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This work addresses the problem of detecting human behavioural anomalies in crowded surveillance
environments. We focus in particular on the problem of detecting subtle anomalies in a behaviourally
heterogeneous surveillance scene. To reach this goal we implement a novel unsupervised context-aware
process. We propose and evaluate a method of utilising social context and scene context to improve
behaviour analysis. We find that in a crowded scene the application of Mutual Information based social
context permits the ability to prevent self-justifying groups and propagate anomalies in a social network,
granting a greater anomaly detection capability. Scene context uniformly improves the detection of
anomalies in both datasets. The strength of our contextual features is demonstrated by the detection
of subtly abnormal behaviours, which otherwise remain indistinguishable from normal behaviour.

� 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction by measuring more relevant information which better segments
As a society we have the need to monitor public and private
space in order to prevent criminal behaviour and identify security
threats. The scale at which surveillance is undertaken and the
density of information in video results in a huge amount of data
– the analysis of which using human resources is often prohibi-
tively expensive. The solution is to automate human surveillance
(Makris and Ellis, 2005). Due to advances in pedestrian detection
and robust tracking long term human centred tracks are becoming
more prevalent (Kalal and Matas, 2009; Felzenszwalb et al., 2010).
It is becoming plausible to autonomously profile the behaviour of a
single, or multiple, humans over time. An abnormal event in auto-
mated surveillance is one which has a low statistical representa-
tion in the training data (Loy, 2010). Our approach is motivated
by this definition with an emphasis upon contextual information
as a method of creating separation between otherwise only subtly
distinct behaviours. A good behaviour representation should en-
code the dataset in such a way that homogeneous clusters of
behaviour can be segmented from the heterogeneous mass of data.
Equally a poor behaviour representation is incapable of measuring
the distinction between desired subgroups of data. Subtle behav-
iours provide a greater challenge because the information required
to segment them from the greater set is not directly measurable.
Subtle behaviours can be handled in the following two ways; firstly

 citation and similar papers at core.ac.uk
the data into homogeneous subsets, or secondly by implementing
a better suited model which is capable of fitting the nuances of the
data domain. In this research we tackle the former point; inspired
by work in Scene Modelling (Makris and Ellis, 2005) and Social Sig-
nal Processing (Cristani and Raghavendra, 2012) we demonstrate
the extraction and use of high level surveillance information which
provides a contextual basis to identify subtly abnormal behaviour.
Simple surveillance scenes may not contain much contextual infor-
mation, in fact at its simplest a surveillance scene can be said to
have only one contextual state. In such cases a simple trajectory
matching algorithm may be appropriate to detect outlier behav-
iour. However, a dynamic or crowded surveillance scene may be
heterogeneous, and thus behaviour in one context may not be rep-
resentative of behaviour in a different context. In any non-trivial
surveillance scene contextual information such as scene region,
social context, periodic events, and entry or exit points impact
the dynamics of behaviour (Lan and Wang, 2010). We can use this
contextual information to provide further means of segmenting
abnormal behaviours from the mass of data, and perhaps provide
the means to segment subtle behaviours from the mass of data.
For a more general discussion on contextual anomaly detection
see (Chandola, 2009; Song et al., 2007).

With this work we demonstrate the significance of inferring so-
cial links between people in a surveillance application. We provide
further validation of the growing trend in automatic scene under-
standing, additionally providing a novel approach. Furthermore we
demonstrate a novel social context based anomaly detection
procedure. We evaluate our systems capability to detect subtle
behavioural anomalies within a complex and crowded human
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surveillance scene. Our main contributions are a novel method of
acquiring scene structure information in surveillance, the
development of a novel mutual information social group metric,
and the demonstration that social and scene contextual informa-
tion is effective in combination at anomaly detection.
1.1. Related work

We focus upon social and scene region contextual knowledge as
a means of improving the detection of subtle behavioural anoma-
lies. The scene regions provides an understanding of portions of
the scene in which we would expect normal behaviours to be differ-
ent from other areas (Makris and Ellis, 2005). Previous approaches
such as Li et al. develop a scene segmentation method which di-
vides the scene into regions based upon behavioural dissimilarity
(Li and Xiang, 2008). Similarly, Chen Loy segments a scene into spa-
tial regions of similar behaviour by virtue of behaviour correlation
(Loy, 2010). This work introduces a second line of contextual scene
knowledge: temporal state. This contextual information is particu-
larly apt for the traffic junction, in which behaviour is clearly tem-
porally segmented in short time intervals. However, it is far less
applicable to many human surveillance environments where the
periodicity of behaviour is far less structured, if at all. Wang et al.
uses a Dual Hierarchical Dirichlet Process to cluster behaviours spa-
tially, learning both observation and trajectory clusters simulta-
neously (Wang and Teck Ma, 2008). The second source of
contextual information we use is social context. Social Context
grants the ability to learn the distinction between normal behav-
iour for groups and individuals independently. The social model
provides an additional benefit; it ensures that the behaviour of each
individual is analysed in reference to people external to the same
social group. Thus a homogeneous group of individuals all acting
abnormally cannot be self-justifying. Furthermore social informa-
tion enables us to create likelihood dependencies between individ-
uals in a social group. Thus if one individual in a group is behaving
abnormally the expectation of other group members behaving
abnormally goes up. To estimate social groupings Ge et al. uses a
proximity and velocity metric to associate individuals into pairs,
iteratively adding additional individuals to groups using the Haus-
dorff distance as a measure of closeness (Ge and Ruback, 2009). Yu
et al. implements a graph cuts based system which uses the feature
of proximity alone (Yu et al., 2009). However modelling social
groups by positional information alone is perilously primitive and
prone to finding false social connections when individuals are with-
in close proximity due to external influences such as queuing. Oli-
ver et al. uses a Coupled HMM to construct a priori models of
group events such as Follow-reach-walk together, or Approach-
meet-go separately (Oliver and Pentland, 1998). Certain actions
are declared group activities and thus groups can be constructed
from individuals via mutual engagement in a grouping action. Rob-
ertson and Reid utilise gaze direction in order to determine whether
individuals are within each other’s field of view (Robertson, 2011).
Gaze direction is significant as it departs from the use of motion fea-
tures alone by taking into account visual interest (Farenzena and
Tavano, 2011). For a comprehensive and complete review of the
emerging field of social signal processing see the work of Cristani
(Cristani and Raghavendra, 2012).
2. Method

The extraction of pedestrian trajectories from surveillance video
is non-trivial, particularly when there is occlusion and crowding. It
is not our goal to develop a novel low level feature extractor and
for that reason we rely upon the large amount of research in com-
puter vision already devoted to producing tracking solutions.
Extracting pedestrian trajectories requires two main stages: detec-
tion of pedestrians, and tracking of targeted pedestrians. Detection
is achieved using the Felzenszwalb part based detector (Felzensz-
walb et al., 2010). Tracking of human targets in the image plane
is achieved with the use of the Predator TLD tracker (Kalal and
Matas, 2009). We track the heads of pedestrians in the
crowded PETS-2007 scene, see Fig. 1(a). for the second dataset,
the Oxford data, we use the published tracking results provided
by Benfold (Benfold and Video, 2011). We select the TLD tracker
due to high performance amongst state of the art trackers
(Kalal and Matas, 2010) and utilise its capability to learn a target
model and discriminate between potential targets in a crowded
surveillance scene. The pedestrian tracking performance of the
TLD tracker is extensively tested against alternative recent tracking
procedures in the author’s paper (Kalal and Matas, 2010).

Scene context: Building upon the work of Makris and Ellis (2005)
our scene model consists of four potential regions: Traffic lanes,
idle areas, convergence/divergence regions, and general area. Con-
vergence and divergence is synonymous as there is no temporal
direction. Each region is defined to isolate a different dynamic of
a scene, and is captured as a relation between the direction, speed,
persistence (the number of frames a trajectory last for), and energy
and entropies of trajectories through the scene. For each of the four
potential regions a heat map is constructed on the ground plane
and a threshold segments positive regions from negative. Scene re-
gions are mutually exclusive of each other. We define each of the
four scene context regions as follows:

Traffic lanes: A traffic lane represents an area of the scene which
contains a high number of trajectories in a structured motion. The
traffic region is defined as:

Txy ¼
Nxy

N

1

�
P

PðhxyÞlogðPðhxyÞ þ 1
p
P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhxy � �hxyÞ
2

q ð1Þ

where h is a histogram of directions populated by all target trajec-
tories to go through region x; y in the scene. The numerator Nxy

gives the number of trajectories through the location x; y, and N
gives the mean number of trajectories for any given location. High
scoring traffic locations coincide with regions displaying a high
number of trajectories, low directional entropy and low trajectory
energy.

Idle regions: The idle region captures the area of the scene which
hold enough evidence of near stationary trajectories that the re-
gion is considered a legitimate place to remain idle.

Ixy ¼
Txy

T

vxyP ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvxy � �vxyÞ2

q
þ
P

vxy

ð2Þ

The mean temporal persistence Txy provides the mean numbers
of frames that trajectories persist for in the region x; y, this coeffi-
cient is balanced by the denominator T the mean number of frames
for all regions. The speeds of trajectories observed in location x; y
is denoted by histogram v. We define likely idle regions as those
with a high mean temporal persistence, low speed and low speed
energy.

Convergence divergence areas: These areas of the scene are
responsible for imposing a force which brings trajectories together
or releases them allowing them to diverge. Typically such regions
are appended to the ends of a traffic lane.

Cxy ¼
1
p
P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhxy � �hxyÞ
2

q
�
P

PðhxyÞlogðPðhxyÞ
ð3Þ

where h is the histogram of direction observed at x; y. We define
the convergence region by a high directional energy low directional
entropy region. Thus a structured splitting of trajectories over a re-
gion would be considered a likely candidate for a convergence or
divergence region.



Fig. 1. We illustrate here the tracked dataset PETS-2007 (a), and tracked Oxford data (b). The PETS-2007 data presents a challenging crowded environment and contains far
less structure in the apparent motion of individuals in the scene. In contrast the Oxford data contains very structured trajectory information, and is sparsely populated. Our
social context extraction is geared towards crowded scenes such as the PETS-2007 data, however this presents a harder surveillance challenge.
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General Area: having scored the scene with the above region
definitions we normalise the region intensity maps between
[0,1], and apply a threshold to segment active regions. The remain-
ing area of the scene not classified as any of the above regions is
considered the general area. The interpretation of the general area
is as the region which does not impose any influence on the motion
vector of tracked pedestrians.

Social context. The basis of our social model is the premise that a
high degree of shared trajectory information implies a social
dependence between two individuals. Our social model is geared
towards effective detection of social groups in a moving crowd.
Crowded surveillance provides an environment in which socially
connected individuals are more likely to move together, and thus
display more similar trajectory information. The more entropic
the underlying motion of the crowd is the more salient similar tra-
jectories will be. For an illustration of typical social pairs see
Fig. 2(b).

We use a novel metric to identify the strength of pair-wise so-
cial connections consisting of the weighted product of multiple
features. We identified 4 features as effective at detecting pair con-
nections between two individuals: the mutual information of
direction (IHijt), the mutual information of speed (IVijt), the prox-
imity between two individuals (DPijt) and the temporal overlap ra-
tio between two individuals (sijt). We train a set of weighting
variables aDP ; aIV ; aIH; as which weight each feature in the social
metric based upon the classification score of each feature indepen-
dently on the ground truth training data. The feature weights are
distributed proportional to each features classification score. The
features which compose the pairing metric are defined as:

DPi jt ¼ aDPe
�

1
N

P
n
jSit�Snt jþ1

N

P
n
jSjt�Snt j

2jSit�Sjt j : ð4Þ

For 2 tracked individuals i and j at frame t where Sij is the dis-
tance between trajectory i and j at time t. The proximity between
any two individuals DP is scaled by the distance between i and j
to the set of all other individuals N in the scene. Thus we incorpo-
rate a measure of scene density which places a bias upon pairs
being closer together in denser areas, and allows pairs to drift apart
in sparse areas.

Dsi jt ¼ aT e
�
jTi�Tj j

2Tij ð5Þ

where sijt is the temporal overlap ratio between i and j up to the
current frame t, which is to say the ratio of time both individuals
have existed contemporaneously to total time of existence, thus
rewarding individuals who enter and exit the scene at similar times.
Ti, and Tj is the frame length of trajectory i and j respectively, and Tij

is the number of frames in which both i and j have coexisted.
Whilst DPijt and Dsijt are direct measures of trajectory statistics
it is important to note that both IVijt; IHijt are more complex in nat-
ure. We use mutual information (MI) instead of the Euclidean dis-
tance as it handles non-linear and non-Gaussian random variables
effectively and provides a principled method of comparing orthog-
onal feature dimensions. We define the Gaussian distributions of
speed PðvÞ and direction PðhÞ as the Maximum Likelihood Estima-
tion (MLE) derived from the most recent 1 s of trajectory data. The
joint probability is calculated as the MLE Gaussian for the com-
bined data of both person i and j over the last second. The mutual
information between individual i and j is calculated for a number
of temporal offsets thus permitting an individual reaction time to
the trajectory it has dependence upon. Thus we calculate the mu-
tual information between each individual with set time offsets of
10 frames consecutively forwards and backwards, and take the
maximal mutual information for all time offsets.
IVijt ¼ �aIV

X
b

Pðv iðbÞÞlog2ðPðv iðbÞÞÞ � aIV

X
b

Pðv jðbÞÞlog2ðPðv jðbÞÞÞ

þaIV

X
b

Pðv ijðbÞÞlog2ðPðv ijðbÞÞÞ:

ð6Þ

Where v i is the MLE distribution over speed for person i over
the most recent time window. The mutual information calculation
for direction IHijt is structured identically to the above, replacing
the MLE speed distribution v i with the MLE direction distribution
hi.

Each feature is used independently to classify pair connections
between tracked individuals and scored with against the ground
truth classification. We observed that the features of proximity
between two individuals (DP) and the temporal overlap ratio
between two individuals (Tijt) present a significant ability to
classify pairs in the test data. The overall performance is improved
with the inclusion of the mutual information measures for direc-
tion and speed, see Fig. 3. Whilst the individual features of mutual
information speed and direction provide better classification we
find there is a lack of correlation with the true positives exempli-
fied by the Euclidean features of proximity and temporal overlap
in this dataset. In this dataset the impact is a slightly reduced true
positive rate. However we select the mutual information metric
over Euclidean distance as it is a more principled method and
scores better than the Euclidean features.

To measure the overall social connection strength between two
individuals we utilise the pairwise strength in the previous step in
the following way. A trajectory of length T frames consists of T tu-
ples (S; v; h) for 2D ground plane position vector S, speed scalar v
and direction of trajectory in radians h. We can calculate the pair



Fig. 2. An example of social grouping from the Oxford data (a) and the PETS-2007 data Scene 04 (b) derived using our social connection strength metric. Both (a) and (b) show
a true positive result. (c) demonstrates a failure mode.

Fig. 3. A comparison of the features which comprise the Mutual information social model (a) and for comparison the Euclidean distance equivalent (b) both trained upon the
PETS 2006 dataset and tested upon the PETS 2007 data set. The proximity and temporal overlap in both metrics are identical. The critical difference is in the speed and
direction information. We observe that the mutual information speed and direction metrics outperform the Euclidean distance feature metrics in overall true positive
classification.
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strength at frame T between any two individuals i and j, for i; j 2 N
where N is the set of all individuals in the scene for all frames. The
social connection strength j between two individuals i and j at
time T is:

ji jt ¼
1
T

XT

t

IVi jt IHi jtDPi jtsi jt; ð7Þ

sijt ; IVijt; IHijt ; DPijt are the temporal overlap, mutual information
for speed, mutual information for direction and proximity
difference between person i and j, as detailed in the feature Eqs.
(4)–(6). We classify the social state S, for S ¼ f0;1g, by applying
social strength threshold k which is set empirically from the train-
ing data. Connections between individuals which score higher than
k are considered socially connected, providing the binary social con-
text state used in the anomaly detection stage.

Anomaly detection. Anomaly detection splits into three distinct
segments: the behaviour ontology, the method for calculating nor-
mality of observations, and the algorithm for detecting anomalies.

Behaviour Ontology: Our behaviour ontology is represented by a
four part feature vector x ¼ R4, consisting of a bivariate motion
component [speed, persistence], and the two contextual states
[social state, scene region]. Speed is measured in meters per second
on the ground plane, and social state is a binary state describing
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whether the individual is part of a social group or not. The persis-
tence of an individual is a measure in frames of how long an indi-
vidual has remained in the scene for. Lastly, the scene region
identifies the scene context region in which the individual resides,
denoted by a numerical identifier. For an individual with trajectory
length T frames we have T feature vector observations. The obser-
vations are accumulated to a discrete 4 dimensional feature space
representing a 4D histogram, termed the behaviour profile Xi, for
individual i. Defined in this way Xi consists of a feature distribution
from a large number of observations. The advantage to this is that
it hides short-term measurement noise resulting in a behaviour
ontology which is more robust. Furthermore, as measurement
noise is often correlated rather than Gaussian white noise, the or-
der independent nature of the behaviour profile Xi overcomes the
appearance of anomalies that arise from structured noise. Our
behaviour profile provides flexible temporal scaling of behaviours;
something DBNs struggle with, however it results in the loss of
time series information which may reduce the descriptive capacity
of the ontology.

Normality of behaviour observations: As our approach is unsuper-
vised anomalies are discovered due to their contrasting nature to
previously observed behaviour. Much work to date has focused
upon a frequency based analysis to determine the normality of
behaviour observations. However, frequency-based anomaly
detection suffers under the following assumption: that the normal-
ity of any observed behaviour is proportional to the relative fre-
quency of observations of the behaviour. Whilst we can expect
abnormal events to be rare, it is not the case that normal events
are all frequent, and proportionally represented. We wish to distin-
guish here between the normality of a behaviour and the expecta-
tion of a behaviour. The expectation of a behaviour is how likely
it is to occur next, whereas the normality of a behaviour is how
permitted the behaviour is in the scene; how legitimate it is. A fre-
quency based analysis reveals expectation of each behaviour to
occur next, not the intrinsic normality of the behaviour itself, thus
missing the mark. We instead implement a Nearest Neighbour
method to search for supporting evidence for an observation from
others within the data. The normality of any behaviour is based
upon its distance to the nearest K instances of supporting evidence
not the frequency of observation for that behaviour.

Whilst a nearest neighbour approach could be expected to seg-
ment out anomalies with strong contrary motions, a subtle anom-
aly may not be distant from the set of normal behaviour with
regard to the majority of features. A subtle anomaly may be abnor-
mal for only a subset of features, and furthermore only when seen
in the context of another feature. For example the speed is abnor-
mal only when seen in the context of a specific scene region, rather
than the speed and scene region both being independently abnor-
mal. As such we need to assign a normality score to each feature in
context of each other feature, independently of every other feature,
a step critical to detecting subtle differences between behaviours.
This step enables us to see context dependent distinctions between
behaviours which when viewed in the full feature space are too
subtle to impact a distance calculation. To represent each feature
in the context of another we reduce our 4D histogram feature
space to a set of 1D feature distributions Yf 1;f 2

n detailing the distri-
bution of feature f1 given the currently observed value for feature
f2 for person n at frame t. For a feature vector xi with dimensional-
ity D there are D2 � D feature context pairs covering each ff1; f2g
feature pairing, when f1 – f 2. In our 4D feature space 12 individual
feature pairs are assessed at each frame for each individual, each
representing a different observation given context pairing. To re-
duce the dimensionality of Xi to 1 for a particular feature context
pair we sum the distribution Xi for all dimensions f in the set of
dimensions F where f1 – f 2 resulting in a 2D joint distribution Yn

of observation feature f1 and context feature f2. We then take a
further step reducing the 2D distribution to the target 1D distribu-
tion by taking the distribution through the current context feature
value f2ðiÞ only. Thus our resulting distribution Yf 1;f 2

n details the dis-
tribution of observed feature values for observation feature dimen-
sion f1 given the context feature state f2ðiÞ. An example of which
would be the distribution of the speed feature given the scene fea-
ture of idle region.

We apply the Nearest Neighbour (NN) function to distribution
Yf 1;f 2

n and the set of all distributions Y to determine the nearest
neighbour Yf 1;f 2

m to Yf 1;f 2
n for each possible feature context pairing

ff1; f2g 2 F. The Nearest Neighbour distance metric specified is
the Bhattacharyya coefficient. The nearest neighbour distance met-
ric for feature context pair ff1; f2g is thus defined as:

BðYn;YmÞ ¼
X

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðhÞf 1;f 2

n YðhÞf 1;f 2
m

q
ð8Þ

where we sum over all histogram bins h for feature dimension f1.
Thus given a feature vector for individual n 2 N at frame t 2 T we
find the nearest neighbour m where fm 2 N : n – mg.

NNðYnÞ ¼ fYm 2 Y j8Yp 2 Y : BðYn;YmÞP BðYn;YpÞg ð9Þ

The nearest neighbour equation specifies m the index of the
least distant behaviour profile of n for feature context pair ff1; f2g
and B the resultant Bhattacharya coefficient. As the Bhattacharyya
coefficient is a measure of similarity, scoring more similar distribu-
tions higher, the NN finds the greatest Bhattacharyya coefficient to
distribution Yn from the set of all distributions Y given the feature
context pair ff1; f2g , we then recombine the independent feature
context pairs to generate a single value for the abnormality coeffi-
cient Aðn; tÞ for person n, at frame t. The abnormality coefficient of
behaviour at frame t for person n is the least supported feature
pairing; the lowest similarity to the nearest neighbour:

Aðn; tÞ ¼ argminf 1;f 2BðYf 1;f 2
n ;Yf 1;f 2

m Þ ð10Þ

A consequence of segmenting subgroups is that an observation
may be the only member of a context defined sub group. Ideally in
operation an active learning methodology would be implemented
to determine the normality of an observation in a new area of
the behaviour space. However, in our application we chose to sus-
pend judgment of new instances of behaviour, specifying that no
evidence of an alarm is not an alarm. It would be equally valid to
select the opposite, the effect of which would be to place a bias
upon highlighting rare behaviour.

Anomaly detection: Threshold l upon Aðn; tÞ separates anoma-
lies from normal observations and in effect represents the sensitiv-
ity of the system. If we seek to detect only anomalies then l
represents the expectation of abnormal behaviour in the sequence.
For the end user l represents a constant surveillance workload for
the operator. Variable l can be either set by the operator or defined
empirically in an additional training phase. Anomalies Aðn; tÞ at
frame t for person n are classified by:

Aðn; tÞ ¼ dðAðn; tÞÞ ¼
1; Aðn; tÞ < l
0; Aðn; tÞP l

�
ð11Þ

Based upon the assumption that there is dependence between
the behaviour of individuals within the same social group we uti-
lise the social contextual information in an additional two ways.
Firstly we ensure that the behaviour of each individual is only ana-
lysed in reference to people external to their social group. Thus a
behaviourally homogeneous group of individuals all acting abnor-
mally cannot be self-justifying. We enforce this by removing the
indexes of individuals from the same social group from the nearest
neighbour calculation for individuals in that group. Secondly, social
information enables us to propagate the expectation of an anomaly
through the entire social group. In this way each member of a
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social group at any given frame has the highest anomaly score for
all individuals in that group. Thus if one individual in a group is
behaving abnormally all group members are equally as abnormal.
We do not implement any post process alarm filtering. We justify
the exclusion of this process as it may obscure the change in accu-
racy resulting from the inclusion and exclusion of contextual
information.
3. Experiment

We wish to evaluate whether social and scene region contextual
knowledge improves the detection of behavioural anomalies and
permits the detection of subtle behavioural anomalies. We now de-
tail the results of an anomaly detection experiment on the PETS
2007 dataset with the inclusion and exclusion of contextual infor-
mation. Furthermore we test against a state of the art behaviour
anomaly detection system which is itself designed to detect subtle
anomalies.

The publicly available PETS 2007 dataset (PETS2007 and
accessed, 2012) offers a source of multi camera real world surveil-
lance footage. The datasets consists of 8 sequences each captured
from 4 different viewpoints. We consider the PETS 2007 data to
be a crowded scene. The data contains a total of 573 individuals
over 11902 frames, averaging 24 people in the scene at any given
frame in a space measuring 16.2 meters by 7.2 meters. Behavioural
anomalies in this dataset are characterised by strong motion
abnormality such as a group running across part of the scene, or
subtle anomalies such as a single individual standing still in a busy
area, or a group loitering amongst a crowd. We specifically chose
this data due to its behavioural complexity for anomaly detection.
The second dataset selected is the Oxford dataset. The Oxford data
contains 430 tracked pedestrians over 4500 frames. There are an
average of 15 individuals in any given frame, with a minimum of
5 and a maximum of 29. We consider this data as sparsely
populated. The trajectory motion in the Oxford data is far more
structured; the vast majority of individuals travel at walking pace
in one of two directions. We select the second dataset, the
Oxford data, to test our social context approach for failure modes.
In the Oxford data the trajectories of socially unconnected
pedestrians are often very similar, and often close in proximity
- giving the appearance of social connectivity. We expect this
will produce false positive social context information. We evaluate
upon 3 non-sequential videos from the PETS 2007 selected due to
the ground truth behaviour abnormalities present. PETS Scene
02 consists of 4500 images, Scene 04 is 3500 images long,
and Scene 07 is 3000 images in length. All three are imaged
at 25 fps. The single scene from the Oxford dataset is captured at
25 fps and 4500 frames in length. each sequence is treated
individually. We apply the tracking procedure outlined
earlier upon the jpeg the format images with no other
pre-processing.
Fig. 4. (a), (b) and (c) illustrate the automatic scene segmentation we arrived at usin
designated by a colour; Idle region – Red, Traffic region – Blue, and Divergence region
sufficient supporting evidence to be classified and as such remain blank. (For interpretat
version of this article.)
Scene segmentation. We found well defined regions for the idle,
divergence and traffic region in the PETS data which fit with the
intuitive interpretation of the scene. For clarity we illustrate the
scene segmentation, see Fig. 4. The Oxford data held well defined
areas for the traffic region and the divergence region. However
the idle region hardly featured. This finding fits with the highly
structured nature of the Oxford data in which there are very few
stationary tracks. As our approach is data driven, scene regions
are defined by virtue of being a tool for segmenting the behaviour
space rather than fitting an intuitive interpretation of scene
regions.

Social context. We test the social context classification against
an independently constructed ground truth for social connections.
The training data (PETS 2006) consisted of 28 people with 14 true
positive unique social connections between them of varying
strength. The test data (PETS 2007) contains 152 tracked individu-
als, 44 social connections. Classifying social connections in the
PETS 2007 data using parameters trained in the PETS 2006 data
achieved a true positive detection rate (TPR) of 0.92 and a false po-
sitive rate (FPR) of 0.092, see Fig. 3(a). There are a greater number
of false positive social connections in the Oxford data. The optimal
result found 0.412 TPR and 0.0149 FPR. However beyond this true
positive rate the false positives escalated greatly.

Anomaly detection. To demonstrate the impact context informa-
tion has upon anomaly detection we determine the accuracy in
four states: no contextual information, only scene context, only so-
cial context and with both types of contextual information. A com-
parison is made of the TPR and FPR, for detection of groundtruth
anomalies. See Table 1 for a full list of anomalies. For examples
of subtle anomaly detection see Fig. 5. The anomaly ground truth
reveals 12 behavioural anomalies in the PETS 2007, and 3 anoma-
lies over 4500 frames in the Oxford data. In both the PETS and Ox-
ford data we vary the l threshold from 0 to 1 in small increments
to adjusts the systems sensitivity to unlikely observation. Fig. 6(a)–
(c) demonstrates the anomaly detection success in the PETS 2007
dataset. Fig. 7 illustrates the results on the Oxford data.
4. Evaluation

The final TPR and FPR classification results with the inclusion of
both types of context are affected by three factors above the no-con-
text baseline. Firstly, the inclusion of scene context, the inclusion of
social context, and impact of propagating anomalies through a social
group and denying self-justifying social groups. In the three PETS-
2007 datasets we observe that the addition of scene context im-
proves the TPR over FPR detection of anomalies over all datasets in
comparison to the no-context baseline. This is most significantly
observed in Scene 04, Fig. 6(c). The inclusion of social context alone
into the PETS-2007 data demonstrates a reduction in anomaly
detection capacity in Scene 02, Fig. 6(c). PETS-2007 Scene 02 shows
only a minor improvement. The significant result is that with the
g the all trajectories from the PETS-2007 datasets. Each unique scene context is
– Green. Areas of the scene not included in either scene region class do not have
ion of the references to color in this figure legend, the reader is referred to the web



Table 1
The behavioural anomalies in PETS 2007 (3 sequences) and Oxford Data. (1), (2) and
(3) occur due to a group standing on the left of the scene looking around and suddenly
dispersing in different directions. Anomalies (4) and (5) occur due to two individuals
entering the scene, turning a corner and then suddenly turning around and leaving in
the same place they entered. (6) is a known ground truth behavioural anomaly. One of
the participants in the PETS 2007 experiment purposefully loiters in a busy scene. (6),
(7) and (8) are all members of a small group of 3 running through the scene, from the
top to the bottom of the scene. (9), (10), (11), and (12) are four more instances of
known ground truth anomalies. Two individuals purposefully loiter in the scene
whilst another two suspiciously switch baggage. In the Oxford data, anomaly (13) is
due to the unique behaviour of the individual interacting with a bin in the scene.
Anomaly (14) captures an individual entering the scene at the bottom and loitering in
the middle. Anomaly (15) captures a women meandering slowly through the scene.

PETS 2007 (Scene s00) Id Start End

Unusual group behaviour 1 1 2656
Unusual group behaviour 2 1 2419
Unusual group behaviour 3 1 2714
Abrupt you turn in busy area 4 2627 2928
Abrupt you turn in busy area 5 2604 2928

PETS 2007 (Scene s02)
ground-truth loitering 6 160 4497
PETS 2007 (Scene s04)

Running through scene 6 109 275
Running through scene 7 130 290
Running through scene 8 148 322
Bag swap, unusual motion 9 1 3496
Bag swap, unusual motion 10 1 3496
ground-truth loitering 11 1 2596
ground-truth loitering 12 497 1726

Oxford Data
Motion + interaction with scene 13 3554 4349
Loitering 14 3867 4500
Abnormally slow movement 15 2382 3454

Fig. 5. Illustrated here is three examples of anomalies detected by our system in the PET
corner. The anomalies in (a) refer to anomaly Id: 6 and 7 in Table 1. In (b) two examples o
Id: 9, and 10.

Fig. 6. ROC charts for Anomaly Detection classification, with a comparison of different co
Scene 02, and (c) from PETS-2007 Scene 04.
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inclusion of both social context and scene context the TPR is im-
proved above the TPR of scene context inclusion alone. This is due
to the inclusion of the capability introduced by the social context
to deny self-justifying groups and propagate anomalies within social
groups. Particularly in PETS Scene 04, we observe that by propagat-
ing low likelihood scores throughout the group the bulk of true po-
sitive anomalies are discovered earlier, reducing the FPR from 0.2 to
0.03, see Fig. 6(c). The overall classification score with both social
and scene context for all PETS-2007 data is shown in Fig. 8. We re-
corded a drop in the false positive rate of 0.13 for the optimal classi-
fication rate of 0.78 when applying the social and scene context.

In the Oxford data set the use of context information does not
appear to raise the ability to detect anomalies significantly. We
believe this to be due to the highly structured simple nature of
the Oxford data. There is in effect very little contextual information
to leverage our method upon. The false positive social connections
in the Oxford data has not adversely affected use of social context,
however, the inclusion of denying self-justifying groups, and
propagating anomalies through social groups has a notable
negative impact. The impact of denying self-justifying groups in
the presence of false positive social groups is to remove potential
training data, thus increasing the probability of false positive anom-
aly alarms. We observe this failure mode in the Oxford data, see
Fig. 7 which reflects our original prediction that our social model,
geared towards crowds, would present a failure mode in the highly
structured motion of Oxford data. To further test our approach we
applied our context aware algorithm to maritime AIS shipping data
in Southampton Harbour. The social context depicted mutual
dependencies such as tugs pulling ships and convoy behaviour.
Scene context was directly comparable. We achieved a true positive
anomaly detection rate of 0.98 with a false positive rate of 0.17 over
S 2007 data set. (a) shows two true positives with a false positive in the bottom left
f loitering are detected, anomaly Id: 11 and 12. In (c) loitering is detected, Anomaly

ntextual setups. (a) shows the results from PETS-2007 Scene 00, (b) from PETS-2007



Fig. 7. The anomaly detection results on the Oxford Dataset. we test upon the
Oxford data to test for a failure mode in the social model.

Fig. 8. A comparison between the Weakly Supervised Joint Topic model and our
context aware method on the challenging PETS-2007 dataset. We trained and tested
against all PETS-2007 data for both datasets.
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66 h of data. However as the focus of our approach is computer
vision we do not discuss the results further in this work.

In the PETS-2007 data anomalies such as loitering are subtle
behavioural anomalies as the trajectories of these behaviours are
very similar to a large number of legitimate behaviours in the scene,
particular in the queuing areas. Because motion alone is not suffi-
cient to define the behaviour as an anomaly we require extra contex-
tual information to segment these subtle behaviours from the main
body of data, particularly the scene context. The output of our sys-
tem is displayed in Fig. 5. Images (a) through (c) show correct iden-
tification of anomalies. Image (a) shows an example of a context
independent anomaly: running through the scene. Image (b) shows
two examples of context dependent anomalies. The motion features
pertaining to the anomaly are common within the entire scene,
requiring scene context for them to be detected as anomalies.

To see our anomaly detection system in reference to the state of
the art we include an implementation of the Weakly Supervised
Joint Topic Model (WSJTM) proposed and developed by T. Hospe-
dales, Jian Li, Shaogang Gong and Tao Xiang. We select the WSJTM
as it is designed specifically to detect subtle abnormal behaviour
similar in style to our own work. Furthermore, it is based upon a
different behaviour representation whilst its use of positional
information makes it comparable to our scene contextual informa-
tion. For a detailed account of this work see (Hospedales and Xiang,
2011). We use the code provided by the author to make the com-
parison. The results from our own and the WSJTM procedure can
be seen in Fig. 8. We find that the WSJTM outperforms our method
at low TPR and FPR rates. However the results sharply fall off as it is
incapable of segmenting a range of anomalies from the challenging
PETS-2007 data. The WSJTM is capable of finding gross motion
anomalies better than our method however it fails to detect subtle
anomalies such as loitering. We observe that our method achieves
a better overall TPR over FPR.

5. Conclusion

We successfully demonstrated the capability to detect anoma-
lies based upon contextual information and trajectories in two
scenes, presenting distinctly different behavioural environments.
The application of social context provides a improvement in anom-
aly detection in the crowded PETS-2007 data. However, failure of
the social model can result in a negative impact upon anomaly
detection, as witnessed in the Oxford dataset. We found that our
context aware method performs significantly better than the equiv-
alent method without contextual information; reducing the false
positive rate from 0.2 to 0.03. We show an overall true positive clas-
sification rate of 0.78 over 0.19 false positives on the PETS-2007
data, a reduction in the false positive rate of 0.13 due to the inclu-
sion of contextual information. We conclude that in a crowded
scene the application of social context to prevent self-justifying
groups and propagate anomalies is highly relevant. Scene context
uniformly improved the detection of anomalies in both datasets,
and provided the ability to detect subtle context dependent anom-
alies. The metric for comparing behaviours in this work can be
interchanged with other state of the art methods; the implication
being that contextual information, particularly scene regions could
be complimentary used with other anomaly detection systems
revealing subtle anomalies that otherwise may be missed.
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