Experimental systems based on bacteria of the genus Rhodobacter (R), particularly R. sphaeroides and R. capsulatus, have produced many insights into the mechanism of light energy transduction in photosynthesis, including the structural basis of light harvesting and photochemical charge separation. Structural and spectroscopic studies have been greatly assisted by the availability of bacterial strains with altered photosystems, such as mutants lacking one or both types of light harvesting complex for example, or with an altered complement of carotenoids (so-called green or blue-green mutants), together with the ability of the bacterium to assemble the photosynthetic apparatus when growing in the dark under conditions of low aeration. The present work involves a systematic study of the structural and functional consequences of (1) expression of structural genes in trans in deletion mutants, (2) variation in growth conditions, (3) deletion of one or more light harvesting complexes, (4) changes in the carotenoid composition of the photosystem and (5) removal of the PuX protein. Particular attention is given to the effects of such changes on the composition of the so-called “core complex” formed between the reaction centre and the LH1 antenna protein, and the ability of the bacterium to grow under photosynthetic conditions.

S2/4 The 2-methoxy group of ubiquinone is essential for function of the acceptor quinones in reaction centers from R. sphaeroides

Colin A. Wraight1,2,3, Ahmet Vakkasoğlu1, Yuri Poluektov2, Aidas Mattis2, Danielle Nihan1, Bruce H. Lipshutz2
1Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA
2Department of Chemistry, University of California at Santa Barbara, CA, USA
E-mail: cwraight@uiuc.edu

The orientation of a methoxy substituent is known to substantially influence the electron affinity and vibrational spectroscopy of benzoquinones, and has been suggested to be important in determining the function of ubiquinone as a redox cofactor in bioenergetics. Ubiquinone functions as both the primary (QA) and secondary (QB) quinone in the reaction centers of many purple photosynthetic bacteria, and is almost unique in its ability to establish the necessary redox free energy gap for 1-electron transfer between them. The role of the methoxy substitution in this requirement was examined using monomethoxy analogues of ubiquinone-4, which were reconstituted into quinone-depleted reaction centers from the purple photosynthetic bacterium, Rhodobacter sphaeroides. The analogues used were 2-methoxy-3,5-dimethyl-6-isopropyl-1,4-benzoquinone (2-MeO-Q) and 3-methoxy-2,5-dimethyl-6-isopropyl-1,4-benzoquinone (3-MeO-Q) and only 2-MeO-Q was able to simultaneously act as QA and QB. The necessary redox potential tuning was shown to occur in the QA site. In the absence of active QA, the IR spectrum of the monomethoxy quinones was examined in vitro and in the QA site, and a novel distinction between the two methoxy groups was tentatively identified, consistent with the unique role of the 2-methoxy group in distinguishing QA and QB functionality.

S2/5 The photosystem I reaction centre of oxygenic photosynthesis

Peter Heathcote
School of Biological and Chemical Sciences, Queen Mary, University of London, UK
E-mail: p.heathcote@qmul.ac.uk

Photosystem I of oxygenic photosynthesis is a large multi-protein complex binding 100 chlorophylls. At its core are two related polypeptides which each bind symetrically-related electron transfer chains. We present evidence from studies utilising spectroscopic approaches in combination with site-directed mutagenesis that demonstrate that light-initiated electron transfer occurs on both branches of electron transfer.

S2/6 The unusual configuration of the quinone reduction site of the cytochrome bc1 complex

Daniel Picot
UMR7099 CNRS/Université Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
E-mail: Daniel.Picot@ibpc.fr

Complex cytochrome bc1 couples electron transfer with proton translocation through the thylakoid membrane in oxygenic photosynthesis. Unlike its counterpart in mitochondria and proteobacteria, it exhibits three additional cofactors whose functions are not understood: a chlorophyll a, whose phytyl chain lies at the edge of the cytochrome bc1 complex binding 100 chlorophylls. At its core are two related polypeptides which each bind symetrically-related electron transfer chains. We present evidence from studies utilising spectroscopic approaches in combination with site-directed mutagenesis that demonstrate that light-initiated electron transfer occurs on both branches of electron transfer.

S2 The bacteriochlorophyll B₄ is missing in H(L153)Y Rhodobacter sphaeroides

Maria M. Leonova, Lyudmila G. Vasilieva, Ravil A. Khatyrov, Vladimir A. Boichenko, Vladimir A. Shuvaliov
3Institute of Basic Biological Problems, Pushchino, Russia
E-mail: Leonova-mari@yandex.ru
Fax: +7 469 733 05 32

The reaction center of R. sphaeroides is a membrane-bound pigment–protein complex where the photosynthetic charge separation...