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1. Introduction

Amajor problem related to the action of a connected reductive complex Lie group on a finite dimen-

sional complex vector space is the construction of geometric quotients, which are usually associated

to the restriction of the action to suitable subsets of the whole vector space. By phrasing Mumford’s

GIT-stability [1], it is possible to construct such open sets, which are associated to the characters of the

group (see also the paper by King [2]). It is not our aim to present here these results in full generality,

since we will pay attention to two particular cases. Consider first the vector space W of pairs (A, A1),
where A is a square matrix of order r and A1 is a r × r1 matrix. The general linear group GLr(C) acts in
a natural fashion on W . Applying the general definitions, one can construct the set of χ-stable points

Ws,χ , associated to the character χ = det. On the other hand, such pairs of matrices arise in control

theory as linear dynamical systems. An important rôle is played by those systemswhich are reachable

(i.e. satisfy a certain rank condition), we denote byM the set of reachable pairs. The second particular

case considered in this paper is that of the action of the group GLr(C) × GLr(C) on the space W̃ of
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triples (E, A, A1), where E, A are square matrices of order r and A1 is a r × r1 matrix. Consider the

character χ̃ given by detr+1 · det−r and let W̃s,χ̃ be the set of associated stable points. In the frame-

work of control theory, such triples are called generalized linear systems and one may consider the

subset M̃ of admissible reachable triples. These four sets are apparently independent of each other,

but it was step-by-step proved that one has a nice commutative diagram whose vertical maps are

bijections:

Ws,χ � � j ��

α

��

W̃s,χ̃

β

��
M� �

i
�� M̃.

(1)

The one-to-one correspondence α between reachable linear systems and χ-stable pairs was proved

by Byrnes and Hurt [3]. They used tools from algebraic geometry, strengthening the already existing

algebro-geometric methods in control theory (see e.g. Tannenbaum’s monograph [4] for a survey).

Later, Helmke and Shayman [5] and Helmke [6] constructed the natural inclusion i, showing the re-

lationship between reachable linear dynamical systems and admissible reachable generalized linear

systems. The next construction was that of themap j: the actions onW , respectively, on W̃ were inter-

preted in [7] by using partial quiver factorization problems and, in that framework, the construction

of j arises in a natural fashion. Finally, the diagram is closed by the map β , and it was shown by Bader

(see [8,9]) that this map is one-to-one. We notice that, since all these maps are compatible with the

corresponding actions, they induce maps between the associated quotients. For instance, i provides a

smooth compactification of the moduli space of reachable linear systems.

The aimof the present paper is to give alternative proofs of the resultsmentioned above, by remain-

ing completely in the framework of linear algebra and by using a basis-free approach. Specifically, the

bijectivity of themapsα andβ is proved in Theorem1, respectively, Theorem3,while the construction

of the map j is detailed in Theorem 2. Moreover, the actions mentioned above are regarded as partial

quiver factorization problems. Particularly, the techniques presented in the paper could be adapted,

in order to prove similar results for arbitrary quivers.

2. Preliminaries

This section is preparatory in nature and is divided in three subsections. We aim to recall some

general definitions, to present several explicit examples and to prove lemmas which will be used in

the main part of the paper.

2.1. Elements of Hermitian type: stability

In this sectionwe present, in a general framework, concepts and notation thatwill be used through-

out the paper. Specifically, we recall the definition of elements of Hermitian type and we fix some

notation for the spaces spanned by eigenvectors corresponding to nonpositive eigenvalues. Finally, we

give the definition of (semi)stable elements.

Let G be a connected reductive complex Lie group with Lie algebra g (throughout this paper the Lie

algebra of a Lie group will be denoted by the corresponding ‘german’ character). We denote by Z the

center of G and by ZR its unique maximal compact subgroup. We also set:

TG :=
{
τ ∈ g

∨ | τ|[g,g] = 0, τ (zR) ⊆ R

}
,

which is a real vector space, naturally isomorphic to (zR)
∨ (the dual of the Lie algebra of ZR).Moreover,

let K be an arbitrary maximal compact subgroup of G. Then its Lie algebra k can be decomposed as
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k = zR ⊕ [k, k]. Since K is connected, the following relations hold

{
τ ∈ k

∨|〈τ, adg(ξ)〉 = 〈τ, ξ 〉, ∀g ∈ K, ξ ∈ k
}

= {τ ∈ k
∨|τ|[k,k] = 0} 	 TG. (2)

Throughout this paper we will tacitly use this identification and we will call weights the elements of

TG .
An element s of g is called of Hermitian type if there exists a compact subgroup K of G such that

s ∈ ik; the set of elements of Hermitian type will be denoted by H(G). The previous definition and

equivalent characterizations of the elements of H(G) can be found in [10, Definition 3.1].

Let further ρ : G → GL(W) be a representation of G on a finite dimensional complex vector space

W; its kernel will be denoted by H. In particular, if s ∈ H(G) is an element of Hermitian type, the

endomorphism ρ∗(s) has only real eigenvalues and is diagonalizable (see [10]). For an eigenvalue λ of

ρ∗(s), we denote by W(λ) the corresponding subspace of eigenvectors. Consider the spaces spanned

by eigenvectors corresponding to nonpositive, respectively, to negative eigenvalues

W�0(s) := ⊕
λ�0

W(λ), W<0(s) := ⊕
λ<0

W(λ).

We notice that, if W = ⊕p
i=1 Wi is the direct sum of the representations Wi of the group G, then for

any s ∈ H(G) it holds

W�0(s) =
p⊕

i=1

W
�0
i (s), W<0(s) =

p⊕
i=1

W<0
i (s). (3)

We end this section by introducing, in this rather general framework, the condition of stability

which will be used throughout the paper. As we already pointed out, stability was firstly introduced

by adapting Mumford’s Geometric Invariant Theory. There are two alternative approaches to define

stability: symplectic and analytic and the three definitions are equivalent (see [10] for details and

further references). Furthermore, it turnsout that, in the caseof linear actions, they canbe reformulated

by using only notions which are specific to linear algebra (see [10–12]). For the purposes of this paper,

it is useful to use the following equivalent characterization [13, p. 18] as definition:

Definition 1. Fix τ in TG . An element w ∈ W is called:

(i) τ -semistable if for any s ∈ H(G) such that w ∈ W�0(s), it holds 〈τ, is〉 � 0;

(ii) τ -stable if it is τ -semistable and for any s ∈ H(G)\h such that w ∈ W�0(s) it holds 〈τ, is〉 > 0.

For afixedτ , the set ofτ -semistable elementswill bedenotedbyWss,τ , analogouslyWs,τ represents

the set of τ -stable elements. These sets are unions of orbits. This is due to the fact that (semi)stability is

a property of the orbits. Thus, an element is (semi)stable if and only if all the elements in its G-orbit are

(semi)stable, too. This fact is not at all clear from Definition 1, but can be proved by using alternative

approaches (e.g. GIT or symplectic). On the other hand, for the linear problems that will be discussed

in this paper, this property can be proved by using specific arguments.

2.2. Examples: partial quiver factorization problems

The aim of this section is to present four basic examples of spaces spanned by eigenvectors cor-

responding to nonpositive eigenvalues. These examples correspond to four basic types of quiver fac-

torization problems (see [14] or [7] for the terminology) and, by using (3), they can be extended to a

large class of such problems. For instance, Example 4 below can be used in the study of (generalized)

Kronecker quivers.

In the remaining of the paper, we consider a r-dimensional complex vector space V . Let s ∈
H(GL(V)) be an element of Hermitian type. We denote by λ1 < · · · < λq the (real) eigenvalues
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of s and by V(λi), 1 � i � q, the corresponding eigenspaces. For any i = 1, . . . , q we define

Vi := ⊕
λj�λi

V(λj)

and we put V0 := {0}, obtaining a filtration of V , denoted by Fs,

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vq = V .

We also define

F�0
s := ⊕

λj�0

V(λj), F<0
s := ⊕

λj<0

V(λj).

In particular, there exist indices j1, j2 such that F�0
s = Vj1 , F

<0
s = Vj2 .

Remark 1. Fix a basis of eigenvectors {v1, . . . , vr} corresponding to the set of eigenvalues of s (or-

dered increasingly). For an element g ∈ GL(V) one can construct an new element of Hermitian type,

denoted by g ∗ s, as follows: its eigenvalues are those of s and {g(v1), . . . , g(vr)} represents a basis of
eigenvectors. Although the filtrations associated to s and to (g ∗ s) do not coincide, the dimensions of

the subspaces arising in these filtrations are the same and, particularly, one has tr(s) = tr(g ∗ s).

Example 1. Consider the GL(V)-action by conjugation on W := EndC(V), which is a factorization

problem associated to the quiver

• ��

Then ϕ ∈ W�0(s) if and only if the filtration Fs is ϕ-invariant.

Example 2. Take the GL(V)-action on the space W := HomC(V
′, V) given by (g, ϕ) 
→ g ◦ ϕ (here

V ′ is another finite dimensional complex vector space). This action is a partial quiver factorization

problem associated to the quiver

◦ �� •
The tail of the vertex is represented as ‘unmarked’ (◦), while its head is represented as ‘marked’ (•),
that is only the symmetry group corresponding to the head acts on the representation space of the

quiver (see [7]).

Then one has ϕ ∈ W�0(s) if and only if im(ϕ) ⊆ F�0
s .

Example 3. Take the GL(V)-action on the space W := HomC(V, V
′) given by (g, ϕ) 
→ ϕ ◦ g−1,

which is a partial quiver factorization problem associated to the quiver

• �� ◦
Then one has ϕ ∈ W�0(s) if and only if ker(ϕ) ⊇ F<0

s .

The last example takes into account the case when two symmetry groups are acting on the repre-

sentation space of the quiver.

Example 4. Take the representation ρ of the group GL(V)× GL(V) on the space W := HomC(V, V)
given by ρ(g, h) · ϕ = g ◦ ϕ ◦ (h)−1, which is the (full) quiver factorization problem associated to the

quiver

• �� •
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Fix (s′, s′′) ∈ H(GL(V) × GL(V)) 	 H(GL(V)) × H(GL(V)) an element of Hermitian type. Let λ′
1 <

λ′
2 < · · · < λ′

a, respectively, λ
′′
1 < λ′′

2 < · · · < λ′′
b be the eigenvalues of s′, respectively, s′′. Then

ϕ ∈ W�0(s′, s′′) if and only if for any real number m it holds

ϕ

⎛
⎜⎝ ⊕
λ′′
k�m

V(λ′′
k )

⎞
⎟⎠ ⊆ ⊕

λ′
j�m

V(λ′
j). (4)

We will now prove the latter statement (the assertions of Examples 1, 2 and 3 can be proved by

using similar arguments). In the case of the action ρ considered in Example 4, the eigenvalues of

ρ∗(s′, s′′) are {λ′
p − λ′′

q }p,q and, according to our notations, let (W(λ′
p − λ′′

q ))p,q be the corresponding

eigenspaces. Thus, any ϕ ∈ W can be decomposed as ϕ = ∑
ϕλ′

p−λ′′
q
, where for any p = 1, . . . , a and

q = 1, . . . , b one has

s′ ◦ ϕλ′
p−λ′′

q
− ϕλ′

p−λ′′
q
◦ s′′ = (λ′

p − λ′′
q )ϕλ′

p−λ′′
q
. (5)

Using the equality (5) one can prove that for any eigenvector v corresponding to an eigenvalue λ′′ and
for any p and q it holds ϕλ′

p−λ′′
q
(v) ∈ V(λ′′ +λ′

p −λ′′
q ). We deduce that, writing ϕ = ϕ−,0 +ϕ+,with

ϕ−,0 ∈ W�0(s′, s′′), respectively, ϕ+ ∈ ⊕
ν>0 W(ν) the following inclusions are verified for any λ′′

ϕ−,0(V(λ′′)) ⊆ ⊕
λ′�λ′′

V(λ′), ϕ+(V(λ′′)) ⊆ ⊕
λ′>λ′′

V(λ′). (6)

The inclusions (6) and the fact that the relation (4) holds if and only if ϕ(V(λ′′)) ⊆ ⊕
λ′�λ′′ V(λ′), for

any λ′′, yield now the desired conclusion.

Wenotice that the proof above can be easily generalized to the case of the natural GL(V ′′)×GL(V ′)-
action on the space W = HomC(V

′′, V ′), where V ′′ and V ′ are two finite dimensional vector spaces.

We focused our attention to the case V ′′ = V ′, since this situation will be relevant in the remaining of

the paper.

Remark 2. Suppose that ϕ ∈ W�0(s′, s′′), withW as in Example 4. Fix an element (g, h) ∈ GL(V)×
GL(V). Then g ◦ ϕ ◦ h−1 ∈ W�0(g ∗ s′, h ∗ s′′) and it holds tr(s′) = tr(g ∗ s′), respectively, tr(s′′) =
tr(h ∗ s′′). This compatibility property can be easily generalized to arbitrary quiver factorization

problems.

2.3. Technical lemmas

In this section, we remain in the framework of Example 4 andwe aim to prove several results which

will be used in the proofs of the main results. They focus on the situation when the identity belongs

to the space spanned by eigenvectors corresponding to (non)positive eigenvalues of a pair (s′, s′′). We

will show that in this case the vector of (ordered weakly increasingly) eigenvalues of s′ is, component-

wise, less or equal to the vector corresponding to s′′ (Lemma 1 and Remark 3). Moreover, if a certain

inequality concerning the traces of s′ and s′′ is verified, then s′ (and automatically s′′) have at least one
positive eigenvalue and, in the associated filtrations, one can find proper subspaces, corresponding to

positive eigenvalues, which have the same dimension (Lemma 2).

Let s′, s′′ ∈ H(GL(V)) be elements of Hermitian type with eigenvalues λ′
1 < λ′

2 < · · · < λ′
a,

respectively, λ′′
1 < λ′′

2 < · · · < λ′′
b . Let further

{0} = V ′
0 ⊂ V ′

1 ⊂ · · · ⊂ V ′
a = V, {0} = V ′′

0 ⊂ V ′′
1 ⊂ · · · ⊂ V ′′

b = V

be the corresponding filtrations. We denote by d′
i := dimC(V

′
i ) (i = 1, . . . , a), respectively, d′′

i :=
dimC(V

′′
i ) (i = 1, . . . , b) the dimensions of the vector spaces arising in the filtrationsFs′ , respectively,
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Fs′′ . For any k = 1, . . . , b we put

j(k) :=
⎧⎪⎨
⎪⎩

max{l | λ′
l � λ′′

k }, if {l | λ′
l � λ′′

k } �= ∅
0, otherwise

.

Lemma 1. Suppose that id ∈ W�0(s′, s′′). Then for any k = 1, . . . , b it holds d′′
k � d′

j(k). Moreover, if

s′ and s′′ have the same eigenvalues with the same multiplicities, then s′ and s′′ have the same associated

filtrations, i.e. Fs′ = Fs′′ .

Proof. Using Example 4, we deduce that for any k it holds

V ′′
k = id

⎛
⎜⎝ ⊕
λ′′
j �λ′′

k

V(λ′′
j )

⎞
⎟⎠ ⊆ ⊕

λ′
j�λ′′

k

V(λ′
j) = ⊕

λ′
j�λ′

j(k)

V(λ′
j) = V ′

j(k)

andhenced′′
k � d′

j(k) (wenotice that this assertion remains true ifwe replace idwithψ ∈ HomC(V, V)

invertible). Let us now suppose that a = b, that for any k = 1, . . . , a we have λ′
k = λ′′

k and that the

corresponding multiplicities are equal. In particular, we deduce that for any k one has j(k) = k and

dimC(V
′
k) = dimC(V

′′
k ). Since V ′′

k ⊆ V ′
j(k) = V ′

k , we conclude that the two filtrations coincide. �

Remark 3. Consider the sequencesof eigenvalues (λ′(1), . . . , λ′(r)), respectively, (λ′′(1), . . . , λ′′(r))
of s′, respectively, s′′ ordered weakly increasingly and such that each eigenvalue occurs as many times

as its multiplicity is. Then the condition in Lemma 1 that for any k one has d′′
k � d′

j(k) is equivalent to

the condition that for any i = 1, . . . , r it holds λ′(i) � λ′′(i). Moreover, under the assumption that

d′′
k � d′

j(k), it holds d
′′
k = d′

j(k) if and only if λ′′(d′′
k ) < λ′(d′′

k + 1).

Lemma 2. Suppose that id ∈ W�0(s′, s′′) for a pair (s′, s′′) �= (0, 0). Suppose also that the inequality

(r + 1)tr(s′)− rtr(s′′) � 0 is fulfilled. Then:

(i) s′ has at least one positive eigenvalue;
(ii) let q be such that F�0

s′ = V ′
q; in particular, if q �= 0, λ′

q is the greatest nonpositive eigenvalue of s′.
There exists t such that q � j(t) < a and such that d′′

t = d′
j(t).

Proof. We first notice that, using the notation in Remark 3, the inequality in the hypothesis can be

rewritten as

r∑
i=1

λ′(i)+ r

⎛
⎝ r∑

i=1

(λ′(i)− λ′′(i))
⎞
⎠ � 0. (7)

(i) If all the eigenvalues of s′ were nonpositive, then, for any i, we would have λ′(i) � 0. On the

other hand, by Remark 3, for any i we have λ′(i) − λ′′(i) � 0. Using the inequality (7), we

deduce that all the numbers λ′(i), λ′′(i) must be zero, which contradicts our assumption that

(s′, s′′) �= (0, 0).
(ii) We first claim that there exists d′

q � l < r such that λ′′(l) < λ′(l + 1) (if d′
q = 0, we set

λ′(0) = λ′′(0) := 0). Indeed, assume that for any d′
q � l � r − 1 we have λ′′(l) � λ′(l + 1).

Then, we get

r−1∑
l=d′

q

(r − l + 1)(λ′(l + 1)− λ′′(l)) � 0.
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To this inequality we add (r − d′
q + 1)λ′(d′

q) (which is nonpositive) and (−λ′′(r)) (which is

negative). By suitable changing the summing index for λ′, we obtain

r∑
l=d′

q+1

λ′(l)+
r∑

l=d′
q

(r − l + 1)(λ′(l)− λ′′(l)) < 0.

Since λ′(1), . . . , λ′(d′
q), λ

′(1)− λ′′(1), . . . , λ′(r)− λ′′(r) are nonpositive, this would imply

r∑
i=1

λ′(i)+ r

r∑
i=1

(λ′(i)− λ′′(i)) < 0,

and this contradicts the relation (7).

In conclusion, there exists l such that d′
q � l < r and λ′′(l) < λ′(l + 1). Applying Remark 3, we

get the inequality λ′′(l) < λ′′(l + 1), which means that there exists t < b such that l = d′′
t . Again by

Remark 3, we obtain the relations d′
q � d′′

t = d′
j(t) < r = d′

a, which yield the desired statement. �

3. Main results

We will start the discussion by considering a basic partial factorization of a quiver, namely that

one that involves the quiver with one loop and one arrow. We firstly describe the set of (semi)stable

elements in this case, pointing out the relationship to linear systems (Section 3.1).We further relate, in

a natural fashion, this quiver to another one, namely to an augmented Kronecker quiver and we show

the relationship between the associated stability conditions (Section 3.2). The analysis of the stability

for the latter quiver factorization problem will be deepened in Section 3.3.

3.1. The one-arrow-one-loop-quiver and linear systems

Consider the marked quiver Q represented below, consisting of two vertices, one loop and one

arrow

◦ �� • ��

To this diagram, one can associate in natural fashion a quiver factorization problem as follows. Take an

r-dimensional complex vector space V as in Section 2 and another complex vector space V1. One has

a natural action of the group G := GL(V) on the space

W := EndC(V)× HomC(V1, V)

given by g · (ϕ, ϕ1) := (g ◦ ϕ ◦ g−1, g ◦ ϕ1). The stability conditions (Definition 1) which could be

introduced for this problem depend on a weight τ ∈ TGL(V). Moreover, as pointed out, for instance,

in [15] (for affine spaces) and in [16] (for representations of quivers), the set of weights has a GIT-fan

structure. In the case of the group GL(V), this structure is a very simple one: there are essentially

three different stability conditions, corresponding to the weights τ0 := 0, τ1 := itr, τ−1 := −itr.
We first claim that the semistable locus corresponding to the weight τ−1 is empty. Indeed, fix an

arbitrary element (ϕ, ϕ1) ∈ W . We consider the element of Hermitian type s = −id with associated

filtration {0} ⊂ V = F�0
s . Obviously, according to Examples 1 and 2, it holds (ϕ, ϕ1) ∈ W�0(s), but

〈τ, is〉 = − dimC(V) < 0, that is (ϕ, ϕ1) cannot be semistable. As a general rule, this proof can be

adapted to show that any marked sink (or source) of a quiver factorization problem imposes some

restrictions to the cone of effective weights (that is those weights for which the semistable locus is

not empty). Thus, in this case, the cone of effective weights is given by the inequality x � 0. On the
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other hand, for τ0 = 0 the semistable locus is equal to thewhole space, while the stable locus is empty

(this statement can be proved using arguments similar to those above). This shows that τ0 represents

a ‘wall’ of the space of weights (i.e. the stable locus does not coincide with the semistable one).

We now aim to describe the set of (semi)stable points for the remaining character, τ1. Put first
Vϕ,ϕ1 := ∑

0�i�r−1im(ϕ
i ◦ ϕ1) ⊆ V and denote byM the set of pairs (ϕ, ϕ1) such that Vϕ,ϕ1 = V .

Theorem 1. It holds M = Ws,τ1 = Wss,τ1 .

Proof. Let (ϕ, ϕ1) be an element of M. Consider s ∈ H(GL(V)) such that (ϕ, ϕ1) ∈ W�0(s). By
Example 2 it follows that im(ϕ1) ⊆ F�0

s and by Example 1 the filtrationFs isϕ-invariant, in particular

ϕ(F�0
s ) ⊆ F�0

s . We deduce that for any 0 � i � r − 1 it holds im(ϕi ◦ ϕ1) ⊆ F�0
s and eventually

Vϕ,ϕ1 ⊆ F�0
s . Since (ϕ, ϕ1) is an element ofM, it results that Vϕ,ϕ1 = F�0

s = V . In particular all the

eigenvalues of s are nonpositive andhence 〈τ1, is〉 = −tr(s) � 0.Moreover, if s �= 0, then 〈τ1, is〉 > 0.

This proves thatM ⊆ Ws,τ1 .

Let now (ϕ, ϕ1) be a pair such that Vϕ,ϕ1 �= V . Consider s with eigenvalues 0 and 1 and whose

associated filtration is {0} ⊂ Vϕ,ϕ1 ⊂ V . Then one has (ϕ, ϕ1) ∈ W�0(s) and it holds

〈τ1, is〉 = −tr(s) = − dimC(V/Vϕ,ϕ1) < 0,

which shows that the given pair is not τ1-semistable. Hence we proved that the semistable locus

is included in M. Since the stable locus is included in the semistable one, the required equalities

follow. �

3.2. Enlargement procedure and relationship between stability conditions

The quiver Q contains a loop (particularly a closed oriented path). As pointed out in [7], one could

apply to this quiver the ‘enlargement’ procedure, which means to consider the following augmented

Kronecker quiver, denoted by Q̃

•v′′

�� ��◦ �� •v′

and an appropriate quiver factorization problem. Actually, this construction translates in terms of

quivers Helmke’s construction [17,6]. More precisely, we take the group G̃ := GL(V)× GL(V),which

acts on the space

W̃ := HomC(V, V)
2 × HomC(V1, V)

in a natural fashion

(g, h) · (ψ, ϕ, ϕ1) := (g ◦ ψ ◦ h−1, g ◦ ϕ ◦ h−1, g ◦ ϕ1).
Let us notice that, at set-theoretical level, one has a natural map which is compatible with the two

group actions

ι : W → W̃, ι(ϕ, ϕ1) := (id, ϕ, ϕ1).
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For this quiver factorization problem, the space of characters is isomorphic to R
2. Since the vertex

denoted by v′ is a sink and the vertex denoted by v′′ is a source, one can prove, using arguments similar

to those mentioned above, that the cone of effective weights is given by the inequalities x � 0, y � 0.

In this case, the wall structure is more complicated, and it is not our aim to describe here its complete

structure. We will instead only prove that there exists a relationship between the stability conditions

associated to the quiver Q and those corresponding to Q̃ .

We consider the weights τ̃0 and τ̃1 given by

〈τ̃ε, (ζ ′, ζ ′′)〉 :=
⎧⎪⎨
⎪⎩

ir(tr(ζ ′)− tr(ζ ′′)), if ε = 0

i((r + 1)tr(ζ ′)− rtr(ζ ′′)), if ε = 1.

Then for any s′, s′′ ∈ H(GL(V)) one has 〈τ̃0, i(s′, s′′)〉 = −rtr(s′) + rtr(s′′) and 〈τ̃1, i(s′, s′′)〉 =
−(r + 1)tr(s′)+ rtr(s′′). We now claim that the following result holds.

Theorem 2. Take any ε ∈ {0, 1}. A pair (ϕ, ϕ1) ∈ W is τε-(semi)stable if and only if ι(ϕ, ϕ1) ∈ W̃ is

τ̃ε-(semi)stable.

Proof. We first notice that for ε ∈ {0, 1} and s ∈ H(GL(V)) it holds: if (ϕ, ϕ1) ∈ W�0(s) and
〈τε, is〉 < (�)0, then (id, ϕ, ϕ1) ∈ W̃�0(s, s) and 〈τ̃ε, i(s, s)〉 < (�)0. This means that if (ϕ, ϕ1) is
not τε-(semi)stable, then (id, ϕ, ϕ1) cannot be τ̃ε-(semi)stable.

We now prove the converse assertion: if (ϕ, ϕ1) is τε-(semi)stable, then (id, ϕ, ϕ1) is τ̃ε-
(semi)stable.

The case ε = 0. Since the stable locus for τ0 is empty, we only have to prove that every element

(id, ϕ, ϕ1) is τ̃0-semistable. Indeed, if (s′, s′′) is a pair such that (id, ϕ, ϕ1) ∈ W̃�0(s′, s′′), then, by
Remark 3, we deduce that for any i = 1, . . . , r one has λ′(i) � λ′′(i) and hence

〈τ̃0, i(s′, s′′)〉 = −r(tr(s′)− tr(s′′)) = r

r∑
i=1

(−λ′(i)+ λ′′(i)) � 0.

Thecaseε = 1. Wewill prove that if (id, ϕ, ϕ1) isnot τ̃1-stable, then (ϕ, ϕ1) isnotτ1-semistable. Let

(s′, s′′) �= (0, 0)be apair forwhich it holds (id, ϕ, ϕ1) ∈ W̃�0(s′, s′′) and such that 〈τ̃1, i(s′, s′′)〉 � 0.

The latter inequality means that (r + 1)tr(s′) − rtr(s′′) � 0 and we can hence apply Lemma 2. We

therefore find q such that F�0

s′ = V ′
q, respectively, t such that q � j(t) < a and such that d′′

t = d′
j(t).
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We already showed in the proof of Lemma 1 that V ′′
t ⊆ V ′

j(t) and since their dimensions are equal

(d′′
t = d′

j(t)), it follows that these subspaces of V coincide. Moreover, since ϕ ∈ HomC(V, V)
�0(s′, s′′),

we can use the relation (4), deducing

ϕ(V ′
j(t)) = ϕ(V ′′

t ) = ϕ

⎛
⎜⎝ ⊕
λ′′
i �λ′′

t

V(λ′′
i )

⎞
⎟⎠ ⊆ ⊕

λ′
i�λ′′

t

V(λ′
i) = ⊕

λ′
i�λ′

j(t)

V(λ′
i) = V ′

j(t)

and it holds

im(ϕ1) ⊆ F�0

s′ = V ′
q ⊆ V ′

j(t).

The main point is that we found a proper ϕ-invariant subspace V ′ which includes im(ϕ1) (namely

V ′
j(t)). Consider now s with eigenvalues 0 and 1 and with associated filtration Fs:

{0} ⊂ V ′ ⊂ V .

The conditions above mean that (ϕ, ϕ1) ∈ W�0(s). On the other hand, one has

〈τ1, is〉 = −tr(s) = − dimC(V/V
′) < 0

and we conclude that (ϕ, ϕ1) is not τ1-semistable. �

3.3. Augmented Kronecker quivers and generalized linear systems

We remain in the framework of the quiver factorization problem associated to Q̃ , stated in Section

3.2, and we aim to explicitly describe the set of (semi)stable points corresponding to the character τ̃1.
We begin by fixing some notation and terminology. Following [18], a triple (ψ, ϕ, ϕ1) will be

called admissible if det(λψ + μϕ) �≡ 0. We notice that, if ξ = (ψ, ϕ, ϕ1) is admissible, then one

can find (ψ ′, ϕ′, ϕ1) lying in the same G̃-orbit as ξ and such that, for suitable λ0, μ0 ∈ C, one has

λ0ψ
′ + μ0ϕ

′ = id. Moreover,ψ ′ and ϕ′ commute [19, Proposition 2.1].

Following [19], we say that a triple (ψ, ϕ, ϕ1) is reachable if Vψ,ϕ,ϕ1 = V, where the subspace

Vψ,ϕ,ϕ1 is defined by Vψ,ϕ,ϕ1 = ∑
0�p,q�r−1im(ψ

p ◦ ϕq ◦ ϕ1). Notice that, under the assumption

of admissibility, the reachability condition is equivalent to the controllability condition used in [5,6],

namely that im(λψ + μϕ)+ im(ϕ1) = V for any (λ, μ) �= (0, 0) (see [19, Theorem 4.1]).

Consider now the following set

M̃ = {(ψ, ϕ, ϕ1) ∈ W̃ | (ψ, ϕ, ϕ1) admissible and reachable}.
Theorem 3. It holds M̃ = W̃s,τ̃1 = W̃ss,τ̃1 .

Proof. We first take (ψ, ϕ, ϕ1) ∈ M̃ andwe aim to show that it is τ̃1-stable. We now use the fact that

stability is a property of the orbits (in the quiver problem considered in this Theorem, this fact follows

at once from Remark 2). By using the admissibility condition, we may hence assume, without loss of

generality, that λ0ψ+μ0ϕ = id, for λ0, μ0 suitable chosen. Suppose now that the stability condition

is not fulfilled. This means that we can find (s′, s′′) �= (0, 0)with (ψ, ϕ, ϕ1) ∈ W̃�0(s′, s′′) and such

that 〈τ̃1, i(s′, s′′)〉 � 0. We first notice that id ∈ HomC(V, V)
�0(s′, s′′), particularly Lemmas 1 and

2 can be applied. As in the proof of Theorem 2, we can construct a proper subspace V ′ ⊂ V which is

both ψ and ϕ-invariant and such that im(ϕ1) ⊆ V ′. This would imply that Vψ,ϕ,ϕ1 ⊆ V ′ (one tacitly

uses the fact that ψ and ϕ commute), that is the triple (ψ, ϕ, ϕ1) is not reachable and this yields a

contradiction. We conclude that M̃ ⊆ W̃s,τ̃1 .

We will now prove that, if (ψ, ϕ, ϕ1) is τ̃1-semistable, then it is an element of M̃. Suppose, on the

contrary, that this is not the case. We distinguish two situations.
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If (ψ, ϕ, ϕ1) would not be admissible, then the relation det(λψ + μϕ) ≡ 0 would be verified.

This means that the matrix pencil (Mψ,Mϕ) obtained by fixing some bases of V is singular. Using

the canonical form of a singular pencil [20, p. 37], one proves that there exist subspaces W ′, W ′′ with

dimC(W
′) < dimC(W

′′) and such that (λψ +μϕ)(W ′′) ⊆ W ′ for all scalars λ,μ. Construct now s′′
with associated filtration {0} ⊂ W ′′ ⊆ V and with eigenvalues −1; 0, respectively, s′ with associated

filtration {0} ⊆ W ′ ⊂ V and with the same eigenvalues. Denote by δ = dimC(W
′), d = dimC(W

′′);
onehas0 � δ � d−1 < r andobviously tr(s′) = −δ, tr(s′′) = −d. It is easy tocheck thatψ, ϕ satisfy

the condition in Example 4. Since obviously im(ϕ1) ⊆ F�0

s′ , it follows that (ψ, ϕ, ϕ1) ∈ W̃�0(s′, s′′).
On the other hand, we have the following relations:

〈τ̃1, i(s′, s′′)〉 = −(r + 1)tr(s′)+ rtr(s′′) = (r + 1)δ − rd = r(δ − d)+ δ � −r + δ < 0

and this shows that (ψ, ϕ, ϕ1) cannot be τ̃1-semistable.

Let us now suppose that (ψ, ϕ, ϕ1) is not reachable, but it is admissible. Again by using the fact that

semistability is a property of the orbits wemay assume, without loss of generality, that λ0ψ+μ0ϕ =
id; particularlyψ andϕ commute. Consider now s′ = s′′ with associated filtration {0} ⊆ Vψ,ϕ,ϕ1 ⊂ V

and with eigenvalues 0 and 1. Then obviously im(ϕ1) ⊆ F�0

s′ . Moreover, one can check that ψ and ϕ
verify the conditions of Example 4 (the fact that they commute is crucial). On the other hand, we have

〈τ̃1, i(s′, s′′)〉 = −(r + 1)tr(s′)+ rtr(s′′) = − dimC(V/Vψ,ϕ,ϕ1) < 0

and this shows that (ψ, ϕ, ϕ1) is not τ̃1-semistable.We conclude that the semistable locus is contained

in M̃.

Finally, since the stable locus is always included in the semistable one, we get the desired state-

ment. �

References

[1] D. Mumford, Geometric Invariant Theory, Springer, 1965.
[2] A. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994) 515–530.

[3] C. Byrnes, N. Hurt, On the moduli of linear dynamical systems, in: Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New

York–London, 1979, pp. 83–122.
[4] A. Tannenbaum, Invariance and system theory: algebraic and geometric aspects, in: Lecture Notes in Mathematics, vol. 845,

Springer-Verlag, Berlin–New York, 1981.
[5] U. Helmke, M. Shayman, Topology of the orbit space of generalized linear systems, Math. Control Signals Systems 4 (1991)

411–437.
[6] U. Helmke, A compactification of the space of rational transfer functions by singular systems, J. Math. Systems Estim. Control 3

(1993) 459–472.

[7] M. Halic, M.S. Stupariu, Rings of invariants for representations of quivers, C. R. Math. Acad. Sci. Paris 340 (2005) 135–140.
[8] M. Bader, Moduli spaces of linear dynamical systems, Master’s Thesis, University of Zürich, 2005.

[9] M. Bader, Quivers, geometric invariant theory, and moduli of linear dynamical systems, Linear Algebra Appl. 428 (2008) 2424–
2454.

[10] A. Teleman, Symplectic stability, analytic stability in non-algebraic complex geometry, Internat. J. Math. 15 (2004) 183–209.
[11] D. Banfield, Stable pairs and principal bundles, Q. J. Math. 51 (2000) 417–436.

[12] I. Mundet i Riera, A Hitchin–Kobayashi correspondence for Kaehler fibrations, J. Reine Angew. Math. 528 (2000) 41–80.

[13] M. Lübke, A. Teleman, The universal Kobayashi–Hitchin correspondence on Hermitian manifolds, Mem. Amer. Math. Soc. 183
(863) (2006), vi+97.

[14] C. Okonek, A. Teleman, Gauge theoretical Gromov–Witten invariants and virtual fundamental classes, in: The Fano Conference,
Univ. Torino, 2004, pp. 591–623.

[15] M. Halic, Quotients of affine spaces for actions of reductive groups, 2004. Available from: arXiv:math.AG/0412278 (Preprint).
[16] C. Chindris, Notes on GIT-fans for quivers, 2008. Available from: arXiv:0805.1440v1 (math.RT, Preprint).

[17] U. Helmke, The cohomology of moduli spaces of linear dynamical systems, vol. 24, Regensburger Mathematische Schriften

[Regensburg Mathematical Publications], 1993, pp. viii+171.
[18] U. Helmke, M. Shayman, A canonical form for controllable singular systems, Systems Control Lett. 12 (1989) 111–122.

[19] R. Nikoukhah, A. Willsky, C. Levy, Boundary-value descriptor systems: well-posedness, reachability, and observability, Internat.
J. Control 46 (1987) 1715–1737.

[20] F. Gantmacher, The theory of matrices, vol. 2, AMS Chelsea Publishing, Providence, RI, 2000. (Reprint of the 1959 translation).

arxiv:math.AG/0412278
arxiv:0805.1440v1

	Filtrations, weights and quiver problems
	1 Introduction
	2 Preliminaries
	2.1 Elements of Hermitian type: stability
	2.2 Examples: partial quiver factorization problems
	2.3 Technical lemmas

	3 Main results
	3.1 The one-arrow-one-loop-quiver and linear systems
	3.2 Enlargement procedure and relationship between stability conditions
	3.3 Augmented Kronecker quivers and generalized linear systems

	References


