
Contorsion: A Semantic XPath Processor

Rubén Tous1

Dpt. de Tecnologia
Univesitat Pompeu Fabra (UPF)

Barcelona, Spain

Jaime Delgado2

Dpt. de Tecnologia
Univesitat Pompeu Fabra (UPF)

Barcelona, Spain

Abstract

This work describes the architecture of Contorsion, a semantic XPath processor that acts over an
RDF mapping of XML. It contributes to a recent research trend that defines an XML-to-RDF
mapping allowing XML documents interoperate at the semantic level. We use a model-mapping
approach to represent instances of XML and XML Schema in RDF. This representation retains the
node order, in contrast with the usual structure-mapping approach. The processor can be fed with
an unlimited set of XML schemas and/or RDFS/OWL ontologies. The queries are resolved taking
in consideration the structural and semantic connections descrived in the schemas and ontologies.
Such behaviour, schema-awareness and semantic integration, can be useful for exploiting schema
and ontology hierarchies in XPath queries.

Keywords: data interoperability, semantic integration, XML, XPath, RDF, ontologies, OWL

1 Introduction

1.1 Motivation

Generally, applications where XML documents are involved define or reuse one
or more XML schemas. These schemas are mainly used for instance validity

1 Email: ruben.tous@upf.edu
2 Email: jaime.delgado@upf.edu

Electronic Notes in Theoretical Computer Science 150 (2006) 87–102

1571-0661 © 2 006 Else vier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.036
Open access under CC BY-NC-ND license.

mailto:ruben.tous@upf.edu
mailto:jaime.delgado@upf.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

check. However sometimes is necessary to consider the inheritance hierarchies
defined in the schemas for other purposes, e.g. when evaluating queries or
conditions that can refer to concepts not directly present in the data, but
related to them through an inheritance chain. Today it is also becoming
common the use of RDFS/OWL ontologies to define semantic connections
among application concepts. All this structural and semantic knowlege is hard
to access for developers, because require a specific treatment, like defining
multiple extra queries for the schemas, or using complex RDF tools to access
the ontologies information.

To overcome this situation here we present the architecture of a schema-
aware and ontology-aware XPath processor that acts over an RDF mapping
of XML. Translating XML documents to RDF allows to take profit from the
powerful descriptive tools of Description Logics (materialised in RDFS and
OWL constructs) allowing XML documents interoperate at the semantic level
[2]. This allows e.g. to declaratively defining the semantic connections be-
tween two different XML schemas or to make XPath queries truly schema-
aware. The Contorsion XPath processor can be fed with an unlimited set of
XML schemas and/or RDFS/OWL ontologies. The queries are resolved tak-
ing in consideration the structural and semantic connections descrived in the
schemas and ontologies. With the existing XPath processors to achieve the
same result we should rewrite the XPath queries with all the possible names
from the inheritance hierarchy. For queries involving two or more names we
should cover all the possible combinations, and all of that should be performed
dinamically if we want to consider future changes on the schemas. Such solu-
tion is clearly inefficient, complex to implement, difficult to maintain and lets
to the client applications the task of interact with the schemas and ontologies
and their specific APIs.

We use a model-mapping approach to represent instances of XML and XML
Schema in RDF. This representation retains the node order, in contrast with
the usual structure-mapping approach, so it allows a complete mapping of all
XPath axis. XML model defines an ordered tree, and some XPath constructs
like following sibling depend on the ordered nature of XML instances. The
interest on the node-order can vary depending of the application, but an XML-
to-RDF mapping cannot be considered complete without this feature.

1.2 Related work. Model-mapping vs. Structure-mapping

The origins of this work can be found in a research trend that tries to exploit
the advantages of an XML-to-RDF mapping [1][2][3][4][5][6][7]. However, the
concepts of structure-mapping and model-mapping are older. In 2001, [8] de-
fined these terms to differentiate between works that map the structure of

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–10288

some XML schema to a set of relational tables and works that map the XML
model to a general relational schema respectively.

More recently, [4] takes a structure-mapping approach and defines a direct
way to map XML documents to RDF triples ([2] classifies this approach as
Direct Translation). [1], [2], and [3] take also a structure-mapping approach
but focusing on defining semantic mappings between different XML schemas
([2] classifies their own approach as High-level Mediator). They also describe
some simple mapping mechanisms to cover just a subset of XPath constructs.
Other authors like [5] or [6] take a slightly different strategy (though within
the structure-mapping trend) and focus on integrating XML and RDF to in-
corporate to XML the inferencing rules of RDF (strategies classified by [2] as
Encoding Semantics). Finally it’s worth mention the RPath initiative [7], that
tries to define an analogous language to XPath but for natural (not derived
from XML) RDF data (this last work doesn’t pursue interoperability between
models or schemas).

2 Architecture of the semantic XPath processor

2.1 Overview

Figure 1 outlines how the processor works. The key issue is the XML-to-
RDF mapping, already present in other works, but that we face from the
model-mapping approach. In contrast with the structure-mapping approach,
that maps the specific structure of some XML schema to RDF constructs,
we map the XML Infoset [9] using RDFS and OWL axioms. This allows us
to represent any XML document without any restriction and without losing
information about node-order. We use the same approach with XSD, obtain-
ing an RDF representation of the schemas. Incorporating alternative OWL

Fig. 1. Semantic XPath processor architecture overview

or RDFS ontologies is straightforward, because they are already compatible
with the inference engine. In the figure we can see also that an OWL repre-
sentation of the XML model is necessary. This ontology allows the inference

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–102 89

engine to correctly process the different XPath axis and understand how the
XML elements relate to the different XSD constructs.

2.2 An OWL ontology for the XML model (XML/RDF Syntax)

We tried to represent the XML Infoset [9] using RDFS and OWL axioms. A
simplified description of the ontology in Desctiption Logics syntax (SHIQ-like
style [15]) would be:

Document �Node

Element �Node

TextNode �Node

childOf �descendant

parentOf �ancestor

childOf =parentOf−

T rans(ancestor)

ancestor �ancestorOrSelf

self �descendantOrSelf

self �ancestorOrSelf

self =sameAs

immediatePrecedingSibling �precedingSiblinng

immediateFollowingSibling �followingSibling

immediatePrecedingSibling =immediateFollowingSibling−

T rans(followingSibling)

Fig. 3 shows graphically how the example of fig. 2 will be represented using
the classes and properties defined with OWL.

2.3 XPath Formal semantics

XPath is a language for addressing parts of an XML document. The lan-
guage can be formally defined by describing the operations on this data
model. It is not a coincidence that some of the axioms are already present in
the XML/RDF ontology, because they map directly to XML primitives (e.g.
child). First we must define the function E, corresponding to the XPathExpr
rule from the EBNF grammar [10].

E : Path → Node → sequence(Node)

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–10290

Fig. 2. XML simple example describing two movies

Fig. 3. RDF graph for movies example

E[[e1/e2]]x = {x2 | x1 ∈ E[[e1]]x ∧ x2 ∈ E[[e2]]x1}
E[[a :: t]]x = {x1 | x1 ∈ Aa(x) ∧ Tt(x1)}
E[[e[p]]]x = {x1 | x1 ∈ E[[e]]x ∧ P [[p]]x1}

The function Aa describes both the ForwardAxis and the ReverseAxis rules
from the grammar.

Aa :→ Node → sequence(Node)

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–102 91

Achild(x) = {x1 | childOf(x1, x)}
Adescendant(x) = {x1 | childOf(x1, x)∨

(childOf(x2, x)

∧ x1 ∈ Adescendant(x2))}
Adescendant−or−self (x) = {x} ∪ {x1 | x1 ∈ Adescendant(x)}

Aparent(x) = {x1 | childOf(x, x1)}
Aancestor(x) = {x1 | childOf(x, x1)∨

(childOf(x, x2) ∧ x1 ∈ Aancestor(x2))}

Aancestor−or−self (x) = {x} ∪ {x1 | x1 ∈ Aancestor(x)}
Apreceding−sibling(x) = {x1 | precedingSibling(x1, x)}

Apreceding(x) = {x1 | x1 ∈ Adescendant−or−self (x2)

∧ x2 ∈ Apreceding−sibling(x3)}
∧ x3 ∈ Aancestor−or−self (x)}

Afollowing−sibling(x) = {x1 | precedingSibling(x, x1)}
Afollowing(x) = {x1 | x1 ∈ Adescendant−or−self (x2)

∧ x2 ∈ Afollowing−sibling(x3)}
∧ x3 ∈ Aancestor−or−self (x)}

Aattribute(x) = {x1 | attributeOf(x1, x)}
Aattribute(x) = {x1 | namespaceOf(x1, x)}

The function T describes the NodeTest rule from the grammar.

T : NodeTest → Node → Boolean

T∗(x) = {true}
Tn(x) = {hasName(x, n)}

Tnode()(x) = {type(x,′ node′)}
Ttext()(x) = {type(x,′ textNode′)}

Telement()(x) = {type(x,′ elementNode′)}

The function P describes the Predicates rule from the grammar. There
are a lot of different predicates but defining all is out of the scope of this
document. As an example we define here the predicate that expresses the
existence of a specific sub-tree as a condition.

P : Predicate → Node → Boolean

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–10292

P [[p]]x = {∃x1 ∈ E[[p]]x}

2.4 XPath translation to RDQL

Each XPath axis can be mapped into one or more triple patterns of the target
RDQL [13] query. Analogously each nodetest and predicate can be mapped
also with just one ore more triple patterns. The output RDQL query always
takes the form:

SELECT *

WHERE

(?v1, <rdf:type>, <xmloverrdf:document>)

[triple pattern 2]

[triple pattern 3]

...

[triple pattern N]

USING

xmloverrdf FOR <http://dmag.upf.edu/xml#>

The translation can be deduced from the XPath formal semantics. For
example, the following axis is described as:

Afollowing(x) = {x1 | x1 ∈ Adescendant−or−self (x2)

∧ x2 ∈ Afollowing−sibling(x3)}
∧ x3 ∈ Aancestor−or−self (x)}

So the following axis must be translated to:

(?vi, <xmloverrdf:ancestor-or-self>, ?vi-1)

i = i + 1

(?vi, <xmloverrdf:following-sibling>, ?vi-1)

i = i + 1

(?vi, <xmloverrdf:descendant-or-self>, ?vi-1)

i = i + 1

There are also simple conversion rules for all nodeTests and predicates but
we omit them to save space. The notation used includes variable names like
vi and vi-1 where i begins with value 2 (because of the first triple pattern is
always the same as shown before). So if we would have just the expression:

/child::movies/child::movie

We will translate the first child axis to:

(?v2, <xmloverrdf:childOf>, ?v1)

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–102 93

The first node test to:

(?v2, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movies>)

The second child axis to:

(?result, <xmloverrdf:childOf>, ?v2)

And the second node test to:

(?result, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movie>)

The complete WHERE clause will appear as:

WHERE

(?v1, <rdf:type>, <xmloverrdf:document>)

,(?v2, <xmloverrdf:childOf>, ?v1)

,(?v2, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movies>)

,(?result, <xmloverrdf:childOf>, ?v2)

,(?result, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movie>)

2.5 Example results

An example query could be:

/child::movies/child::movie/child::title

(in abbreviated form /movies/movie/title)

That is translated to:

SELECT *

WHERE

(?v1, <rdf:type>, <xmloverrdf:document>)

, (?v2, <xmloverrdf:childOf>, ?v1)

, (?v2, <xmloverrdf:hasName>, "movies")

, (?v3, <xmloverrdf:childOf>, ?v2)

, (?v3, <xmloverrdf:hasName>, "movie")

, (?result, <xmloverrdf:childOf>, ?v3)

, (?result, <xmloverrdf:hasName>, "title")

Result: 6, 9 (node numbers, see figure)

3 Incorporating schema-awareness

3.1 Mapping XML Schema to RDF

In our ontology for the XML model, the object of the hasName property is
not a literal but a resource (an RDF resource). This key aspect allows to

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–10294

apply to hasName all the potential of the OWL relationaships (e.g. defining
ontologies whith names relationships). So, if we want our XPath processor
to be schema-aware, we just need to translate the XML Schema language
to RDF, and to add to our XML/RDF Syntax ontology the necessary OWL
constructs that allow the inference engine to understand the semantics of the
different XML Schema components. The added axioms in Desctiption Logics
syntax (SHIQ-like style [15]) would be:

hasName �fromSubstitutionGroup

T rans(fromSubstitutionGroup)

hasName �fromType

T rans(fromType)

fromType �subTypeOf

3.2 A simple example of schema-aware XPath processing

The next example ilustrates the behaviour of our processor in a schema-related
XPath query. Take this simple XML document:

<A>

<B id=’B1’ />

<B id=’B2’>

<C id=’C1’>

<D id=’D1’></D>

</C>

<B id=’B3’/>

And its attached schema:

<schema>

<complexType name=’BType’>

<complexContent>

<extension base=’SUPERBType’></extension>

</complexContent>

</complexType>

<element name=’B’

type=’BType’ substitutionGroup=’SUPERB’ />

</schema>

When evaluating the XPath query //SUPERB, our processor will return the
elements with IDs ’B1’, ’B2’ and ’B3’. These elements have a name with

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–102 95

value ’B’, and the schema specifies that this name belong to the substitution
group ’SUPERB’, so they match the query. Also, when evaluating the query
//SUPERBType, the processor will return ’B1’, ’B2’ and ’B3’. It assumes
that the query is asking for elements from the type SUPERBType or one of
its subtypes.

4 Implementation and performance

The work has been materialised in the form of a Java API. We have used
the Jena 2 API [12] for RDQL computation and OWL reasoning. To pro-
cess XPath expressions we have modified and recompiled the Jaxen XPath
Processor [11]. An on-line demo can be found at http://dmag.upf.edu/

contorsion.

Though performance wasn’t the target of the work, it is an important
aspect of the processor. We have realised a performance test over a Java
Virtual Machine v1.4.1 in a 2GHz Intel Pentium processor with 256Mb of
memory. The final delay depends mainly on two variables, the size of the
target documents, and the complexity of the query. Table 1 shows the delay
of the inferencing stage for different document depth levels and also for some
different queries.

The processor behaves good with medium-size documents and also with
large ones when simple queries are used (queries that not involve transitive
axis), but when document size grows the delay related to the complex queries
increases exponentially. Some performance limitations of the Jena’s OWL in-
ference engine have been described in [14]. We are now working on this prob-
lem, trying to obtain a more scalable inference engine. However, the current
processor’s performance is still acceptable for medium-size XML documents.

Table 1
Performance for different document depth levels

expression 5d 10d 15d 20d 20d (Xalan XPath processor)

/A/B 32ms 47ms 47ms 62ms 16ms

/A/B/following-sibling::B 125ms 46ms 48ms 47ms 15ms

/A/B/following::B 125ms 62ms 63ms 47ms 16ms

/A//B 172ms 203ms 250ms 219ms 31ms

//A//B 178ms 266ms 281ms 422ms 32ms

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–10296

http://dmag.upf.edu/contorsion
http://dmag.upf.edu/contorsion

5 Uses of the obtained XPath processor

5.1 XML Schema for metadata interoperability

The object-oriented nature of some XML Schema constructs allows using them
to increase the interoperability of applications or to fix interoperability prob-
lems in an elegant way. For example, the substitutionGroup inheritance mech-
anism can be used to bind the names of two different XML languages. Take
for example a simple schema for describing movies records. The schema de-
fines the elements movies, movie, title, year, country, runtime, etc. It could
be interesting in some context to have the possibility to write the element and
attribute names in a language different from English. The next XML fragment
is an instance of the previous schema but using Spanish instead of English for
element names.

<pelculas>

<pelicula id=’m1’>

<titulo>Blade Runner</titulo>

<estreno>1982</estreno>

<pais>USA</pais>

<duracion>117</duracion>

</peliculas>

We can generate a schema that binds the different names from the Spanish
version to the (master) English version.

<schema>

<element name=’peliculas’ substitutionGroup=’movies’>

<xs:complexType>

<xs:sequence>

<element name=’pelicula’ substitutionGroup=’movie’>

<complexType>

<sequence>

<element name=’titulo’ substitutionGroup=’title’/>

<element name=’estreno’substitutionGroup=’year’/>

<element name=’pais’substitutionGroup=’country’/>

<element name=’duracion’substitutionGroup=’runtime’/>

</sequence>

<attribute name=’id’/>

</complexType>

</element>

</sequence>

</complexType>

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–102 97

</element>

</schema>

Now, using our schema-aware XPath processor, if we ask for /movie/country
we will obtain the same as for the /pelicula/pais. So, we can develop applica-
tions that are not tied to a particular schema but to an abstract one.

5.2 Application to model-mapping

5.2.1 Executing XPath queries over non-XML data

Our approach allows executing XPath queries over a RDF representation of
data from some data model for which a mapping with XML has been defined.
There is no need of a transcoding between the XPath query and the new data
model, because the primitives of the two models (XML and for example the
Relational Model) have been already mapped and the inference engine can
resolve the query.

5.2.2 Example: XPath over relational data

For a better understanding of the concept let’s see a simple example. Take a
relational version of the movies XML document as illustrated in the table 2.

Table 2
Relational version of the movies example

Title Director

Paris, Texas Wim Wenders

Rio Bravo Howard Hawks

We have developed a test OWL ontology for the Relational Model. Fig. 4
shows a graphical view of an instance representing the movies example (we
omit the ontology and the RDF serialization of the example for space reasons).
We also have defined the mapping between the two models in a different OWL
ontology. Here comes an extract. Now we can execute a XPath query over the
RDF seralization of the relational version of the movies example. For example
the XPath query:

/child::node()/descendant::title

Will be translated to the query:

SELECT *

WHERE

(?v1, <rdf:type>, <xmloverrdf:document>)

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–10298

Fig. 4. RDF representation of the relational version of the movies example

, (?v2, <xmloverrdf:childOf>, ?v1)

, (?result, <xmloverrdf:descendant>, ?v2)

, (?result, <xmloverrdf:hasName>, "title")

USING

xmloverrdf FOR <http://dmag.upf.edu/xml#>

Result: 5, 7 (node numbers, see figure)

The query expresses restrictions with XML constructs, but these constructs
are mapped by the inference engine to the equivalent relational operations.
Inversely, if we would describe another query language like for e.g. SQL with
the appropriate RDQL operations (to operate over the RDF representation of
the relational model), we could execute SQL queries directly over XML.

5.2.3 XPath over reified RDF data

If we want to apply the strategy to execute XPath expressions over natural
RDF data (not derived from XML), we must provide a RDF/RDF Syntax
(although it might seem rather redundant) because we need to express the
RDF primitives in OWL to be able to define an OWL mapping between them
and the XML/RDF Syntax. However, this is exactly what RDF reification
does. Reification is the ability to treat an RDF statement as a resource, and
hence to make assertions about that statement. RDF represents a reified
statement as four statements with particular RDF properties and objects: the
statement (S, P, O), reified by resource R, is represented by:

R rdf:type rdf:Statement

R rdf:subject S

R rdf:predicate P

R rdf:object O

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–102 99

Fig. 5 shows a natural RDF version of the movies example. If we reify all the
statements of the model we obtain the quadlets of Fig. 6 (the {x, rdf:type,
Statement} have been excluded from the figure). We have partially mapped

Fig. 5. Natural-RDF representation of the movies example

the reified RDF model (we could call it RDF/RDF Syntax) to our XML/RDF
Syntax and obtained promising results with simple XPath queries. Now if we

Fig. 6. Reified statements from the natural-RDF representation of the movies example

translate the following XPath query to RDQL:

/child::movie/child::title

We will obtain:

SELECT *

WHERE

(?v1, <xmloverrdf:hasName>, <http://dmag.upf.edu/eg#movie>),

(?v2, <xmloverrdf:childOf>, ?v1),

(?v2, <xmloverrdf:hasName>, <http://dmag.upf.edu/eg#title>),

(?v3, <xmloverrdf:childOf>, ?v2),

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–102100

(?v3, <xmloverrdf:hasValue>, ?result)

Result: "Paris, Texas", "Rio Bravo"

The XML/RDF-RDF/RDF mapping is still work in progress, and the discus-
sion around it overcomes the scope and the physical limits of this paper.

6 Conclusions

In this paper we have described the architecture of Contorsion, an innovative
semantic XPath processor that acts over an RDF mapping of XML. The pro-
cessor resolve the queries taking in consideration the structural and semantic
connections described in the schemas and ontologies provided by the user.
We expose why an RDF representation based on the model-mapping approach
allows to retain the node order, in contrast with the usual structure-mapping
approach. We also have outlited the algorithm used internally to translate the
XPath expressions to RDQL queries. The work has been materialised in the
form of a Java API, an on-line demo can be found at http://dmag.upf.edu/
contorsion.

As we have shown the processor can be used to express schema-aware
queries, to face interoperability among different XML languages or to integrate
XML with RDF sources. We have also evaluate the possibility to define a
mapping between another data model and XML, in such a way that RDQL
queries obtained from XPath expressions over non-XML data can be resolved
by inference, without an explicit mapping between XPath and the external
model. We have shown examples for the Relational Model and also for RDF
(with the help of reification).

References

[1] A. Y. Halevy, Z. G. Ives, P. Mork, I. Tatarinov: Piazza: Data Management Infrastructure for
Semantic Web Applications, 12th International World Wide Web Conference, 2003

[2] Cruz, I., Xiao H., Hsu F. An Ontology-based Framework for XML Semantic Integration.
University of Illinois at Chicago. Eighth International Database Engineering and Applications
Symposium. IDEAS’04. July 7-9, 2004 Coimbra, Portugal.

[3] B.Amann,C.Beeri,I.Fundulaki,and M.Scholl. Ontology-Based Integration of XML Web
Resources. In Proceedings of the 1st International Semantic Web Conference (ISWC
2002),pages 117-131,2002.

[4] M.C.A.Klein. Interpreting XML Documents via an RDF Schema Ontology.In Proceedings
of the 13th International Workshop on Database and Expert Systems Applications (DEXA
2002),pages 889-894, 2002.

[5] L.V.Lakshmanan and F.Sadri.Interoperability on XML Data.In Proceedings of the 2nd
International Semantic Web Conference (ICSW 03),2003.

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–102 101

[6] P.F.Patel-Schneider and J.Simeon.The Yin/Yang web:XML syntax and RDF semantics.In
Proceedings of the 11th International World Wide Web Conference (WWW2002),pages 443-
453,2002.

[7] RPath - RDF query language proposal http://web.sfc.keio.ac.jp/∼km/rpath-eng/rpath.
html

[8] M. Yoshikawa, T. Amagasa, T. Shimura and S. Uemura, XRel: A Path-Based Approach to
Storage and Retrieval of XML Documents using Relational Databases, ACM Transactions on
Internet Technology, Vol. 1, No. 1, June 2001.

[9] XML Information Set (Second Edition) W3C Recommendation 4 February 2004 http://www.
w3.org/TR/xml-infoset/

[10] XML Path Language (XPath) 2.0 W3C Working Draft 23 July 2004 http://www.w3.org/TR/
xpath20/

[11] Jaxen: Universal Java XPath Engine http://jaxen.org/

[12] Jena 2. A Semantic Web Framework http://www.hpl.hp.com/semweb/jena.htm

[13] RDQL - A Query Language for RDF W3C Member Submission 9 January 2004 http://www.
w3.org/Submission/RDQL/

[14] Dave Reynolds. Jena 2 Inference support http://jena.sourceforge.net/inference/

[15] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive description
logics. Proc. of the 6th Int. Conf. on Logic for Programming and Automated Reasoning.
Springer, 1999.

R. Tous, J. Delgado / Electronic Notes in Theoretical Computer Science 150 (2006) 87–102102

http://web.sfc.keio.ac.jp/~km/rpath-eng/rpath.html
http://web.sfc.keio.ac.jp/~km/rpath-eng/rpath.html
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://jaxen.org/
http://www.hpl.hp.com/semweb/jena.htm
http://www.w3.org/Submission/RDQL/
http://www.w3.org/Submission/RDQL/
http://jena.sourceforge.net/inference/

	Introduction
	Motivation
	Related work. Model-mapping vs. Structure-mapping

	Architecture of the semantic XPath processor
	Overview
	An OWL ontology for the XML model (XML/RDF Syntax)
	XPath Formal semantics
	XPath translation to RDQL
	Example results

	Incorporating schema-awareness
	Mapping XML Schema to RDF
	A simple example of schema-aware XPath processing

	Implementation and performance
	Uses of the obtained XPath processor
	XML Schema for metadata interoperability
	Application to model-mapping

	Conclusions
	References

