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Purpose: Locked-in syndrome and vegetative state are distinct outcomes from coma. Despite their differences,
they are clinically difficult to distinguish at the early stage and current diagnostic tools remain insufficient.
Since some brain functions are preserved in locked-in syndrome, we postulated that networks of spontaneously
co-activated brain areasmight be present in locked-in patients, similar to healthy controls, but not in patients in a
vegetative state.
Methods: Five patients with locked-in syndrome, 12 patients in a vegetative state and 19 healthy controls
underwent a resting-state fMRI scan. Individual spatial independent component analysis was used to separate
spontaneous brain co-activations from noise. These co-activity maps were selected and then classified by two
raters as either one of eight resting-state networks commonly shared across subjects or as specific to a subject.
Results: The numbers of spontaneous co-activity maps, total resting-state networks, and resting-state networks
underlying high-level cognitive activity were shown to differentiate controls and locked-in patients from pa-
tients in a vegetative state. Analyses of each common resting-state network revealed that the default mode net-
work accurately distinguished locked-in from vegetative-state patients. The frontoparietal network also had
maximum specificity but more limited sensitivity.
Conclusions: This study reinforces previous reports on the preservation of the default mode network in locked-in
syndrome in contrast to vegetative state but extends them by suggesting that other networks might be relevant
to the diagnosis of locked-in syndrome. The aforementioned analysis of fMRI brain activity at rest might be a step
in the development of a diagnostic biomarker to distinguish locked-in syndrome from vegetative state.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Coma is a transient state that could progress toward death or
different levels of consciousness impairments ranging from vegetative
state (VS) or unresponsive wakefulness to minimally conscious state
to full consciousness, with or without aftermaths (Giacino et al.,
2014). An uncommon outcome from coma is locked-in syndrome
(LIS)which is difficult to clinically differentiate fromVS. Both conditions
share non-responsiveness, but VS patients are awake although still un-
aware of themselves or their environment, whereas LIS patients dem-
onstrate preserved awareness, aphonia, quadriplegia and a “fail-soft”
rest.
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communication mode that only uses eye movements or blinking
(Plum and Posner, 1983). These patients have a disruption of all
supranuclear motor pathways except those that control eye move-
ments, usually secondary to a lesion of the ventral part of the pons.

Due to preserved awareness, LIS is not a disorder of consciousness
but can be mistaken for one. While this is not a problem for patients
who suffer from acute motor tracts lesions without coma, other LIS pa-
tients are initially in coma before evolving to LIS. In this case, it is impor-
tant to diagnose this transition as early as possible, in order to account
for these patients' subjective experience and to introduce an eye/eyelid
movement code to communicate (Bernat, 2006). However, the arousal
level fluctuates and eye movements may be inconsistent during this
transition period, making it difficult for caregivers to distinguish LIS
from VS. The diagnosis is indeed often delayed, made by the patient's
relatives rather than the caregivers, and takes over 2.5 months on aver-
age (Laureys et al., 2005).
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To reduce this delay, different diagnostic tools have been tested,
among which electrophysiology (event-related potentials) (Perrin et
al., 2006; Schnakers et al., 2009), fluorodeoxyglucose positron emission
tomography (Giacino et al., 2014; Phillips et al., 2011) and task-depen-
dent functional MRI (Bardin et al., 2011, 2012; Moreno et al., 2011),
which demonstrated nearly the same level of consciousness in locked-
in patients as in healthy volunteers and helped to distinguish them
from vegetative patients. However, none of these methods is a perfect
diagnostic tool: event-related potentials are sensitive to noise and are
examiner-dependent, positron emission tomography lacks reliable
criteria and task-dependent functional MRI is neither practical nor re-
producible. Consequently, the need for a diagnostic tool remains unmet.

More recently, the study of slow fluctuations of the fMRI BOLD signal
at rest, i.e. in an awake but non-stimulated state, has revealed spontane-
ous co-active regions, or map (spontaneous co-active map, SAM). Some
of them are consistent across subjects, in either healthy controls
(Beckmann et al., 1995; Damoiseaux et al., 2006; Smith et al., 2009;
Kalcher et al., 2012) or patients (Rotarska-Jagiela et al., 2010; Zhou et
al., 2010; Heine et al., 2012; Demertzi et al., 2014, 2015; Qin et al.,
2015). They are called resting-state networks (RSN). Some of them
might support low-level cognitive activity given that they involve pri-
mary and/or secondary cortices, whereas others, which involve tertiary
cortices, probably support high-level cognitive activity. One of themost
extensively studied RSNs is the default mode network (DMN) (Raichle
et al., 2001; Buckner et al., 2008). It is a high-level cognitive RSN, initially
defined as the regions which were more active at rest than in any goal-
oriented cognitive activity (Raichle et al., 2001). Its putative involve-
ment in self-orientated awareness makes it an attractive candidate to
assess the disorders of consciousness (Vanhaudenhuyse et al., 2010). In-
deed, its disorganisation is observed in sleep (Horovitz et al., 2008,
2009; Larson-Prior et al., 2009; Koike et al., 2011; Wu et al., 2012;
Uehara et al., 2013), pharmacologically induced loss of consciousness
(Greicius et al., 2008; Boveroux et al., 2010; Stamatakis et al., 2010;
Martuzzi et al., 2011; Schrouff et al., 2011) and pathological disorders
of consciousness (Vanhaudenhuyse et al., 2010; Boly et al., 2009;
Vanhaudenhuyse et al., 2011; Norton et al., 2012; Soddu et al., 2012).
However, other RSNs exist (Beckmann et al., 1995; Damoiseaux et al.,
2006; Kalcher et al., 2012; De Luca et al., 2006) and some of them
have also been reported to be modified in sleep (Larson-Prior et al.,
2009; Martuzzi et al., 2011; Wu et al., 2012; Sämann et al., 2011;
Spoormaker et al., 2012), pharmacologically induced loss of conscious-
ness (Greicius et al., 2008; Boveroux et al., 2010; Schrouff et al., 2011;
Guldenmund et al., 2013) and disorders of consciousness (Demertzi et
al., 2014, 2015; Qin et al., 2015). Their value in the differential diagnosis
between VS and LIS remains to be assessed.

Seed-based approaches are the simplestmethods to study brain con-
nectivity. However, they are more sensitive to noise than multivariate
analyses and since they need spatial a priori they are not suitable for
studying injured brains, which potentially present functional
reorganisations if not disturbed by significant anatomical deformations.
Accordingly, we assessed brain connectivity based on spatial indepen-
dent component analysis (spatial ICA) which is adapted to single-sub-
ject analysis. Although mostly used in group analysis, ICA makes it
possible to separate networks of co-activated regions from noise at
the single-subject level (McKeown et al., 1998), based on validated op-
erational criteria (Roquet et al., 2014). These spontaneous co-activity
mapswill be further referred to as SAMs. Someof these SAMs are shared
among different subjects and are called RSNs (as above). These corre-
spond to the networks provided by group ICA. The other SAMs are idio-
syncratic networks, i.e. SAMs that can only be seen in one or a few
subjects or in a given session, sometime related to an abnormal activity
such as epileptic seizures or hallucinations.

The aim of this study was to assess the sensitivity and the specificity
of SAMs and RSNs in distinguishing LIS fromVS regarding their distribu-
tion in a normal control population (CTRL). Since LIS patients are con-
scious with most high-order functions preserved, we hypothesised
that they might differ from VS in their numbers of SAMs, RSNs, RSNs
dedicated to high-level cognitive processing and in the presence of a
DMN. Alternatively, LIS patients are expected to be undistinguishable
from CTRLs based on the RSNs dedicated to high-level cognitive pro-
cessing and the presence of a DMN. Last, as an exploratory analysis, sen-
sitivity and specificity were also assessed for the other RSNs. This is one
step in the progress toward a diagnostic tool.

2. Material

2.1. Participants

Twenty-five patients consecutively admitted to the Strasbourg's
medical intensive care unit were screened for their participation and
all were included in the study. Eight patients were removed from anal-
ysis: five patients did not satisfy the following diagnosis criteria for VS
(three patients in minimal conscious state, two patients in coma) or
LIS (one patient in coma with pontine lesion), and two did not satisfy
MRI criteria (one had excessive head motion during the MRI session
(N1.5° or millimeters), and one had excessive artefactual MRI signals
due to artificial breathing assistance), leaving 12 VS patients and 5 LIS
patients. The inclusion period was extended for LIS in order to increase
the cohort of LIS patients from three to five. All of the VS patients but
one suffered from diffuse brain injuries. This patient with a focal injury
(labelled VSF) actually suffered from a limited brainstem lesion, like the
LIS patients, although his diagnosis was definitely VS with no sign of
consciousness. Because of his cortex was preserved, this patient was
considered separately. Therefore, 12 patients in VS with diffuse lesions
(mean age, 54.2 years; range, 21–87 years; seven females), 1 VSF pa-
tient (age, 40 years; male), 5 patients in LIS (mean age, 49.0 years;
range, 37–70; one female, and 19 healthy control (CTRL) participants
(mean age, 30.9 years; range, 19–51; five females) were included in
the study. Controls had no history of neurological or psychiatric disor-
ders. Demographic and clinical data are presented in Table 1. A LIS diag-
nosis required concordant assessment of preserved consciousness
between the rehabilitation unit staff and the patient's relatives. All pa-
tients in LIS suffered from brainstem lesion and were initially in coma.
A LIS diagnosis in this study refers to classic LIS (Bauer et al., 1979),
and does not relate to functional LIS diagnosis (also known as complete
or total LIS (Schnakers et al., 2009; Bruno et al., 2011)), which is entirely
based on paraclinical assessments such as fMRI or evoked potentials due
to the extreme behavioural motor dysfunction in these patients includ-
ing paralysis of eye motility. Before MRI acquisition, patients were clin-
ically examined using the Wessex Head Injury Matrix scale (WHIM)
(Shiel et al., 2000). According to Turner-Stokes et al. (2015), a score be-
tween 1 and 9 corresponds to a VS state (for non-LIS patients), because
item 10 was not validated by VS patients (visual pursuit is compatible
with VS for the Working Party of the Royal College of Physician (2003)
and Turner-Stokes et al. (2015). Among the five patients who did not
satisfy the VS criteria and were therefore removed from analysis, three
had a WHIM score higher than 9, respectively 13, 14 and 15, consistent
with minimal conscious state). VS patients did not show either goal-di-
rected behaviour or responsiveness to verbal orders or signs of commu-
nication. All patients were assessed using the Glasgow Coma Scale. This
study was approved by the local ethics committee. Controls and pa-
tients' representatives gave written informed consent.

2.2. Data acquisition

Four hundred and five whole-brain T2*-weighted echo planar
images were acquired interleaved on a Siemens Magnetom® Avanto
1.5T (Siemens, Erlangen, Germany) with the following session
parameters: TR = 3 s; flip angle = 90°; TE = 43 ms; FOV =
256 mm × 256 mm × 128 mm; Imaging matrix = 64 × 64 × 32; 4-
mm3 isotropic voxels, with fat saturation preparation, leading to a



Table 1
Patients' demographic, clinical and imaging data.
LIS, locked-in syndrome; VS, vegetative state. Ages at the MRI acquisition are given in
years; time of MRI in days after the injury. Wessex Head Injury Matrix scale (WHIM)
scores correspond to the last completed item on the scale. The Glasgow Coma Scale
(GCS) was performed at admission.

Patient Gender Age Aetiology
Time of
MRI

WHIM
at MRI GCS

Outcome at 6
months

LIS 1 Male 37 Trauma 76 3 3 LIS
LIS 2 Female 70 Anoxia 107 3 7 Dead
LIS 3 Male 39 Trauma 75 2 4 LIS
LIS 4 Male 47 Ischemia 12 2 4 Dead
LIS 5 Male 52 Hematoma 180 3 6 Dead
VS 1 Male 54 Anoxia 10 2 4 Dead
VS 2 Female 32 Anoxia 3 1 3 Dead
VS 3 Female 21 Anoxia 5 1 3 Dead
VS 4 Male 87 Septic shock 7 1 3 Dead
VS 5 Male 44 Hypoglycaemia 32 2 5 Dead
VS 6 Male 53 Anoxia 3 9 5 VS
VS 7 Male 73 Anoxia 3 1 3 Dead
VS 8 Male 53 Anoxia 5 1 3 Dead
VS 9 Female 59 Anaphylactic

shock
15 3 3 VS

VS 10 Male 71 Anoxia 16 1 3 Dead
VS 11 Female 49 Hypoglycaemia 18 1 5 VS
VSF Male 40 Anoxia 11 3 3 Dead
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total acquisition time lasting about 20 min. A 3DMPRAGE T1-weighted
image was also acquired at the same session (1-mm3 isotropic voxels).

2.3. Data preprocessing

After conversion toNifti format, the imageswere preprocessed using
Statistical Parametric Mapping software v8 (Welcome Department of
Cognitive Neurology, London, UK) working on Matlab R2012b (The
MathWorks, Inc., Sherborn, MA, USA). For each participant, the first
five images were removed to account for T1 partial saturation and the
400 remaining images were then motion corrected. One participant
had translation or rotation N1.5 mm or 1.5° and was consequently re-
moved from the analysis.

2.4. Connectivity analysis

For each participant, a single-subject ICA was performed using
FMRLAB software 2.3 (Swartz Center for Computational Neuroscience,
University of San Diego, San Diego, CA, USA), modified to work on
Nifti format, with an implementation of the INFOMAX algorithm (Bell
and Sejnowski, 1995). Dimensions were reduced from 400 to 250 by
principal component analysis before running ICA. From the whole set
of 250 independent components (each one is a z-score 3D map,
thresholded at ±1.5 for display purposes), the SAMsweremanually se-
lected by an expert (DR) according to validated operationalised criteria
(Roquet et al., 2014).

All SAMs were further classified according to a simplified version of
the Kalcher et al. proposal (Kalcher et al., 2012) based on the individual
ICAs of 1000 healthy controls. The 8 RSNs consisted in the default mode
network (DMN), the precuneal and posterior cingulate network
(PPCN), the anterior cingulate and fronto-polar network (ACFPN)
sometimes referred to as the salience network, the fronto-parietal net-
work (FPN, right and leftwere considered as awhole) also called the ex-
ecutive control network, the external temporal network (ETN), the
occipito-parieto-frontal network (OPFN) or dorsal attentional network,
the occipital network (ON) or visual network and the central network
(CN) (Fig. 1), also known as the sensorimotor network. The DMN,
PPCN, ACFPN and FPN were considered as networks underlying high-
level cognitive activity,whereas ETN,OPFN, CNandONwere considered
as sub-serving low-level cognitive activity based on their main involve-
ment of primary and secondary cortices. Modifications from Kalcher et
al. consisted in merging C.01 and C.02 into one ON, C.07 (left-FPN)
and C.09 (right-FPN) into one FPN, as well as C.03 and C.06 into one
DMN. A manual classification was preferred since it has been reported
to be more reliable than a template-matching procedure (Franco et al.,
2009). Two raters (DR, JF, blinded to the diagnosis) classified each
SAM as one of eight common RSNs or as idiosyncratic (uncommon net-
works, see supplementarymaterial). Inter-rater agreements for the dis-
tinction between RSN and idiosyncratic SAMs, and for the classification
as a DMNwere assessed using Cohen's kappa coefficient (Cohen, 1960).
In case of discrepancy, the final classification was made by consensus.

For each network, sensitivity was assessed for the three groups.
Specificity was also evaluated for LIS relative to VS.

2.5. Statistical analysis

Age was compared between groups using ANOVA at p b 0.05. Time
from injury to scanning was compared between LIS and VS patients
using the two-sample Student t-test. Gender was compared between
LIS, VS and CTRL subjects by the two-sample independent chi-square
test. Regarding measurements of connectivity, LIS was compared to VS
and CTRL groups using the two-sample independent chi-squared tests
on the following measures: the presence of SAMs, RSNs, high-level
RSNs and each RSN separately. Statistical between-group voxel-wise
analyses of RSN images were not performed due the limited number
of patients in the LIS groups.

3. Results

3.1. Clinical data

CTRLs were significantly younger than LIS and VS patients
(p b 0.001) (mean ± standard deviation, CTRL: 30.9 ± 8.1; LIS:
49.0 ± 13.2; VS: 54.2 ± 18.6). Due to fluctuating states at the early
stages after injury, patients in LIS were scanned significantly later than
patients in VS in order to ensure the diagnosis (p b 0.001). However,
the delay of 90 days after injury is in agreement with the average
delay to ascertain a LIS diagnosis (Laureys et al., 2005). Gender did not
differ between LIS and CTRL nor LIS and VS subjects.

3.2. Inter-rater agreement for RSN classification

In all three groups of participants, 232 SAMs were selected. They
were then classified as RSNs or as idiosyncratic networks (i.e., a 9 cate-
gory classification). Moderate agreement was found between the two
raters for labelling one SAM as a RSN or as an idiosyncratic network,
with a kappa coefficient of κ = 0.56. The agreement for classifying a
SAM as a high-level or as a low-level RSN was excellent (κ = 0.90).
The agreement on the DMN classification among all the SAMs was ex-
cellent (κ = 0.88). The kappa for PPCN, ACFPN, FPN, ETN, OPFN, CN
and ON ranged from good to excellent, with κ = 0.77, 0.71, 0.83, 0.89,
0.62, 0.90 and 0.93, respectively.

3.3. Spontaneous co-activity maps

The CTRL group presented between three and 20 SAMs. Means and
standard-deviations of the number of SAMs are reported in the first col-
umnof Table 2. LIS had fromone to 12 SAMs. Only one out of 11 patients
in VS (VS11) presented at least one SAM (one SAM in this case), leading
to a very lowmean for VS, whereas the VSF patient had 14 SAMs. Statis-
tical analyses revealed no differences between the LIS and CTRL groups
in having SAMs (versus having no SAMs), whereas the LIS group signif-
icantly differed from the VS group (p b 0.001). The presence or absence
of SAMs was a sensitive test for a LIS diagnosis (sensitivity, 100%), and
its specificity was 91% relative to VS (Table 3).
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3.4. Resting-state networks

The mean image of each RSN is displayed in Fig. 1. Among the SAMs
observed in the CTRL group, 78.1%were classified as RSNs, leading to an
average of 7.3± 3.2 RSNs per subject, while the others were considered
as idiosyncratic (Table 2, second column). Since two SAMs in a given
subject could sometimes be labelled as the same RSN, on average
CTRL subjects presented 4.7 (±1.4) out of the eight RSNs. As for LIS
patients, 71.8% of the SAMs corresponded to RSNs, leading to a mean
5.3 ± 3.1 RSNs per subject. These corresponded to 4.6 ± 0.9 out of the
eight RSNs. Regarding the VS patient providing signs of connectivity,
his only SAMwas classified as RSN a (therefore 0.1 ± 0.3 per VS subject
were RSNs). Eight of the VSF's SAMs were labelled as RSNs in 4 of the 8
reference classes. Statistical analyses of the presence of RSNs revealed a
difference between LIS and VS patients (p b 0.001) but not between
LIS and CTRL subjects. This was a sensitive test for a LIS diagnosis,
similar to those reported for the SAMs (sensitivity, 100%; specificity,
91%) (Table 3).

3.5. High-cognitive-level resting-state networks

The CTRL and LIS groups presented on average 2.9 ± 0.8 and 2.4 ±
0.9 high-cognitive-level RSNs, respectively (Table 2), whereas the RSN
of patient VS11 was not of a high-order. Regarding VSF, one out of
four RSNswas a high-cognitive-level RSN (FPN). Having versus not hav-
ing high-cognitive-level RSNs was significantly different between LIS
and VS patients (p b 0.0001), but again not between LIS and CTRL sub-
jects. This was a sensitive and specific test for a LIS diagnosis (both
100%, Table 3).

3.6. Default mode network

The DMN was the only network that was observed in every healthy
participant (Table 3) and LIS patient. In contrast, none of the VS patients
had a DMN, nor did the VSFpatient. Accordingly, the difference between
the LIS and VS groups was very significant (p b 0.0001), whereas the LIS
group did not differ from the CTRL group. Presence versus absence of a
DMNwas highly sensitive for LIS diagnosis (sensitivity, 100%) and high-
ly specific relative to VS (specificity, 100%; see Table 3). Slices of the
DMN of each LIS patients are available in the supplementary material.

3.7. Other RSNs

The non-DMN high-cognitive-level networks were not as regularly
present in CTRLs, except for the FPN which was absent in only one
healthy participant. The PPCN was observed in about half of the sub-
jects, whereas the ACFPN was observed in an even smaller percentage
(Table 3). In LIS, all high-order RSNs were found in at least one subject,
although only the FPN and DMN reached sufficient consistency (Table
3). No statistical difference occurred in any high-order RSNs between
LIS and CTRL subjects. Patients in VS did not show high-order RSNs,
making the DMN and FPN statistically different between LIS and VS pa-
tients (p b 0.0001 and p b 0.01, respectively). The VSF patient showed a
FPN, but not a DMN, PPCN or ACFPN.

Concerning the low-cognitive-level networks, all three groups pre-
sented an ON. The difference between the LIS and VS patients was still
significant (p b 0.05) and its specificity for LIS was high (91%). Only
one LIS patient showed the somatomotor-related CN, resulting in no dif-
ference between LIS and VS patients but a clear tendency to significance
between LIS and CTRL (p = 0.051). OPFNs were present only in CTRL
and LIS subjects, the latter significantly differing from VS patients
(p b 0.01), with maximum sensitivity (100%). No VS patient had an
ETN, but since only a fewCTRL and LIS subjects presented anETN, nodif-
ference was noted between groups. VSF presented an ETN, ON and CN
but not an OPFN.
4. Discussion

This study was designed to assess the sensitivity and specificity of
the presence of SAMs, RSNs, high-level RSNs and the DMN in
distinguishing LIS from VS patients and LIS from a healthy control pop-
ulation (CTRL). SAMs or RSNs were either absent or scarce in VS in con-
trast to LIS patients. LIS patients were undistinguishable from CTRL
subjects. Focusing on the RSNs supporting high-cognitive-level activi-
ties (defined as not involving primary or secondary cortices) markedly
increased specificity.

Most of the patients in VS did not show any signs of connectivity, in-
cluding idiosyncratic networks. This lack of connectivity may be ex-
plained by the diffuse brain injuries making them likely to have strong
functional connectivity disorders. In contrast, brainstem insults would
entail limited connectivity disturbances. The VSF patient in VS suffering
from a focal brainstem injury actually showed many SAMs, including
two high-order networks (FPN and ETN). Accordingly, spontaneous
connectivity might be preserved in some way as long as the telenceph-
alon and the diencephalon remain intact. The fact that most of the VS
patients had diffuse brain injuries might limit the reach of the present
results to this condition. Our observations need to be replicated on VS
patients with a focal brainstem lesion (like the VSF patient in the pres-
ent study) before generalising them to the whole VS group.

It might be argued that the failure of brain co-activities in VS pa-
tients could be due to the wakefulness state, i.e. these patients would
have fallen asleep during the scanning. As we did not assess the level
of arousal during the MRI session, we cannot ascertain that this did
not occur more frequently in VS than in LIS. Previous studies on con-
nectivity during sleep reported that RSNs including the DMN and
FPN can be modified and even disappeared when the subject fell
asleep (Sämann et al., 2011). However, the absence of RSN during
sleep does not mean an absence of SAM: brain areas still co-activate
during sleep such that SAMs should be observed, although different
from RSN (Picchioni et al., 2013). Accordingly, the almost total ab-
sence of SAM in VS suggests a more profound brain disorganisation
of functional connectivity rather than a simple difference in arousal
level.

The DMN has already been reported to mediate awareness of self
(Vanhaudenhuyse et al., 2010). Accordingly, it has been reported to
be absent in VS patients and altered in the minimal conscious state
(Demertzi et al., 2014, 2015; Vanhaudenhuyse et al., 2011). The pres-
ent results support these previous observations and they extend
them by giving sensitivity and specificity values and the favourable
reliability of the test, which has a high kappa value. Therefore, not
only is the DMN specific to LIS, but its high sensitivity in the LIS and
CTRL groups potentially makes it a reliable diagnostic tool. This ob-
servation of the preserved DMN in LIS fully agrees with a single-
case observation from Vanhaudenhuyse et al. (2010). However, this
perfect sensitivity in both the CTRL and LIS groups was perhaps a
fluke: since the cognitive state was not constrained during the fMRI
acquisition, the DMN may not be observed in some participants, as
suggested by its absence in some sessions in healthy subjects
(Kalcher et al., 2012; Demertzi et al., 2014). This could explain, to-
gether with methodological differences and the type of lesion, the
discrepancy with Demertzi et al. (2014) who reported an altered
DMN in close to one-third of their patients in VS.

The FPN could also be taken into account to refine the differential
diagnosis between LIS and VS. The FPN on its own is not present in a
sufficient number of LIS subjects to be highly sensitive. However, it is
highly specific. Accordingly, further studies might test the possibility
that the presence of either the DMN or the FPN is sufficient for
suspecting LIS. This could limit the false-negative result of a DMN-
based procedure if its sensitivity turns out to be lower than estimat-
ed in the present study. FPN has been reported to be involved in ex-
ternally orientated awareness (awareness of environment)
(Vanhaudenhuyse et al., 2011), whereas the DMN would support



Fig. 1.Mean images of each resting-state network (RSN). All networks are constructed from normalised, resliced (2-mm3 isotropic voxels), smoothed (FWHM=8mm) and thresholded
images (z-score N 1.0). Slices are displayed with a 12 mm gap in the z-direction starting from the z-coordinate indicated below the first slice. Left is left side of the brain (neurological
orientation). DMN: default mode network; PPCN: precuneal and posterior cingulate network; ACFPN: anterior cingulate and fronto-polar network; FPN: the fronto-parietal network;
ETN: external temporal network; OPFN: occipito-parieto-frontal network; CN: central network; ON: occipital network. CTRL, LIS and VS refer to groups of healthy participants, locked-
in syndrome and vegetative-state patients, respectively. Numbers below images correspond to the number of subjects per group presenting each RSN.
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internally orientated awareness. Therefore, these results could be
interpreted as an alteration of both internally and externally orien-
tated networks in loss of consciousness (Boveroux et al., 2010;
Vanhaudenhuyse et al., 2011).
The low-order ON is assumed to underlie visual processing. We ob-
served that it could be preserved in a patient in VS. This result is in ac-
cordance with previous reports of altered high-order but preserved
low-order RSNs during sedation (Boveroux et al., 2010; Martuzzi et al.,



Table 2
Number of SAMs, RSNs and high-level RSNs.
CTRL, LIS and VS refer to groups of healthy participants, locked-in syndrome and vegeta-
tive-state patients, respectively. The mean numbers of SAMs and among them the num-
bers of RSNs and high-order RSNs are expressed as the mean (standard deviation). The
presence of these three observations in LIS patientswas compared to CTRL andVS subjects
separately, using chi-square tests. a for p b 0.001; b for p b 0.0001.

SAM RSN High order RSN

CTRL 9.4 (4.4) 7.3 (3.2) 2.9 (0.8)
LIS 7.8 (4.9) 5.3 (3.1) 2.4 (0.9)
VS 0.1a (0.3) 0.1a (0.3) 0b (0)
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2011). In contrast, only one of the LIS patients presented a CN, possibly
in line with their absence of sensory processing or intentional motor
activity.

The strong difference of connectivity between VS patients and the
VSF patient suggests that the type of lesion strongly influences the pres-
ence of the networks. Still, the DMNwas absent in this patient and rein-
forced the role of the DMN in distinguishing LIS from all VS patients.
However, we suggest replicating our results on VS patients with a
focal brainstem lesion before generalising them to the entire VS group.

The ultimate aim of this studywas to assess the SAMs as a diagnostic
tool to distinguish LIS from VS patients. Themethod was designed to be
easily transferred to the clinical setting (Soddu et al., 2011). First, the ac-
quisition is task-free, i.e. theMRI acquisition at rest does not require col-
laborative patients, which makes fMRI investigations easier than task-
based MRI in the context of disorders of consciousness. Second, using
the data-driven ICA in place of the seed-based approach, no spatial a
priori about the networks' patterns was required and artefacts such as
physiological noise and head-motion are separated from the neuronal
signal, making themethod highly sensitive. Third, to avoid spatial trans-
formations of the brain into a standardised space, which would not
work properly on injured brains, themethod is based on individual spa-
tial ICA in the patient space. The manual selection of SAMs and their
classification as RSNs turned out to be a reliable procedure, especially
for the DMN. Still, manual selection requires expertise and is time-con-
suming. A reliable and sensitive pre-selection system has been devel-
oped in parallel to this study to help and shorten SAM selection
(Sourty et al., 2015), but an automatic classifier remains to be
developed.

Although the LIS population was the largest reported to date, these
promising resultswith good sensitivity and specificity remain to be rep-
licated on a larger sample to ensure they can be generalised. Such as-
sessments would be particularly interesting when family and
caregivers have a feeling there is a reaction, whereas nothing emerges
from clinical examinations, particularly when patients are unable to
communicate using eye movements. In this case, such a biomarker
may provide help to objectivise what frequently could remain an intui-
tion during the early stages after awakening, and may shorten the time
to diagnosis. Here, LIS patients were acquired once the diagnosis was
ensured. Accordingly, RSNs can only be considered here as “potential”
biomarkers. The study which could ascertain their relevance at the
early stage would require assessing patients for which the diagnosis is
Table 3
Sensitivity and specificity of the resting-state networks.
CTRL, LIS and VS refer to groups of healthy participants, locked-in syndrome and vegetative-sta
the networks in LIS patients was compared to CTRL and VS subjects separately, using chi-squa

Sensitivity (%) High order RSN

SAM RSN High-order RSN DMN PPCN

CTRL 100 100 100 100 58
LIS 100 100 100 100 20
VS 9c 9c 0b 0d 0

Specificity (%)
91 91 100 100 100
still doubtful, in a longitudinal perspective. In such case somedifficulties
might emerge as the fluctuations of arousal would probably affect the
probability to observe high-cognitive-level networks. Last, although
the presence of the DMNmight be interpreted as the presence of inter-
nally oriented cognition, its absence cannot be interpreted as the ab-
sence of awareness as it is sometimes absent in some healthy controls
or can be modified when the subject fall asleep (Sämann et al., 2011).

5. Conclusions

This study provides evidence that SAMs are promising in assessing
awareness. All our hypotheses were confirmed: the total number of
SAMs, the total number of RSNs, and the number of RSNs underlying
high-level cognitive activities turned out to be significantly greater in
LIS than in VS patients and did not differ between the LIS and CTRL
groups. The presence of a DMN and other high-order networks reaches
the high sensitivity and specificity required to distinguish LIS fromVS at
the individual level. The DMN may only underlie part of the conscious-
ness, i.e. self-consciousness, and this study raises the possibility that
other networks might also be considered, e.g. the FPN.
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