN) since their introduction. Results show that the performance 
of VIX index is the best among the four indices. But the volatility of VIX is also higher than other 
index. Further, for the mean equation of SP500/VIX series, we find that only lagged negative return 
(change) has a bidirectional casual effect in the low-fear regime. However, for the mean equation of 
NASDAQ100 series, only the return of NASDAQ100 series is significantly negatively affected by its 
own lagged return and by the lagged positive change of VXN series in the low-fear periods. For the 
mean equation of VXN index, only lagged negative return of NASDAQ100 index has significantly 
negatively impact in the high-fear regime. There is no obvious lead-lag relationship between 
NASDAQ100 and VXN index. 

As to the variance equation, the significant result of coefficients in the high-fear and low-fear 
regimes along with feedback effect may demonstrate that the bivariate GARCH adopted in this paper is 
appropriate. 
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