The effect of substances extracted from *Toona sinensis* leaves with 50% alcohol solution on lipolysis was investigated in cultured 3T3-L1 differentiated adipocytes. The amount of glycerol released from cells into culture medium was used to measure lipolysis activity. Glycerol release was increased by *Toona sinensis* leaf extract in a dose-dependent and time-dependent manner. Following treatment of 3T3-L1 adipocyte cells with various concentrations of *Toona sinensis* leaf extract (0.001, 0.01, and 0.1 mg/mL) for 6 hours, the amounts of glycerol released from 3T3-L1 cells increased from a control value of 99 nmol/mg protein to 127, 144, and 154 nmol/mg protein, respectively. The lipolytic effect of *Toona sinensis* leaf extract was not inhibited by pretreatment of cells with cycloheximide, econazole, baicalein, or indomethacin. However, the lipolytic activity induced by *Toona sinensis* leaf extract was diminished by dibutyryl cyclic adenosine-5′-monophosphate (dibutyryl cAMP) and the protein kinase C inhibitor calphostin C. These results indicate that the lipolytic effect induced by *Toona sinensis* leaf substances may be involved in the protein kinase C pathway and may be down-regulated by cAMP.

Key Words: lipolysis, glycerol release, 3T3-L1 adipocytes, *Toona sinensis* leaf

5'-triphosphate (ATP), phosphoenolpyruvate (PEP), reduced nicotinamide adenine dinucleotide (NADH), pyruvate kinase, lactate dehydrogenase, isoproterenol, dibutyryl cyclic adenosine-5'-monophosphate (dibutyryl cAMP), calphostin C, cycloheximide, econazole, baicalein, and indomethacin were obtained from Sigma Chemicals Co. (St. Louis, MO, USA). Other drugs were obtained from Merck (E. Merck, Darmstadt, Germany).

Cell culture

3T3-L1 cells, obtained from American Type Culture Collection (ATCC, Rockville, MD, USA), were grown in culture plates containing Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (Gibco, Grand Island, NY, USA), 3.8 mM L-glutamine, and 50 μg/mL gentamicin. The cultures were kept at 37°C in a humidified chamber with 10% CO₂. The medium was changed every 2 or 3 days.

Differentiation of 3T3-L1 cells to adipocytes

3T3-L1 pre-adipocytes were differentiated to adipocytes as described previously by Hong et al [5]. Briefly, 2 days after confluence (Day 0), the medium was removed and fresh medium containing 0.5 mM IBMX and 0.25 mM dexamethasone was added. After another 3 days, the medium was replaced with fresh culture medium and the cultures were maintained as described above. By Day 8, more than 90% of the cells had differentiated into rounded cells with lipid droplets.

Preparation of leaf extract

Substances were extracted from *Toona sinensis* leaves by boiling in 50% v/v alcohol/water for 3 hours. Following centrifugation at 2,000g for 10 minutes, the extracted substances were lyophilized.

Measurement of lipolysis

Lipolytic activity was measured by assaying glycerol released from cells into incubation buffer. Briefly, on days 8 to 12, the medium was removed and the differentiated adipocytes were incubated for 10 minutes in serum-free medium with 1% BSA and Krebs-Ringer phosphate (KRP) buffer (128 mM NaCl, 4.7 mM KCl, 1.25 mM CaCl₂, 1.35 mM MgSO₄, and 10 mM disodium hydrogen phosphate [Na₂HPO₄] pH 7.4) containing 1 U/mL adenosine deaminase. Various concentrations of *Toona sinensis* leaf extract in KRP buffer at concentrations of 0.001, 0.01, and 0.1 mg/mL were then added to cells for 1, 3, and 6 hours. The incubation mixture was aspirated and used to assay glycerol. In agonist and antagonist experiments, 10^{-5} M isoproterenol, 0.1 mM dibutyryl cAMP, 5.6×10^{-8} M calphostin, 10^{-5} M cycloheximide, 5×10^{-5} M econazole, 5×10^{-5} M baicalein, or 5×10^{-5} M indomethacin was added to cells 30 minutes before the addition of 0.01 mg/mL *Toona sinensis* leaf extract.

Glycerol assay

Glycerol was assayed enzymatically as described previously [5]. The glycerol assay reagent contained 5 mM MgSO₄, 0.9 mM ATP, 0.9 mM PEP, 6 U pyruvate kinase, 2 U lactate dehydrogenase, and NADH to a final absorbance at 340 nm of 0.9 to 1.0 in potassium phosphate buffer, pH 7.0. The decrease in absorbance at 340 nm was proportional to the concentration of glycerol.

Statistical analysis

Overall significant differences between groups were determined using one-way ANOVA. The least significant difference was used to determine significant differences between individual samples. Values were considered to be significantly different from the control if p was less than 0.05.

RESULTS

The control value for basal release of glycerol was 99 ± 7 nmol/mg protein. Following incubation with *Toona sinensis* leaf extract 0.001, 0.01, and 0.1 mg/mL for 6 hours, cultured 3T3-L1 adipocytes released significantly more glycerol: 127 ± 8, 144 ± 6, and 154 ± 9 nmol/mg protein, respectively (Figure 1). The effect was dose-dependent; glycerol release was 128%, 145%, and 156% of the control value. The lipolytic effect induced by *Toona sinensis* leaf extract was also time-dependent. Following incubation with 0.01 mg/mL of leaf extract for 1, 3, and 6 hours, cultured 3T3-L1 adipocytes released significantly more glycerol: 102 ± 9 nmol/mg protein at baseline was increased to 124 ± 10, 136 ± 11, and 145 ± 9 nmol/mg protein (Figure 2). In the presence of 10^{-5} M isoproterenol for 30 minutes, glycerol release increased to 155 ± 9 nmol/mg protein, 151% of the control value.
Effect of *Toona sinensis* on lipolysis in adipocytes

Kaohsiung J Med Sci August 2003 • Vol 19 • No 8

A combination of 0.01 mg/mL *Toona sinensis* leaf extract and isoproterenol changed glycerol release to 140 ± 6 nmol/mg protein (Figure 3). Pretreatment of cells with 0.1 mM dibutyryl cAMP for 30 minutes followed by incubation with 0.01 mg/mL *Toona sinensis* leaf extract for 6 hours significantly inhibited glycerol release to 107 ± 9 nmol/mg protein (Figure 3). Similarly, pretreatment of cells with a protein kinase C inhibitor (5.6 × 10⁻⁸ M calphostin C) also inhibited *Toona sinensis* leaf extract-induced cellular lipolytic effects (Figure 3).

Various other compounds such as the protein synthesis inhibitor cycloheximide (10⁻⁵ M), the cytochrome P-450 inhibitor econazole (5 × 10⁻⁵ M), the lipoxidase inhibitor baicalein (5 × 10⁻⁵ M), and the cyclooxygenase inhibitor indomethacin (5 × 10⁻⁵ M) failed to diminish the *Toona sinensis* leaf extract-induced lipolytic effect (Figure 4).

Figure 1. Dose-dependent effects of substances extracted from *Toona sinensis* (TS) leaves on lipolysis in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were incubated with various concentrations of extract for 6 hours and lipolysis was measured by glycerol release from cells into culture medium. Values are mean ± standard error from three experiments with triplicate determination. *p < 0.05 compared with control (n = 9).

Figure 2. Time-dependent effects of substances extracted from *Toona sinensis* (TS) leaves on lipolysis in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were incubated in the presence of 0.01 mg/mL *Toona sinensis* leaf extract for 1, 3, and 6 hours. Lipolytic activity was measured from the amount of glycerol in the culture medium. Values are mean ± standard error from three experiments with triplicate determination. *p < 0.05 compared with control (n = 9).

Figure 3. Effects of isoproterenol, calphostin C, and dibutyryl cAMP on *Toona sinensis* (TS) leaf extract-stimulated lipolysis in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were pretreated with 10⁻⁵ M isoproterenol, 5.6 × 10⁻⁸ M calphostin C, or 0.1 mM dibutyryl cAMP for 30 minutes and then incubated with *Toona sinensis* leaf substances for 6 hours. Lipolytic activity was measured from the amount of glycerol in the culture medium. Values are mean ± standard error from three experiments with triplicate determination. *p < 0.05 compared with control (n = 9). †p < 0.05 when compared to TS (n = 9).
DISCUSSION

The present study demonstrated that exposure to various concentrations of *Toona sinensis* leaf extract significantly enhanced lipolytic activity in 3T3-L1 adipocytes. Up to now, there are few data on the lipolytic effects of *Toona sinensis* leaves on cultured adipocytes in vitro. Our results show that the regulatory mechanism of *Toona sinensis* leaves on cellular lipolysis may be mediated by the protein kinase C pathway, because glycerol release is inhibited by the addition of calphostin C, a protein kinase C inhibitor. cAMP may down-regulate *Toona sinensis* leaf extract-induced lipolysis. Although extracts from oolong tea also possess potent lipolytic activity, the active substance was identified as caffeine [3]. The present study showed that a combination of isoproterenol and *Toona sinensis* leaf extract did not have an additional enhancing effect when compared to *Toona sinensis* alone. Thus, the regulatory mechanism of the lipolytic effect of *Toona sinensis* leaf extract may be similar to that of isoproterenol.

Isoproterenol is a non-selective adrenergic agonist that stimulates lipolysis activity. It is popularly used as a lipolysis-stimulating agent in the study of adipocyte function [6]. Compounds acting selectively on the β3-adrenoceptor are promising tools to achieve sustained stimulation of lipolysis and energy expenditure [7]. However, isoproterenol has more effective lipolytic activity than specific β3-adrenergic agonists such as BRL37344 and CGP12177 in large mammals [8,9]. Thus, isoproterenol was used as the stimulating agent in this study.

Pretreatment of cells with cycloheximide failed to inhibit the enhanced lipolysis seen with *Toona sinensis* leaf extract, indicating that protein synthesis is not required. Similarly, arachidonic acid metabolic pathways such as the cytochrome P-450, lipoxidase, and cyclooxygenase pathways may also not regulate *Toona sinensis* leaf extract-induced lipolysis.

In summary, this study demonstrated that *Toona sinensis* leaf extract induced lipolysis in 3T3-L1 adipocytes. Our results suggest that components of *Toona sinensis* leaves have potent lipolytic activity in vitro. Their roles in anti-obesity effects in vivo need to be further explored. *Toona sinensis* leaf extract may potentially be used as an anti-obesity agent in the future.

ACKNOWLEDGMENTS

This work was supported by research grants from the National Science Council of Taiwan (NSC 90-2316-B-037-004), and the Department of Health of Taiwan (DOH92-TD-1014).

REFERENCES

Effect of Toona sinensis on lipolysis in adipocytes