Doubly Transitive Permutation Groups Which Are Not Doubly Primitive

DAVID CHILLAG

Department of Mathematics, Technion, Israel Institute of Technology, Haifa, Israel

Communicated by Walter Feit

Received October 6, 1977

Some results on doubly transitive but not doubly primitive permutation groups are proved, giving more evidence to Atkinson's conjecture [3]. Among other results, we characterize the group $S_3(q)$ as a group satisfying the condition of the title and prove some sufficient conditions for such a group to be an automorphism group of a nontrivial block design with $\lambda = 1$.

INTRODUCTION

Recently there has been considerable interest in the structure of the one point stabilizer of a doubly transitive permutation group G on a set Ω. One problem is to describe those doubly transitive groups for which $G_\alpha, \alpha \in \Omega$, is imprimitive on $\Omega - \{\alpha\}$. Our general assumption is:

Hypothesis (A): G is a doubly transitive permutation group on a set Ω. For $\alpha \in \Omega$, G_α has a set $\Sigma = \{B_1, B_2, \ldots, B_t\}$, $t \geq 2$, which is a complete set of imprimitivity blocks on $\Omega - \{\alpha\}$. Let $|R_i| = h > 1$ for all i. Denote by H the kernel of G_α on Σ and by K_i and K'_i the subgroups of G_α fixing B_i setwise and pointwise respectively, $1 \leq i \leq t$. Let $\beta \in B_2$. Here $|\Omega| = 1 + ht$.

M. D. Atkinson has conjectured that a group satisfying (A) is either an automorphism group of a nontrivial block design with $\lambda = 1$, or a normal extension of a Suzuki group, or must have a regular normal subgroup. We recall that the group $S_3(q)$ satisfies (A) with $H \neq 1, b = t - q$ and G_α^Σ is 2-transitive. In the first part of this article we consider groups acting "like" a Suzuki group, namely:

Hypothesis (B): Hypothesis (A) with $b = t$ (Then $|\Omega| = 1 + b^2$).

Hypothesis (C): Hypothesis (B) with $H \neq 1$.

We consider groups satisfying (C) when G_α^Σ 2-transitive and we show that if G satisfies (B) then $G_{2B}^{\Sigma(P_1)}$ is never 2-transitive. C. E. Praeger ([17], [18], [19], [20] and [7]) and M. D. Atkinson characterized groups satisfying (A) with
conditions on b and/or the action of G_a and G_{aB} on Σ. The only Suzuki group which arises in these papers is the $Sz(8)$ in [3]. We prove:

Theorem 1. Let G satisfy (C) and assume that G_a^Z is doubly primitive. Then G is a normal extension of $Sz(q)$, $q = 2^{2n+1}$ for some n.

Theorem 2. Let G satisfy (C) and assume that G_a^Z is doubly transitive. Then, either

(i) $|\Omega|$ is odd and G is a normal extension of a Suzuki group $Sz(q)$, $q = 2^{2n+1}$, or

(ii) $b = |H| = p^m$, p a prime, $m > 2$, H is elementary abelian and G_a/H is isomorphic to a subgroup of $GL(m, p)$. Furthermore, $K_1 = 1$ and G contains no regular normal subgroup.

Theorem 3. If G satisfies (B) then $G_{aB}^{(B1)}$ is not doubly transitive.

We have the following corollaries.

Corollary I. Let G satisfy (B). Then:

(i) If $|\Omega|$ is even then G_a^Z is not triply transitive.

(ii) If G_a^Z is triply transitive then G_a is a rank 6 group with subdegrees: $1, b - 1, b - 1, b - 1, ((b - 2)/2)(b - 1)$. Also, $|H| = K_1 = 1$.

Corollary II. Let G satisfy (B). Assume that G_{aB} is doubly transitive and that $b - 1$ is a prime number. Then G is a normal extension of $Sz(q)$, $q = 2^{2n+1}$.

Corollary III. Let G satisfy (B). Assume that G_{aB} has an orbit on Ω of size m. $m \geq b - 1$, $m \neq b$, on which G_{aB} is doubly transitive. Then $F = \text{Fix}(G_{aB})$ contains more than two points and the G-translates of F form a block design with $\lambda = 1$ on Ω of which G is an automorphism group.

In the last part of this paper we consider the question: What are sufficient conditions for a group satisfying (A) to act as an automorphism group of a nontrivial block design on Ω with $\lambda = 1$? One answer was given in [20] Theorem B, which states that $G_{aB}^{(B1)}$ being transitive and $b < t$, is such a condition. We consider groups with $G_{aB}^{(B1)}$ transitive for some values of $b > t$ and prove that for these values G is an automorphism group of a nontrivial design with $\lambda = 1$. For example we prove that if $G_{aB}^{(B1)}$ is transitive and $t = b - 1$ or $b - 2$ or $b - 3$ then G is an automorphism group of a nontrivial block design with $\lambda = 1$. The exact statement is Proposition 1 of Section 3. A result of the same type is Theorem 4 in Section 1 which is, in fact, Theorem B of [20] replacing the assumption $b < t$ by $K_1 = 1$.

1. Preliminaries

We denote by $\text{Fix}(R)$ the set of fixed points of the subgroup R. The rest of our notation is standard and the reader is referred to [24] and [21] for basic information and notation about permutation groups and block designs respectively.

In this section we prove three lemmas from which the theorems will follow.

Lemma 1. Let G satisfy (A) and $t \leq b$. Then:

(a) In any block design with $\lambda = 1$ on Ω we have that $k \leq b$.

(b) If $G_{a_0}^{\Sigma - \{\beta\}}$ is transitive then there exists an G_{a_0}-orbit, Γ_0, $\Gamma_0 \subseteq B_1 - \{\beta\}$, such that $|\Gamma_0| = m(t - 1)$ for some natural number m. Furthermore, if $g \in G_{(a, \beta)} - G_{a_0}$ and $\Gamma = \Gamma_0^g$ then Γ is a G_{a_0}-orbit on $\Omega - B_1 - \{\alpha\}$ such that $|\Gamma \cap B_i| = m$ for all $i \geq 2$.

(c) If $G_{a_0}^{\Sigma - \{\beta\}}$ is transitive then $K_1^i = 1$ for all i.

Proof: (a) If $k > b$ then $k - 1 > b$ so that $r(k - 1) = bt$ implies $r \leq t \leq b < k$ contradicting Fisher's inequality.

(b) If $B_1 - \{\beta\}$ is $G_{(a, \beta)}$-invariant then Lemma 2 of [1] implies that there is a nontrivial block design on Ω with $\lambda = 1$ and $k = b + 1$, contradicting (a).

Thus, there exists a G_{a_0}-orbit, Γ_0, $\Gamma_0 \subseteq B_1 - \{\beta\}$, such that $\Gamma_0^g \not= B_1$ for all $g \in G_{(a, \beta)} - G_{a_0}$. Let $g \in G_{(a, \beta)} - G_{a_0}$ and let $\Gamma = \Gamma_0^g$. The set $\mathcal{A} = \{B_i \mid B_i \cap \Gamma \not= \emptyset\}$ is a G_{a_0}-orbit on $\Sigma - \{B_1\}$ and since $G_{a_0}^{\Sigma - \{\beta\}}$ is transitive we get that $\mathcal{A} = \Sigma - \{B_1\}$ and $|\mathcal{A}| = t - 1$. The set $\{B_i \cap \Gamma \mid i \geq 2\}$ is a complete set of imprimitivity blocks for the action of G_{a_0} on Γ so that $|B_i \cap \Gamma| = m$ for some m, for all $i \geq 2$ and consequently $|\Gamma| = m \cdot |\mathcal{A}| = m(t - 1) = |\Gamma_0|$.

(c) Suppose $K_1 \not= 1$. Then G_{a_0} is not faithful on Γ_0 and therefore G_{a_0} is not faithful on Γ as $G_{(a, \beta)}$ normalizes G_{a_0}. An element of G_{a_0} fixing Γ pointwise must fix every B_i, $i \geq 2$, as $\Gamma \cap B_i \not= \emptyset$ for all $i \geq 2$. It follows that $H \not= 1$. If $\text{Fix}(K_1) = B_1 \cup \{\alpha\}$ then we get a contradiction using Lemma 1.1 of [17] and part (a). Therefore K_1 fixes a point in $\bigcup_{i \geq 2} B_i$ so that K_1 fixes some B_i, $i \geq 2$. Since $K_1 \subseteq G_{a_0}$, K_1 is $1/2$-transitive on $\Sigma - \{B_1\}$ and therefore $K_1 \subseteq H$.

It follows that H does not restrict faithfully to its orbits so that Proposition 4 of [15] implies that G is a normal extension of $PSL(n, q)$. Since $PSL(2, q)$ is doubly primitive, $n > 2$. But then G has a unique system of imprimitivity blocks with $b = q$ and $t = (q^{n-1} - 1)/(q - 1)$, contradicting $t < b$.

As a corollary we can state now Theorem B of [20] replacing the assumption $b < t$ by $K_1 \not= 1$:

Theorem 4. Suppose G satisfies (A) and $K_1 \not= 1$. If $G_{a_0}^{\Sigma - \{\beta\}}$ is transitive then the G-translates of $B_1 \cup \{\alpha\}$ form a nontrivial block design with $\lambda = 1$ of which G is an automorphism group.
Proof. Lemma 1 implies that $b < t$ and the result follows from Theorem B of [20].

The next two lemmas consider groups satisfying (B).

Lemma 2. Let G satisfy (B). Then:

(a) If b is a prime power and G contains a regular normal subgroup then $|\Omega| = p$, p a prime, and $|G| = (p - 1)p$, G a Frobenius group.

(b) $G_{a,\Sigma}^\Sigma$ is doubly transitive if and only if $G_{a,\Sigma}^{\Sigma-\{b_1\}}$ is transitive.

(c) If $G_{a,\Sigma}^\Sigma$ is doubly transitive then $(K_{a,\Sigma})^\Sigma$ is doubly transitive.

(d) Assume that $G_{a,\Sigma}^\Sigma$ is doubly transitive, then the $G_{a,\Sigma}$-orbits Γ_0 and Γ of Lemma 1(b) are of size $b - 1$ each. There exists another $G_{a,\Sigma}$-orbit Γ_1 of size $b - 1$ on $\Omega - B_1 - \{\alpha\}$, $\Gamma_1 \not= \Gamma$, such that for all $i \geq 2$, $|B_i \cap \Gamma_1| = |B_i \cap \Gamma_1'| = 1$.

Proof: (a) Here $b^2 + 1 = p^n$ for some prime p and some n. Suppose $n > 1$. If b is odd $p = 2$ and $b^2 + 1 = 1$ (mod 4). But $2^n - 1 = 2$ (mod 4), a contradiction. Thus $b = 2^m$ for some m. Now $2^{2m} = (p - 1)(p^{2m - 1} + p^{2m - 2} + \cdots + 1)$. It follows that n is even. Thus $p^n = 0$ or 1 (mod 3). If $p^n = 1$ (mod 3), $p^n - 1 = 2^{2m} = 0$ (mod 3), a contradiction. Thus $p = 3$ and $3^{n} - 1 = 2^{2m}$. Since n is even $3^n - 1 = 0$ or 3 (mod 5) while $2^{2m} = 4^m = 1$ or 4 (mod 5), a contradiction. We conclude that $n = 1$, $b = 1 = p$ and G is a Frobenius group of order $(p - 1)p$ by [24] 4.4 which implies that G is solvable and by [24] 11.6.

(b) If $G_{a,\Sigma}^{\Sigma-\{b_1\}}$ is transitive, so is $(K_{a,\Sigma})^{\Sigma-\{b_1\}}$ because $G_{a,\Sigma} = (K_{a,\Sigma})_{b_1}$, and so $G_{a,\Sigma}^\Sigma$ is doubly transitive. Conversely, if $G_{a,\Sigma}^\Sigma$ is doubly transitive, $K_{a,\Sigma}^{\Sigma-\{b_1\}}$ is transitive of degree $b - 1$ and since $|K_{a,\Sigma}^{\Sigma-\{b_1\}} : G_{a,\Sigma}^{\Sigma-\{b_1\}}|$ divides b, [24] 17.1 implies that $G_{a,\Sigma}$ is transitive on $\Sigma - \{B_1\}$.

(c) and (d) Since $b = t$, the orbits Γ_0 and Γ of Lemma 1 are both of size $b - 1$ and $m = 1$. Thus $\Gamma_0 = B_1 - \{\beta\}$, $G_{a,\Sigma}$ is transitive on $B_1 - \{\beta\}$ and $(K_{a,\Sigma})^\Sigma$ is doubly transitive as $K_{a,\Sigma}$ is clearly transitive on B_1. The existence of another $G_{a,\Sigma}$-orbit, Γ_1, of size $b - 1$ which is $G_{a,\Sigma}$-invariant follows from Lemma 3 of [1]. Since Γ_0 and Γ are not invariant under $G_{a,\Sigma}$ we have that $\Gamma_0 \not= \Gamma_1$, $\Gamma \not= \Gamma_1$. Now $\{B_i | B_i \cap \Gamma_1 \neq \emptyset\}$ is a $G_{a,\Sigma}$-orbit on $\Sigma - \{B_1\}$ and so $|\Gamma_1 \cap B_i| = 1$ and $|\Gamma \cap B_i|$ for all $i \geq 2$.

Lemma 3. Let G satisfy (B). Assume that $G_{a,\Sigma}^\Sigma$ is doubly transitive. Let $\gamma \in B_1 - \{\beta\}$ and $2 \leq j \leq b$. By Lemma 2(d) $|B_j \cap \Gamma| = |B_j \cap \Gamma_1| = 1$, Γ and Γ_1 as in Lemma 2.

Let $\Gamma \cap B_j = \{\tau\}$ and $\Gamma_1 \cap B_j = \{\rho\}$. Then $G_{a,\Sigma} \cap K_j$ fixes both τ and ρ. Thus $G_{a,\Sigma} \cap K_j \subseteq (K_{a,\Sigma})_{\tau,\rho}$. On the other hand, since $(K_{a,\Sigma})_{\tau,\rho}$ is doubly transitive...
and \(G_{aB} \) is transitive on \(\Sigma - \{B_i\} \) (see Lemma 2) we have that: \(| K_j : G_{aB} \cap K_j | = | K_1 : G_{aB} | \cdot | G_{aB} : G_{aB} \cap K_j | = b(b - 1) = | K_j : (K_j)_{r_\rho} | \). Hence \(G_{aB} \cap K_j = (K_j)_{r_\rho} \).

Now let \(g \in G_{aA} - K_1 \) be such that \(B_1^g = B_j \). Then \((K_1)^g = K_j \) and \(((K_1)_\rho)^g = (K_j)_\rho \) and the double transitivity of \(K_1^B \) implies that \(((K_1)_\rho)^g \) is conjugate in \(K_j = (K_1)^g \) to \((K_j)_{r_\rho} \). Let \(k \in K_1 \) be such that \(((K_1)_\rho)^{g^{-1}k}\rho = (K_j)_{r_\rho} \). Since \((K_j)_{r_\rho} \) fixes a point \(\beta \in B_1 \), \((K_1)_\rho = G_{aB} \) fixes a point in \((B_1)^{g^{-1}k^{-1}} = B_i \) for some \(i \). Since \(k \in K_1 \) and \(g \notin K_1 \), \(i > 1 \). Thus \(G_{aB} \) fixes \(B_i \) as a set and since its order is equal to \(| G_{aB} \cap K_1 | \) we have that \(G_{aB} \cap K_j = (K_j)_{r_\rho} \), where \(\eta, \eta \) are in \(B_i \). Let \(h \in G_{aB} \) be such that \((B_i)^h = B_j \). Then if \(\delta = \gamma h \) we have that \(G_{aB} \cap K_j = G_{aB} \) and \(\delta \in B_1 - \{\beta\} \).

2. Proof of Theorems

Proof of Theorems 1 and 2. Here we assume that \(H \neq 1 \). If \(H_2 \neq 1 \) then \(H_2 \) fixes the point in \(\Gamma \cap B_1 \) for all \(i \geq 2 \), \(\Gamma \) as in Lemma 2. Then by [14] \(B_1 \) we have a block design with \(\lambda = 1 \) on \(\Omega \) with \(k \geq b + 1 \), contradicting Lemma 1(a). Therefore \(H_2 = 1 \). Since \((K_1)^{b_1} \) is doubly transitive (see Lemma 2), \(H \) is a normal regular subgroup of \(K_1 \) because \(K_1 = (K_1)^{b_1} \) by Lemma 1(c). Therefore \(| H | = b = p^n \) for some prime \(p \), \(n \geq 1 \), and \(H \) is elementary abelian. If \(G \) contains a regular normal subgroup then \(G_{aB} = 1 \) by Lemma 2(a) contradicting our assumption. Thus \(G \) contains no regular normal subgroup and in particular \(n > 1 \) (See [6]). If \(| \Omega | \) is odd, that is, \(b \) is even, O'Nan's theorem ([16]) implies that \(G \) is a normal extension of one of the following: \(S_\mathcal{Z}(q) \), \(PSU_3(n, q) \) for \(n \geq 2 \), \(PSU_3(2^k) \). But \(PSL_2(q) \) is doubly primitive and \(PSL(n, q) \), \(n \geq 3 \) and \(PSU_3(2^k) \) do not satisfy \(b = t \). Thus (i) of Theorem 2 holds.

Assume that \(G_{aB} \) is doubly primitive. This implies that \(K_1 \) is primitive on \(\Sigma - \{B_i\} \) and since \(K_2 = G_{aB} \) so that \(G_{aB} \simeq (K_2)^{\Sigma - \{B_i\}} \), \(G_{aB} \) is a primitive permutation group on \(\Sigma - \{B_i\} \). Lemma 3 implies that the permutation representations of \(G_{aB} \) on \(\Sigma - \{B_i\} \) and on \(B_1 - \{\beta\} \) are equivalent so that \(G_{aB} \) is primitive on \(B_1 - \{\beta\} \). Thus \(K_1 \) is a doubly primitive group on \(B_1 \) forcing \(p = 2 \) (see [24] 11.3). The previous paragraph implies that \(G \) is a normal extension of \(S_\mathcal{Z}(q) \), proving Theorem 1.

To complete the proof of Theorem 2 we may assume that \(p \) is odd and we prove that (ii) holds. Let \(C = C_{G_3}(H) \). Then \(C \leq G_3 \). Suppose that \(C > H \). Then \(1 \neq C^{\Sigma} < G_{aB} \) so that \(C^{\Sigma} \) is transitive. But \(C^{\Sigma} \cap K_2^\Sigma \simeq (C \cap K_2)/H = H/H = 1 \) since \(H \) is a regular normal subgroup of \(K_1 \). Hence \(C^{\Sigma} \) is a regular normal subgroup of \(G_{aB} \) and consequently \(C \) is a \(p \)-group, \(C \leq G_3 \) and \(C \) is transitive on \(\Omega - \{x\} \). It follows that \(G \) is a normal extension of one of the groups of Theorem C' of [12]. But \(PSL_2(q) \) is doubly primitive, the degree of \(S_\mathcal{Z}(q) \) is odd, in \(PSU_3(3, q) \), \(b \neq t \) and in the case of a group of \(C \)-type, the degree is not a square plus 1. This contradiction implies that \(C = H \) and therefore
DOUBLY TRANSITIVE PERMUTATION GROUPS

Given \(G_a/H \) is isomorphic to a subgroup of \(GL(n, p) \). Finally if \(n = 2 \), \(p^2 \) does not divide \(G_a/H \cong G_a^x \) contradicting the fact that \(G_a^x \) is transitive of degree \(b = p^2 \). Hence \(n > 2 \) as claimed.

Proof of Theorem 3. Assume that \(G_{a\delta} \) is doubly transitive on \(\Sigma - \{B_1\} \). Then so is \(K_1 \) and consequently \(G_a^x \) is triply transitive. If \(H \neq 1 \) then \(G_a^x \) is a normal extension of \(S_5 \) by Theorem 1. But then \(G_a^x \) is not triply transitive, a contradiction. Thus \(H = 1 \). Also \(K_1 = 1 \) by Lemma 1(e). Lemma 3 implies that the permutation representations of \(G_{a\delta} \) on \(B_1 - \{\beta\} \) and on \(\Sigma - \{B_1\} \) are equivalent, in particular \(G_{a\delta} \) is doubly transitive on \(B_1 - \{\beta\} \) so that \((K_1)^{B_1} = K_1 \) is triply transitive. Now, a theorem of Cameron ([5]) implies that either \(K_1 \) has a regular normal subgroup on \(B_1 \) or \(b = 6 \) and \(K_1 \cong PGL(2, 5) \). If \(N \) is a normal regular subgroup of \(K_1 \), \(|N| = b \). On the other hand since \((K_1)^{B_1} = K_1 \) is doubly transitive, \(N \) is transitive on \(\Sigma - \{B_1\} \) forcing \(b - 1 \) \| \(|N| = b \) which is impossible. Thus \(b = 6 \) and \(|\Omega| = 37 \). But then \(G \) is doubly primitive (See [13] p. 528), a contradiction.

Proof of Corollary 1. Assume that \(G_a^x \) is triply transitive. As in the proof of Th. 3 (and by Lemma 2(b)), \(H = K_1 = 1 \). Theorem 3 implies that \(G_{a\delta} \cap K_2 \) is not transitive on \(\Sigma - \{B_1, B_2\} \). Now

\[
|K_1 \cap K_2 : G_{a\delta} \cap K_2| = \frac{|K_1 : G_{a\delta} \cap K_2|}{|K_1 : K_1 \cap K_2|} = \frac{b(b-1)}{b-1} = b
\]

(See Lemma 2 and 3.). Since \(K_1 \cap K_2 \) is transitive on \(\Sigma - \{B_1, B_2\} \) the orbits of \(G_{a\delta} \cap K_2 \) on \(\Sigma - \{B_1, B_2\} \) are of size divisible by \((b-2)\{b, b-2\} \) (See [24] 17.1) and consequently \(G_{a\delta} \) has two orbits of size \((b-2)/2\) on it. It follows that \(b \) is even proving (i).

Since the representations of \(G_{a\delta} \) on \(B_1 - \{\beta\} \) and on \(\Sigma - \{B_1\} \) are equivalent (Lemma 3), \(G_{a\delta} = (K_1)^{\beta} \) is a rank 3 group on \(B_1 - \{\beta\} \) with subdegrees 1, \((b-2)/2\), \((b-2)/2\). Let \(\Gamma \) and \(\Gamma_1 \) be as in Lemma 2. Let \(\{\beta_i\} = \Gamma \cap K_1 \) and \(\{\gamma_i\} = \Gamma \cap K_i \) for \(i \geq 2 \). Then \((K_1)^{\beta_i, \gamma_i} \) has two orbits on \(B_1 - \{\beta_i, \gamma_i\} \) of size \((b-2)/2\) each. As in the proof of Lemma 3 we can show that \(G_{a\delta} \cap K_i = (K_i)^{\beta_i, \gamma_i} \). Let \(A_2 \) and \(A_2 \) be the two \((K_2)^{\beta, \gamma_i}\)-orbits on \(B_1 - \{\beta_2, \gamma_i\} \). No element of \(G_{a\delta} \) maps a point of \(A_2 \) into \(A_2 \), for if \(g \in G_{a\delta} \) does, \(g \) fixes \(B_2 \) and then \(g \in G_{a\delta} \cap K_2 = (K_2)^{\beta_2, \gamma_2} \) for which \(A_2 \) and \(A_2 \) are different orbits. This implies that for any \(g_1, g_2 \in G_{a\delta} \), no element of \(G_{a\delta} \) maps a point of \(A_2 \) into \(A_2 \) and in particular \(A_2^g \cap A_2^g = \emptyset \). It follows that if \(g \in G_{a\delta} \) is such that \(B_2^g = B_1 \) then \(A_2^g \) and \(A_2^g \) are the two \(G_{a\delta} \cap K_i = (K_i)^{\beta_i, \gamma_i}\)-orbits on \(B_1 - \{\beta_i, \gamma_i\} \). Since \(G_{a\delta}^x \) is transitive, this implies that \(G_{a\delta} \) is transitive on both \(\Delta = \bigcup g \in G_{a\delta} A_2^g \) and \(\Lambda = \bigcup g \in G_{a\delta} A_2^g \) and that \(|\Delta| = |\Lambda| = (b-2)/2(b-1)\). The argument above shows that \(\Lambda \) and \(\Delta \) are \(G_{a\delta}\)-invariant as \(\Delta \cup \Lambda = \Omega = \{\alpha, \beta\} - \Gamma_0 - \Gamma - \Gamma_1 \) and therefore they are \(G_{a\delta}\)-orbits as desired.

Proof of Corollary 2. Let \(b = p + 1 \), \(p \) a prime. Then \(p \neq 2 \) by [6]. Recall
that $K_1 = 1$ by Lemma 1(c). If $G_{a\beta}$ is nonsolvable, $G_{a\beta}$ is doubly transitive ([24] 11.7) on $B_1 - \{\beta\}$ and by Lemma 3 we get that $G_{a\beta}^{\sigma_1(B_1)}$ is doubly transitive, contradicting Theorem 3. Thus $G_{a\beta}$ is solvable so that either $|G_{a\beta}| = p$ or $G_{a\beta}$ is a Frobenius group. Assume first that $(K_1)^{B_1} = K_1$ contains no regular normal subgroup. Then $(K_1)^{B_1}$ is a Zassenhaus group of degree $1 + p$. By [8], [11] and [22] we have that $K_1 \simeq PSL(2, p)$. Since $|K_1 : K_1 \cap K_2| = p$, [9] p. 214 clearly implies that $p = 5, 7, 11$. If $p = 5$, $|\Omega| = 37$ and G is doubly primitive. If $p = 7, 11$, $|G_{a\beta}|$ is odd and $|\Omega| = 65$ or 145. Since in $PSU(3, 2^k)$, $b \neq t$ [4] implies that $p = 7$ and $G \simeq S_8(8)$.

Therefore, $(K_1)^{B_1}$ contains a regular normal subgroup N, $|N| = 1 + p$. Since K_1 is transitive on $\Sigma - \{B_1\}$ of degree p, N is half transitive and so N is trivial on $\Sigma - \{B_1\}$. Thus $H \neq 1$ and the result follows from Theorem 2(ii).

Proof of Corollary 3. Let Λ be a $G_{a\beta}$ orbit of size m, $m \geq b - 1$, $m \neq b$, on which $G_{a\beta}$ is doubly transitive. If $\Lambda \subseteq B_1$, then $\Lambda = B_1 - \{\beta\}$ and Lemma 1 and Lemma 2 of [1] implies that $A^p, g \in G_{a\beta}$, is another $G_{a\beta}$-orbit on which $G_{a\beta}$ is doubly transitive and $A^p \cap B_1 = \emptyset$. Thus we may as well assume that $A \cap B_1 = \emptyset$. Let $i > 1$ be such that $B_i \cap A \neq \emptyset$. Since $B_i \cap A$ is an imprimitivity block for the action of $G_{a\beta}$ on A and since $G_{a\beta}$ is primitive we have that $|B_i \cap A| = m$ or 1. If for all $i > 1$, $|B_i \cap A| \neq m$ then $|B_i \cap A| = 1$ for all $i > 1$ and $m = b - 1$. Then $G_{a\beta}^{\sigma_1(B_1)}$ is doubly transitive, contradicting Theorem 3. Hence there is an $i > 1$ such that $|B_i \cap A| = m$ and so $m = b - 1$ and $A \subseteq B_i$. It follows that $G_{a\beta}$ fixes B_i and thus it fixes the only point of $B_1 - A$.

Now the result follows from [1] Lemma 1.

3. Automorphism Groups of Block Designs

In [20] Theorem B it is shown that $G_{a\beta}^{\sigma_1(B_1)}$ being transitive is a sufficient condition for a group satisfying (A) to be an automorphism group of a nontrivial block design on Ω with $\lambda = 1$, provided $b < t$. For $b = t$ this condition is not sufficient as the example of $Sz(q)$ shows. Corollary 3 gives a sufficient condition for this case. In this section we consider the above condition for some values of $t < b$ and show that it is a sufficient condition for them. We prove:

Proposition 1. Let G satisfy (A) and assume that $G_{a\beta}^{\sigma_1(B_1)}$ is transitive. Suppose that one of the following holds:

(a) $t > b - 4$ and $t \neq b$
(b) $t = b - 4, t \neq 5, 11, 16, 21$.
(c) $t = b - 5, t \neq 5$, and either $t > 121$ or $t < 121$ and $6 \neq t$.

Then G is an automorphism group of a nontrivial block design with $\lambda = 1$ on Ω. Moreover, if $t = b - 1$ then $|\text{Fix}(G_{a\beta})| = 3$ so that design has $k = 3$.

First we prove a lemma.

Lemma 4. Let G satisfy (A). Let Λ be a G_{aB} orbit of size k on $B_1 - \{\beta\}$. Assume that:

(a) Λ is the only orbit of G_{aB} on $B_1 - \{\beta\}$ of size dividing $k!$.
(b) G_{aB} is not faithful on Λ and $G_{aB}^{e - \{B_1\}}$ is transitive.
(c) $t - 1 > k!$

Then G is an automorphism group of a non-trivial block design on Ω with $\lambda = 1$.

Proof: Let N be the kernel of G_{aB} on Λ. Let $g \in G$ such that $Ng \subseteq G_{aB}$. Since $|G_{aB} : N^\theta|$ divides $k!$, [24] 17.2 implies the size of each orbit of N^θ on $\Sigma - \{B_1\}$ is at least $(t - 1)/k! > 1$. It follows that N^θ fixes no block other than B_1 and therefore $\text{Fix}(N^\theta) \cap (\Omega - B_1 - \{a\}) = \emptyset$ and $\text{Fix}(N^\theta) \subseteq B_1 \cup \{a\}$. Let Δ be a G_{aB}-orbit on $B_1 - \{\beta\}$ on which N^θ fixes a point θ. Then $N^\theta \subseteq G_{aB}$ and since $|G_{aB} : G_{aB}^\theta| = |\Delta|$ we get that $|\Delta|$ divides $|G_{aB} : N^\theta|$.

By assumption $\Delta = \Lambda$ and therefore $\text{Fix}(N^\theta) \cap (B_1 - \{\beta\}) \subseteq \Lambda$. Since $|\text{Fix}(N^\theta)| = |\text{Fix}(N)|$, $N^\theta = N$ and N is a weakly closed subgroup of G_{aB} in G. Now the result follows from [1] Lemma 1.

Proof of Proposition 1. If $b < t$ the result is Theorem B of [20]. For $t < b$, G_{aB} has an orbit, I_0, on B_1 of size $m(t - 1)$ and $K_1 = 1$ (see Lemma 1). If $t = b - 1$ then $m = 1$ unless $t = 2$. Hence, if $t = 2$, $(K_1)^{b_1}$ is a rank 3 group with subdegrees 1, 1, $t - 1$. Since $t - 1 > 1$ and $G_{aB}^{e - \{B_1\}}$ is transitive we get that $|\text{Fix}(G_{aB})| = 3$ and by Lemma 1 of [1] we're done. The case $t = 2$ is impossible, for if $t = 2$, $b = 3$ and $G_{aB} = 1$ (by [7] Proposition 2.1).

By Lemma 1 of [1] we can assume that $|\text{Fix}(G_{aB})| = 2$. Also by assumption $G_{aB} \neq 1$.

Assume that $t = b - 2$. If $t > 3$, $m = 1$ and $(K_1)^{b_1} = K_1$ is a rank 3 group with subdegrees 1, 2, $t - 1$. As $t - 1 > 1$ $|G_{aB}|$, G_{aB} is not faithful on the orbit of size 2 and the result follows from Lemma 4. If $t = 2$, $b = 4$ then [2] implies the result and if $t = 3$, $b = 5$ then [1] implies it.

Let $t = b - 3$. If $t - 1 > 6$, $m = 1$ and $(K_1)^{b_1} = K_1$ is a rank 3 group with subdegrees 1, 3, $t - 1$. Again $|G_{aB}| > 6$ so that G_{aB} is not faithful on the orbit of size 3. Using Lemma 4 we're done. If $t = 2, 3, 4, 5, 7, |\Omega| = 11, 19, 29, 41, 71$ respectively and G is doubly primitive (see [13] p. 528). If $t = 6$, $b = 9$ and the subdegrees are 1, 5, 3. Since $4 < 9$, [16] Lemma 4 implies that $(K_1)^{b_1}$ is primitive. Let Λ be the G_{aB} orbit of size 3, then $5 < |G_{aB}^\Lambda|$, contradicting [24] Th. 18.4.

Suppose that $t = b - 4$. If $t = 2$, $|\Omega| = 13$ and G is a normal extension of $PSL(3, 3)$ for which $t \neq b - 4$. If $t = 3$, $b = 7$ and [7] (2.1) yields a contradiction. If $t = 4$, $b = 8$ and the proposition holds by [3]. Now, $t \neq 5$ by assumption and if $t = 6$, $|\Omega| = 61$ and G is doubly primitive (see [13] p. 528).
Hence we can assume that $t > 6$. Since $m = 1$, the subdegrees of $(K_1)^B_1$ are either $1, 2, 2, t - 1$ or $1, 4, 3, t - 1$. In the first case, let A_1, A_2 be the two orbits of size 2 and N_1, N_2 the kernels of $G_{a\beta}$ on A_1, A_2, respectively. Since $t - 1 > 5$, $N_1 \cap N_2 \neq 1$ since $N_1 \cap N_2 = 1$ would imply $|G_{a\beta}| = 4$. Then as in the proof of Lemma 4 it can be shown that $N_1 \cap N_2$ is a weakly closed subgroup of $G_{a\beta}$ in G. Then, we're done by Lemma 1 of [1]. In the case $1, 4, t - 1$ we get the proposition using Lemma 4 if $t - 1 > 24$. Assume that $(K_1)^B_1$ is primitive. Then for some number $\mu \neq 0$ and λ we have that $\mu(t - 1) = 4(3 - \lambda)$ (see [10] Lemma 5, Cor. 3). Then $t - 1 = 6, 8, 12$ so that b is a prime and $|\Omega|$ is not a prime power. This contradicts [7] (2.1). If $(K_1)^B_1$ is imprimitive then $5 | b$ (see [10] Lemma 4) so that for $6 < t \leq 25$ we have $t = 11, 16, 21$. These are excluded in the assumption.

Finally, let $t = b - 5$. If $t = 2, 6, b$ is a prime and we get a contradiction using [7] (2.1). If $t = 3, b = 8$ and [3] implies the result. If $t = 4$, $|\Omega| = 37$ and G is doubly primitive. Since $t \neq 5$ by assumption we can assume that $t > 6$ so that $m = 1$ and the subdegrees of $(K_1)^B_1$ are $1, 5, t - 1$ or $1, 2, 3, t - 1$. The proposition holds for the second case by Lemma 4. In the case $1, 5, t - 1$ we use Lemma 4 to prove the result for $t - 1 > 120$. If $(K_1)^B_1$ is imprimitive $6 | b$ ([10] Lemma 4) contradicting our assumption. Hence $(K_1)^B_1$ is primitive and so $\mu(t - 1) = 5(4 - \lambda)$, λ and μ as in [10], also $\mu \neq 0$ ([10]) Lemma 5, Cor. 3). Thus, $t - 1 = 10, 15, 20$.

If $t = 21, b = 26$ and the subdegrees are $1, 5, 20$, contradicting [24] Th. 31.2. If $t = 16$, $\mu = \frac{1}{3}(4 - \lambda)$ so that $\lambda = \mu = 1$ contradicting Lemma 7 of [10]. If $t = 11, b = 16$ and $K_1 = (K_2)^B_1$ has a regular normal subgroup N (See [23] p. 179). Since $|N| = 16, N \leq K_1, N$ is half transitive on the 15 points of $\sum \setminus \{B_1\}$ forcing $N \subseteq H$. Hence $H \neq 1$. If $H_{16} = 1, H = N$ and we get a contradiction using [16]. Thus $H_{16} \neq 1$ and since $m = 1, H_{16}$ fixes the point of $\Gamma \cap B_i$ for all $i \geq 2$. Now [14] B_1 is used to obtain the result.

\textit{Note added in proof.} The proof of Lemma 4 holds if $N^g \not\subseteq H$ because then $|G_{a\beta}^{\Sigma-(B_2)}|; (N^g)^{\Sigma-(B_2)} |$ divides λl. The case $N^g \subseteq H$ is impossible because then $|N^g|$ divides $|H \cap G_{a\beta}|$ so that $|G_{a\beta}^{\Sigma-(B_1)}| = |G_{a\beta}|/|G_{a\beta} \cap H|$ divides $|G_{a\beta} : N|$ which divides λl. Since $t - 1$ divides $|G_{a\beta}^{\Sigma-(B_2)}|$ we get that $t - 1 | \lambda l$ a contradiction.

\textbf{REFERENCES}

7. D. Chillag and C. E. Praeger, On doubly transitive permutation groups in which the point stabilizer has a block of imprimitivity of prime length, unpublished.
16. M. O’Nan, Doubly transitive groups of odd degree whose one point stabilizers are local, *J. Algebra* 39 (1976), 440–482.