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Abstract

Let X be a Polish space and K a separable compact subset of the first Baire class on X . For every sequence f = ( fn)n dense in
K, the descriptive set-theoretic properties of the set

Lf = {L ∈ [N] : ( fn)n∈L is pointwise convergent}

are analyzed. It is shown that if K is not first countable, then Lf is 51
1-complete. This can also happen even if K is a pre-metric

compactum of degree at most two, in the sense of S. Todorčević. However, ifK is of degree exactly two, then Lf is always Borel. A
deep result of G. Debs implies that Lf contains a Borel cofinal set and this gives a tree-representation of K. We show that classical
ordinal assignments of Baire-1 functions are actually 51

1-ranks on K. We also provide an example of a 61
1 Ramsey-null subset A

of [N] for which there does not exist a Borel set B ⊇ A such that the difference B \ A is Ramsey-null.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let X be a Polish space. A Rosenthal compact on X is a subset of real-valued Baire-1 functions on X , compact in
the pointwise topology. Standard examples of such compacta include the Helly space (the space of all non-decreasing
functions from the unit interval into itself ), the split interval (the lexicographical ordered product of the unit interval
and the two-element ordering) and the ball of the double dual of a separable Banach space not containing `1. That
the later space is indeed a compact subset of the first Baire class follows from the famous Odell–Rosenthal theorem
[17], which states that the ball of the double dual of a separable Banach space with the weak* topology consists only
of Baire-1 functions if and only if the space does not contain `1. Actually this result motivated H.P. Rosenthal to
initiate the study of compact subsets of the first Baire class in [21]. He showed that all such compacta are sequentially
compact. J. Bourgain, D.H. Fremlin and M. Talagrand proved that Rosenthal compacta are Fréchet spaces [6]. We
refer to [3,18] and [22] for thorough introductions to the theory, as well as its applications in analysis.

Separability is the crucial property that divides this class in two. As S. Todorčević has pointed out in [25], while
non-separable Rosenthal compacta can be quite pathological, the separable ones are all “definable”. This is supported
by the work of many researchers, including G. Godefroy [8], A. Krawczyk [11], W. Marciszewski [13], and R. Pol
[19], and is highlighted in the remarkable dichotomies and trichotomies of [25].
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Our starting point of view is how we can code separable compact subsets of the first Baire class by members of
a standard Borel space. Specifically, by a code of a separable Rosenthal compact K on a Polish space X , we mean a
standard Borel space C and a surjection C 3 c 7→ fc ∈ K such that for all a ∈ R the relation

(c, x) ∈ Ra ⇔ fc(x) > a

is Borel in C × X . In other words, inverse images of sub-basic open subsets of K are Borel in C uniformly in X .
There is a natural object one associates to every separable Rosenthal compact K and which can serve as a coding

of K. More precisely, for every dense sequence f = ( fn)n in K one defines

Lf = {L ∈ [N] : ( fn)n∈L is pointwise convergent}.

The Bourgain–Fremlin–Talagrand theorem [6] implies that Lf totally describes the members of K, in the sense that
for every accumulation point f of K there exists L ∈ Lf such that f is the pointwise limit of the sequence ( fn)n∈L .
Moreover, for every f ∈ K one also defines

Lf, f = {L ∈ [N] : ( fn)n∈L is pointwise convergent to f }.

Both Lf and Lf, f have been studied in the literature. In [11], Krawczyk proved that Lf, f is Borel if and only if f is
a Gδ point of K. The set Lf (more precisely the set Lf \ Lf, f ) has been also considered by Todorčević in [25], in his
solution of characters of points in separable Rosenthal compacta.

There is an awkward fact concerning Lf, namely that Lf can be non-Borel. However, a deep result of G. Debs
[7] implies that Lf always contains a Borel cofinal set and this subset of Lf can serve as a coding. This leads to the
following tree-representation of separable Rosenthal compacta.

Proposition A. Let K be a separable Rosenthal compact. Then there exist a countable tree T and a sequence (gt )t∈T
in K such that the following hold.

(1) For every σ ∈ [T ] the sequence (gσ |n)n∈N is pointwise convergent.

(2) For every f ∈ K there exists σ ∈ [T ] such that f is the pointwise limit of the sequence (gσ |n)n∈N.

It is natural to ask when the set Lf is Borel or, equivalently, when Lf can serve itself as a coding (it is easy to see
that Lf and Lf, f are always 51

1). In this direction, the following is shown.

Theorem B. Let K be a separable Rosenthal compact.

(1) If K is not first countable, then for every dense sequence f = ( fn)n in K the set Lf is 51
1-complete.

(2) If K is pre-metric of degree exactly two, then for every dense sequence f = ( fn)n in K the set Lf is Borel.

Part (1) above is based on a result of Krawczyk. In part (2), K is said to be a pre-metric compactum of degree exactly
two if there exist a countable subset D of X and a countable subset D of K such that at most two functions in K
coincide on D and moreover for every f ∈ K \D there exists g ∈ K with f 6= g and such that g coincides with f on
D. This is a subclass of the class of pre-metric compacta of degree at most two, as it is defined by Todorčević in [25].
We notice that part (2) of Theorem B cannot be lifted to all pre-metric compacta of degree at most two, as there are
examples of such compacta for which the set Lf is 51

1-complete.
We proceed now to discuss some applications of the above approach. It is well-known that to every real-valued

Baire-1 function on a Polish space X one associates several (equivalent) ordinal rankings measuring the discontinuities
of the function. An extensive study of them is done by A.S. Kechris and A. Louveau in [10]. An important example is
the separation rank α. We have the following boundedness result concerning this index.

Theorem C. Let X be a Polish space and f = ( fn)n a sequence of Borel real-valued functions on X. Let

L1
f = {L ∈ [N] : ( fn)n∈L is pointwise convergent to a Baire-1 function}.

Then for every C ⊆ L1
f Borel, we have

sup{α( fL) : L ∈ C} < ω1

where, for every L ∈ C, fL denotes the pointwise limit of the sequence ( fn)n∈L .
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The proof of Theorem C actually is based on the fact that the separation rank is a parameterized 51
1-rank. Theorem C,

combined with the result of Debs, gives a proof of the boundedness result of [2]. Historically the first result of this
form is due to J. Bourgain [5]. We should point out that in order to give a descriptive set-theoretic proof of Bourgain’s
result one does not need to invoke Debs’ theorem.

Theorem C can also be used to provide natural counterexamples to the following approximation question in Ramsey
theory. Namely, given a 61

1 subset A of [N] can we always find a Borel set B ⊇ A such that the difference B \ A
is Ramsey-null? A.W. Miller had also asked whether there exists an analytic set which is not equal to Borel modulo
Ramsey-null (see [15], Problem 1.6∗). We show the following.

Proposition D. There exists a 61
1 Ramsey-null subset A of [N] for which there does not exist a Borel set B ⊇ A such

that the difference B \ A is Ramsey-null.

2. Preliminaries

For any Polish space X , by K (X)we denote the hyperspace of all compact subsets of X , equipped with the Vietoris
topology. By B1(X) (respectively B(X)) we denote the space of all real-valued Baire-1 (respectively Borel) functions
on X . By N = {0, 1, 2, . . .} we denote the natural numbers, and by [N] the set of all infinite subsets of N (which is
clearly a Polish subspace of 2N). For every L ∈ [N], by [L] we denote the set of all infinite subsets of L . For every
function f : X → R and every a ∈ R we set [ f > a] = {x : f (x) > a}. The set [ f < a] has the obvious meaning.

Our descriptive set-theoretic notation and terminology follows [9]. So 61
1 stands for the analytic sets, and 51

1 for
the co-analytic. A set is said to be 51

1-true if it is co-analytic non-Borel. If X, Y are Polish spaces, A ⊆ X and
B ⊆ Y , we say that A is Wadge (Borel) reducible to B if there exists a continuous (Borel) map f : X → Y such
that f −1(B) = A. A set A is said to be 51

1-complete if it is 51
1 and any other co-analytic set is Borel reducible to

A. Clearly any 51
1-complete set is 51

1-true. The converse is also true under large cardinal hypotheses (see [14] or
[16]). If A is 51

1, then a map φ : A → ω1 is said to be a 51
1-rank on A if there are relations ≤Σ , ≤Π in 61

1 and 51
1

respectively, such that for any y ∈ A

φ(x) ≤ φ(y) ⇔ x ≤Σ y ⇔ x ≤Π y.

Notice that if A is Borel reducible to B via a Borel map f and φ is a 51
1-rank on B, then the map ψ : A → ω1 defined

by ψ(x) = φ( f (x)) is a 51
1-rank on A.

Trees. If A is a non-empty set, by A<N we denote the set of all finite sequences of A. We view A<N as a tree
equipped with the (strict) partial order @ of extension. If s ∈ A<N, then the length |s| of s is defined to be the
cardinality of the set {t : t @ s}. If s, t ∈ A<N, then by sat we denote their concatenation. If A = N and
L ∈ [N], then by [L]

<N we denote the increasing finite sequences in L . For every x ∈ AN and every n ≥ 1 we
let x |n =

(
x(0), . . . , x(n − 1)

)
∈ A<N while x |0 = (∅). A tree T on A is a downwards closed subset of A<N. The

set of all trees on A is denoted by Tr(A). Hence

T ∈ Tr(A) ⇔ ∀s, t ∈ A<N (t @ s ∧ s ∈ T ⇒ t ∈ T ).

For a tree T on A, the body [T ] of T is defined to be the set {x ∈ AN : x |n ∈ T for all n ∈ N}. A tree T is called
pruned if for every s ∈ T there exists t ∈ T with s @ t . It is called well-founded if for every x ∈ AN there exists
n such that x |n /∈ T , equivalently if [T ] = ∅. The set of well-founded trees on A is denoted by WF(A). If T is a
well-founded tree we let T ′

= {t : ∃s ∈ T with t @ s}. By transfinite recursion, one defines the iterated derivatives
T (ξ) of T . The order o(T ) of T is defined to be the least ordinal ξ such that T (ξ) = ∅. If S, T are well-founded trees,
then a map φ : S → T is called monotone if s1 @ s2 in S implies that φ(s1) @ φ(s2) in T . Notice that in this case
o(S) ≤ o(T ). If A, B are sets, then we identify every tree T on A × B with the set of all pairs (s, t) ∈ A<N × B<N

such that |s| = |t | = k and
(
(s(0), t (0)), . . . , (s(k − 1), t (k − 1))

)
∈ T . If A = N, then we shall simply denote by

Tr and WF the sets of all trees and well-founded trees on N respectively. The set WF is 51
1-complete and the map

T → o(T ) is a 51
1-rank on WF. The same also holds for WF(A) for every countable set A.

The separation rank. Let X be a Polish space. Given A, B ⊆ X one associates with them a derivative on closed
sets, by F ′

A,B = F ∩ A ∩ F ∩ B. By transfinite recursion, we define the iterated derivatives F (ξ)A,B of F and we set
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α(F, A, B) to be the least ordinal ξ with F (ξ)A,B = ∅ if such an ordinal exists, otherwise we set α(F, A, B) = ω1. Now
let f : X → R be a function. For each pair a, b ∈ R with a < b let A = [ f < a] and B = [ f > b]. For every F ⊆ X
closed let F (ξ)f,a,b = F (ξ)A,B and α( f, F, a, b) = α(F, A, B). Let also α( f, a, b) = α( f, X, a, b). The separation rank of
f is defined by

α( f ) = sup{α( f, a, b) : a, b ∈ Q, a < b}.

The basic fact is the following (see [10]).

Proposition 1. A function f is Baire-1 if and only if α( f ) < ω1.

3. Codings of separable Rosenthal compacta

Let X be a Polish space and f = ( fn)n a sequence of Borel real-valued functions on X . Assume that the closure K
of { fn}n in RX is a compact subset of B(X). Let us consider the set

Lf = {L ∈ [N] : ( fn)n∈L is pointwise convergent}.

For every L ∈ Lf, by fL we shall denote the pointwise limit of the sequence ( fn)n∈L . Notice that Lf is 51
1. As the

pointwise topology is not effected by the topology on X , we may (and we will) assume that each fn is continuous
(and so K is a separable Rosenthal compact). By a result of H.P. Rosenthal [21], we get that Lf is cofinal. That is, for
every M ∈ [N] there exists L ∈ [M] such that L ∈ Lf. Also the celebrated Bourgain–Fremlin–Talagrand theorem
[6] implies that Lf totally describes K. However, most important for our purposes is the fact that Lf contains a Borel
cofinal set. This is a consequence of the following theorem of G. Debs [7] (which itself is the classical interpretation
of the effective version of the Bourgain–Fremlin–Talagrand theorem, proved by G. Debs in [7]).

Theorem 2. Let Y, X be Polish spaces and (gn)n be a sequence of Borel functions on Y × X such that for every y ∈ Y
the sequence

(
gn(y, ·)

)
n is a sequence of continuous functions relatively compact in B(X). Then there exists a Borel

map σ : Y → [N] such that for any y ∈ Y , the sequence
(
gn(y, ·)

)
n∈σ(y) is pointwise convergent.

Let us show how Theorem 2 implies the existence of a Borel cofinal subset of Lf. Given L ,M ∈ [N] with
L = {l0 < l1 < · · ·} and M = {m0 < m1 < · · ·} their increasing enumerations, let L ∗ M = {lm0 < lm1 < · · ·}.
Clearly L ∗ M ∈ [L] and moreover the function (L ,M) 7→ L ∗ M is continuous. Let ( fn)n be as in the beginning of
the section and let Y = [N]. For every n ∈ N define gn : [N] × X → R by

gn(L , x) = fln (x)

where ln is the nth element of the increasing enumeration of L . The sequence (gn)n satisfies all the hypotheses of
Theorem 2. Let σ : [N] → [N] be the Borel function such that for every L ∈ [N] the sequence(

gn(L , ·)
)

n∈σ(L) = ( fn)n∈L∗σ(L)

is pointwise convergent. The function L → L ∗ σ(L) is Borel and so the set

A = {L ∗ σ(L) : L ∈ [N]}

is an analytic cofinal subset of Lf. By separation we get that there exists a Borel cofinal subset of Lf. The cofinality
of this set in conjunction with the Bourgain–Fremlin–Talagrand theorem give us the following corollary.

Corollary 3. Let X be a Polish space and ( fn)n a sequence of Borel functions on X which is relatively compact in
B(X). Then there exists a Borel set C ⊆ [N] such that for every c ∈ C the sequence ( fn)n∈c is pointwise convergent
and for every accumulation point f of ( fn)n there exists c ∈ C with f = limn∈c fn .

In what follows we will say that the set C obtained by Corollary 3 is a code of ( fn)n . If K is a separable Rosenthal
compact and ( fn)n is a dense sequence in K, then we will say that C is the code of K. Notice that the codes depend
on the dense sequence. If c ∈ C , then by fc we shall denote the function coded by c. That is fc is the pointwise limit
of the sequence ( fn)n∈c.

The following lemma captures the basic definability properties of the set of codes. Its easy proof is left to the
reader.
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Lemma 4. Let X and ( fn)n be as in Corollary 3 and let C be a code of ( fn)n . Then for every a ∈ R the following
relations

(i) (c, x) ∈ Ra ⇔ fc(x) > a,
(ii) (c, x) ∈ R′

a ⇔ fc(x) ≥ a,
(iii) (c1, c2, x) ∈ Da ⇔ | fc1(x)− fc2(x)| > a

are Borel.

The existence of codings of separable Rosenthal compacta gives us the following tree-representation of them.

Proposition 5. Let K be a separable Rosenthal compact. Then there exist a countable tree T and a sequence (gt )t∈T
in K such that the following hold.

(1) For every σ ∈ [T ] the sequence (gσ |n)n∈N is pointwise convergent.
(2) For every f ∈ K there exists σ ∈ [T ] such that f is the pointwise limit of the sequence (gσ |n)n∈N.

Proof. Let ( fn)n be a dense sequence in K. We may assume that for every n ∈ N the set {m : fm = fn} is infinite.
This extra condition guarantees that for every f ∈ K there exists L ∈ Lf such that f = fL . Let C be the codes of
( fn)n . Now we shall use a common unfolding trick. As C is Borel in 2N there exists F ⊆ 2N × NN closed such that
C = proj2NF . Let T be the unique (downwards closed) pruned tree on 2 × N such that F = [T ]. This will be the
desired tree. It remains to define the sequence (gt )t∈T . Set g(∅,∅) = f0. Let t = (s, w) ∈ T and k ≥ 1 with s ∈ 2<N,
w ∈ N<N and |s| = |w| = k. Define nt ∈ N to be nt = max{n < k : s(n) = 1}, if the set {n < k : s(n) = 1} is
non-empty, and nt = 0 otherwise. Finally set gt = fnt . It is easy to check that for every σ ∈ [T ] the sequence (gσ |n)n
is pointwise convergent, and so (1) is satisfied. That (2) is also satisfied follows from the fact that for every f ∈ K
there exists L ∈ Lf with f = fL and the fact that C is cofinal. �

Remark 1. (1) We should point out that Corollary 3, combined with J.H. Silver’s theorem (see [14] or [24]) on the
number of equivalence classes of co-analytic equivalence relations, gives an answer to the cardinality problem of
separable Rosenthal compacta, a well-known fact that can also be derived by the results of [25] (see also [2], Remark
3). Indeed, let K be one and let C be the set of codes of K. Define the following equivalence relation on C , by

c1 ∼ c2 ⇔ fc1 = fc2 ⇔ ∀x fc1(x) = fc2(x).

Then ∼ is a 51
1 equivalence relation. Hence, by Silver’s dichotomy, either the equivalence classes are countable or

perfectly many. The first case implies that |K| = ℵ0, and the second one that |K| = 2ℵ0 .
(2) Although the set C of codes of a separable Rosenthal compact K is considered to be a Borel set which describes
K efficiently, when it is considered as a subset of [N] it can be chosen to have rich structural properties. In particular,
it can be chosen to be hereditary (i.e. if c ∈ C and c′

∈ [c], then c′
∈ C) and invariant under finite changes. To see

this, start with a code C1 of K, i.e. a Borel cofinal subset of Lf. Let

Φ =
{
(F,G) : (F ⊆ Lf) ∧ (G ∩ C1 = ∅) ∧

[∀L ,M (L ∈ F ∧ M ⊆ L ⇒ M /∈ G)] ∧

[∀L ,M, s (L ∈ F ∧ (L 4 M = s) ⇒ M /∈ G)]
}
.

Let also A = {N : ∃L ∈ C1 ∃s ∈ [N]
<N

∃M ∈ [L] with N 4 M = s}. Then A is 61
1 and clearly Φ(A,∼ A). As

Φ is 51
1 on 61

1, hereditary and continuous upward in the second variable, by the dual form of the second reflection
theorem (see [9], Theorem 35.16), there exists C ⊇ A Borel with Φ(C,∼ C). Clearly C is as desired.
(3) We notice that the idea of coding subsets of function spaces by converging sequences appears also in [4], where a
representation result of 61

2 subsets of C([0, 1]) is proved.

4. A boundedness result

4.1. Determining α( f ) by compact sets

Let X be a Polish space and f : X → R a Baire-1 function. The aim of this subsection is to show that the value
α( f ) is completely determined by the derivatives taken over compact subsets of X (notice that this is trivial if X is
compact metrizable). Specifically we have the following.
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Proposition 6. Let X be a Polish space, f : X → R Baire-1 and a < b reals. Then α( f, a, b) = sup{α( f, K , a, b) :

K ⊆ X compact}.

The proof of Proposition 6 is an immediate consequence of the following lemmas. In what follows, all balls in X
are taken with respect to some compatible complete metric ρ of X .

Lemma 7. Let X, f and a < b be as in Proposition 6. Let also F ⊆ X closed, x ∈ X and ξ < ω1 be such that
x ∈ F (ξ)f,a,b. Then for every ε > 0, if we let C = F ∩ B(x, ε), we have x ∈ C (ξ)

f,a,b.

Proof. Fix F and ε as above. For notational simplicity let U = B(x, ε) and C = F ∩ B(x, ε). By induction we shall
show that

F (ξ) ∩ U ⊆ C (ξ)

where F (ξ) = F (ξ)f,a,b and similarly for C . This clearly implies the lemma. For ξ = 0 is straightforward. Suppose that

the lemma is true for every ξ < ζ . Assume that ζ = ξ + 1 is a successor ordinal. Let y ∈ F (ξ+1)
∩ U . As U is open,

we have

y ∈ F (ξ) ∩ U ∩ [ f < a] ∩ F (ξ) ∩ U ∩ [ f > b].

By the inductive assumption we get that

y ∈ C (ξ) ∩ [ f < a] ∩ C (ξ) ∩ [ f > b] = C (ξ+1)

which proves the case of successor ordinals. If ζ is limit, then

F (ζ ) ∩ U =

⋂
ξ<ζ

F (ξ) ∩ U ⊆

⋂
ξ<ζ

C (ξ)
= C (ζ )

and the lemma is proved. �

Lemma 8. Let X, f and a < b be as in Proposition 6. Let also F ⊆ X closed, x ∈ X and ξ < ω1 be such that
x ∈ F (ξ)f,a,b. Then there exists K ⊆ F countable compact such that x ∈ K (ξ)

f,a,b.

Proof. Again for notational simplicity for every C ⊆ X closed and every ξ < ω1 we let C (ξ)
= C (ξ)

f,a,b. The proof
is by induction on countable ordinals, as before. For ξ = 0 the lemma is obviously true. Suppose that the lemma has
been proved for every ξ < ζ . Let F ⊆ X closed and x ∈ F (ζ ). Notice that one of the following alternatives must
occur.

(A1) f (x) < a and there exists a sequence (yn)n such that yn 6= ym for n 6= m, f (yn) > b, yn ∈ F (ξn) and yn → x ;
(A2) f (x) > b and there exists a sequence (zn)n such that zn 6= zm for n 6= m, f (zn) < a, zn ∈ F (ξn) and zn → x ;
(A3) there exist two distinct sequences (yn)n and (zn)n such that yn 6= ym and zn 6= zm for n 6= m, f (yn) < a,

f (zn) > b, yn, zn ∈ F (ξn) and yn → x , zn → x ,

where above the sequence (ξn)n of countable ordinals is as follows.

(C1) If ζ = ξ + 1, then ξn = ξ for every n.
(C2) If ζ is limit, then (ξn)n is an increasing sequence of successor ordinals with ξn ↗ ζ .

We shall treat the alternative (A1) (the other ones are similar). Let (rn)n be a sequence of positive reals such that
B(yn, rn) ∩ B(ym, rm) = ∅ if n 6= m and x /∈ B(yn, rn) for every n. Let Cn = F ∩ B(yn, rn). By Lemma 7, we get
that yn ∈ C (ξn)

n . By the inductive assumption, there exists Kn ⊆ Cn ⊆ Fn countable compact such that yn ∈ K (ξn)
n .

Finally let K = {x} ∪ (
⋃

n Kn). Then K is countable compact and it is easy to see that x ∈ K (ζ ). �

Remark 2. Notice that the proof of Lemma 8 actually shows that

α( f, a, b) = sup{α( f, K , a, b) : K ⊆ X countable compact}.

Moreover observe that if α( f, a, b) is a successor ordinal, then the above supremum is attainted.
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4.2. The main result

This subsection is devoted to the proof of the following result.

Theorem 9. Let X be a Polish space and f = ( fn)n a sequence of Borel real-valued functions on X. Let

L1
f = {L ∈ [N] : ( fn)n∈L is pointwise convergent to a Baire-1 function}.

Then for every C ⊆ L1
f Borel, we have

sup{α( fL) : L ∈ C} < ω1

where, for every L ∈ C, fL denotes the pointwise limit of the sequence ( fn)n∈L .

For the proof of Theorem 9 we will need the following theorem, which gives us a way of defining parameterized
51

1-ranks (see [9], page 275).

Theorem 10. Let Y be a standard Borel space, X a Polish space and D : Y × K (X) → K (X) be a Borel map such
that for every y ∈ Y , Dy is a derivative on K (X). Then the set

ΩD = {(y, K ) : D(∞)
y (K ) = ∅}

is 51
1 and the map (y, K ) → |K |Dy is a 51

1-rank on ΩD.

We continue with the proof of Theorem 9.

Proof of Theorem 9. Let C ⊆ L1
f Borel arbitrary. Fix a, b ∈ R with a < b. Define D : C × K (X) → K (X) by

D(L , K ) = K ∩ [ fL < a] ∩ K ∩ [ fL > b]

where fL is the pointwise limit of the sequence ( fn)n∈L . It is clear that for every L ∈ C the map K → D(L , K ) is a
derivative on K (X) and that α( fL , K , a, b) = |K |DL . We will show that D is Borel. Define A, B ∈ C × K (X) × X
by

(L , K , x) ∈ A ⇔ (x ∈ K ) ∧ ( fL(x) < a)

and

(L , K , x) ∈ B ⇔ (x ∈ K ) ∧ ( fL(x) > b).

It is easy to check that both A and B are Borel. Also let Ã, B̃ ⊆ C × K (X)× X be defined by

(L , K , x) ∈ Ã ⇔ x ∈ A(L ,K )

and

(L , K , x) ∈ B̃ ⇔ x ∈ B(L ,K ),

where A(L ,K ) = {x : (L , K , x) ∈ A} is the section of A (and similarly for B). Notice that for every (L , K ) ∈

C ×K (X)we have D(L , K ) = Ã(L ,K )∩ B̃(L ,K ). As Ã(L ,K ) and B̃(L ,K ) are compact (being subsets of K ), by Theorem
28.8 in [9], it is enough to show that the sets Ã and B̃ are Borel. We will need the following easy consequence of the
Arsenin–Kunugui theorem (the proof is left to the reader).

Lemma 11. Let Z be a standard Borel space, X a Polish space and F ⊆ Z × X Borel with Kσ sections. Then the set
F̃ defined by

(z, x) ∈ F̃ ⇔ x ∈ Fz

is a Borel subset of Z × X.



432 P. Dodos / Annals of Pure and Applied Logic 142 (2006) 425–441

By our assumptions, for every L ∈ C the function fL is Baire-1 and so for every (L , K ) ∈ C × K (X) the sections
A(L ,K ) and B(L ,K ) of A and B respectively are Kσ . Hence, by Lemma 11, we get that Ã and B̃ are Borel.

By the above we conclude that D is a Borel map. By Theorem 10, the map (L , K ) → |K |DL is a 51
1-rank on

ΩD. By Proposition 1 and the fact that C ⊆ L1
f , we get that for every (L , K ) ∈ C × K (X) the transfinite sequence(

D(ξ)L (K )
)
ξ<ω1

must be stabilized at ∅ and so ΩD = C × K (X). As ΩD is Borel, by boundedness we have

sup{|K |DL : (L , K ) ∈ C × K (X)} < ω1.

It follows that

sup{α( fL , K , a, b) : (L , K ) ∈ C × K (X)} < ω1.

By Proposition 6, we get

sup{α( fL , a, b) : L ∈ C} < ω1.

This completes the proof of the theorem. �

4.3. Consequences

Let us recall some definitions from [2]. Let X be a Polish space, ( fn)n a sequence of real-valued functions on X
and let K be the closure of { fn}n in RX . We will say that K is a (separable) quasi-Rosenthal if every accumulation
point of K is a Baire-1 function and moreover we will say that K is Borel separable if the sequence ( fn)n consists of
Borel functions. Combining Theorem 9 with Corollary 3 we get the following result of [2].

Theorem 12. Let X be a Polish space and K a Borel separable quasi-Rosenthal compact on X. Then

sup{α( f ) : f ∈ Acc(K)} < ω1

where Acc(K) denotes the accumulation points of K. In particular, if K is a separable Rosenthal compact on X, then

sup{α( f ) : f ∈ K} < ω1.

Besides boundedness, the implications of Theorem 9 and the relation between the separation rank and the Borelness
of Lf are more transparently seen when X is a compact metrizable space. In particular we have the following.

Proposition 13. Let X be a compact metrizable space and K a separable Rosenthal compact on X. Let f = ( fn)n be
a dense sequence in K and a < b reals. Then the map L → α( fL , a, b) is a 51

1-rank on Lf if and only if the set Lf
is Borel.

Proof. First assume that Lf is not Borel. By Theorem 12, we have that

sup{α( fL , a, b) : L ∈ Lf} < ω1

and so the map L → α( fL , a, b) cannot be a 51
1-rank on Lf, as Lf is 51

1-true. Conversely, assume that Lf is Borel.
By the proof of Theorem 9, we have that the map (L , K ) → |K |DL is a 51

1-rank on Lf × K (X). It follows that the
relation

L1 � L2 ⇔ α( fL1 , a, b) ≤ α( fL2 , a, b) ⇔ |X |DL1
≤ |X |DL2

is Borel in Lf × Lf. This implies that the map L → α( fL , a, b) is a 51
1-rank on Lf, as desired. �

Remark 3. Although the map L → α( fL , a, b) is not always a 51
1-rank on Lf, it is easy to see that it is a 51

1-rank on
the codes C of K, as the relation

c1 � c2 ⇔ α( fc1 , a, b) ≤ α( fc2 , a, b) ⇔ |X |Dc1
≤ |X |Dc2

is Borel in C × C for every pair a < b of reals. Hence, when X is compact metrizable space, we could say that the
separation rank is a 51

1-rank “in the codes”.
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We proceed to discuss another application of Theorem 9 which deals with the following approximation question in
Ramsey theory. Recall that a set N ⊆ [N] is called Ramsey-null if for every s ∈ [N]

<N and every L ∈ [N] with
s < L , there exists L ′

∈ [L] such that [s, L ′
] ∩ N = ∅. As every analytic set is Ramsey [23], it is natural to ask the

following. Is it true that for every analytic set A ⊆ [N] there exists B ⊇ A Borel such that B \ A is Ramsey-null? As
we will show, the answer is no, and a counterexample can be found which is in addition Ramsey-null.

To this end we will need some notations from [3]. Let X be a separable Banach space. By X∗∗

B1
we denote the set

of all Baire-1 elements of the ball of the second dual X∗∗ of X . We will say that X is α-universal if

sup{α(x∗∗) : x∗∗
∈ X∗∗

B1
} = ω1.

We should point out that there exist non-universal (in the classical sense) separable Banach spaces which are α-
universal (see [1]). We have the following.

Proposition 14. There exists a 61
1 Ramsey-null subset A of [N] for which there does not exist a Borel set B ⊇ A such

that the difference B \ A is Ramsey-null.

Proof. Let X be a separable α-universal Banach space and fix a norm dense sequence f = (xn)n in the ball of X (it
will be convenient to assume that xn 6= xm if n 6= m). Let

Lf = {L ∈ [N] : (xn)n∈L is weak* convergent}.

Clearly Lf is 51
1. Moreover, notice that Lf = L1

f according to the notation of Theorem 9.
Let x∗∗

∈ X∗∗

B1
arbitrary. By the Odell–Rosenthal theorem (see [3] or [17]), there exists L ∈ Lf such that

x∗∗
= w∗

− limn∈L xn . It follows that

sup{α(x∗∗) : x∗∗
∈ X∗∗

B1
} = sup{α(xL) : L ∈ Lf}

where xL denotes the weak* limit of the sequence (xn)n∈L . Denote by (en)n the standard basis of `1 and let

Λ = {L ∈ [N] : ∃k such that (xn)n∈L is (k + 1)-equivalent to (en)n}

where, as usual, if L ∈ [N] with L = {l0 < l1 < · · ·} its increasing enumeration, then (xn)n∈L is (k + 1)-equivalent
to (en)n if for every m ∈ N and every a0, . . . , am ∈ R we have

1
k + 1

m∑
n=0

|an| ≤

∥∥∥ m∑
n=0

an xln

∥∥∥
X

≤ (k + 1)
m∑

n=0

|an|.

Then Λ is 60
2. We notice that, by Bourgain’s result [5] and our assumptions on the space X , the set Λ is non-empty.

Let also

Λ1 = {N ∈ [N] : ∃L ∈ Λ ∃s ∈ [N]
<N such that N 4 L = s}.

Clearly Λ1 is 60
2 too. Observe that both Lf and Λ1 are hereditary and invariant under finite changes. Moreover the set

Lf ∪ Λ1 is cofinal. This is essentially a consequence of Rosenthal’s dichotomy (see, for instance, [12]). It follows that
the set A = [N] \ (Lf ∪ Λ1) is 61

1 and Ramsey-null.
We claim that A is the desired set. Assume not, i.e. there exists a Borel set B ⊇ A such that the difference B \ A is

Ramsey-null. We set C = [N] \ (B ∪ Λ1). Then C ⊆ Lf is Borel and moreover Lf \ C is Ramsey-null. It follows that
for every x∗∗

∈ X∗∗

B1
there exists L ∈ C such that x∗∗

= xL . As C is Borel, by Theorem 9 we have that

sup{α(x∗∗) : x∗∗
∈ X∗∗

B1
} = sup{α(xL) : L ∈ C} < ω1

which contradicts the fact that X is α-universal. The proof is completed. �

Remark 4. (1) An example as in Proposition 14 can also be given using the convergence rank γ studied by A.S.
Kechris and A. Louveau [10]. As the reasoning is the same, we shall briefly describe the argument. Let ( fn)n be a
sequence of continuous function on 2N with ‖ fn‖∞ ≤ 1 for all n ∈ N and such that the set { fn : n ∈ N} is norm dense
in the ball of C(2N). As in Proposition 14, consider the sets Lf, Λ1 and A = [N] \ (Lf ∪ Λ1). Then the set A is 61

1
and Ramsey-null. That A cannot be covered by a Borel set B such that the difference B \ A is Ramsey-null follows
essentially by the following facts.
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(F1) The map (gn)n 7→ γ
(
(gn)n

)
is a 51

1-rank on the set CN = {(gn)n ∈ C(2N)N : (gn)n is pointwise convergent}
(see [9], page 279). Hence the map

Lf 3 L = {l0 < l1 < · · ·} 7→ γ
(
( fln )n

)
is a 51

1-rank on Lf.
(F2) For every ∆ ∈ ∆0

2, there exists L ∈ Lf such that the sequence ( fn)n∈L is pointwise convergent to χ∆. By
Proposition 1 in [10], we get that α(χ∆) ≤ γ

(
( fn)n∈L

)
. It follows that

sup{γ
(
( fn)n∈L

)
: L ∈ Lf} ≥ sup{α(χ∆) : ∆ ∈ ∆0

2} = ω1.

(2) For the important special case of a separable Rosenthal compact K defined on a compact metrizable space X and
having a dense set of continuous functions, Theorem 12 has originally been proved by J. Bourgain [5]. We should
point out that in this case one does not need Corollary 3 in order to carry out the proof. Let us briefly explain how this
can be done. So assume that X is compact metrizable and f = ( fn)n is a sequence of continuous functions dense in
K. Fix a, b ∈ Q with a < b and let An = [ fn ≤ a] and Bn = [ fn ≥ b]. For a given M ∈ [N] let as usual

lim inf
n∈M

An =

⋃
n

⋂
k≥n,k∈M

Ak

and similarly for lim infn∈M Bn . Observe the following.

(O1) For every M ∈ [N] the sets lim infn∈M An and lim infn∈M Bn are both 60
2.

(O2) If L ,M ∈ [N] are such that L ⊆ M , then lim infn∈M An ⊆ lim infn∈L An and similarly for Bn .
(O3) If L ∈ Lf, then [ fL < a] ⊆ lim infn∈L An ⊆ [ fL ≤ a] and respectively [ fL > b] ⊆ lim infn∈L Bn ⊆ [ fL ≥ b].

Define D : [N] × K (X) → K (X) by

D(M, K ) = K ∩ lim inf
n∈M

An ∩ K ∩ lim inf
n∈M

Bn .

By (O1) and using the same arguments as in the proof of Theorem 9, we can easily verify that D is Borel. As
Lf is cofinal, by (O2) and (O3) we can also easily verify that ΩD = [N] × K (X). So by boundedness we get
sup{|K |DM : (M, K ) ∈ [N] × K (X)} < ω1. Now using (O3) again, we finally get that sup{α( f, a, b) : f ∈ K} < ω1,
as desired.

5. On the descriptive set-theoretic properties of Lf

In this section we will show that certain topological properties of a separable Rosenthal compact K imply the
Borelness of the set Lf. To this end, we recall that K is said to be a pre-metric compactum of degree at most two if
there exists a countable subset D of X such that at most two functions in K agree on D (see [25]). Let us consider the
following subclass.

Defintion 15. We will say that K is a pre-metric compactum of degree exactly two, if there exist a countable subset
D of X and a countable subset D of K such that at most two functions in K coincide on D and moreover for every
f ∈ K \D there exists g ∈ K with g 6= f and such that g coincides with f on D.

An important example of such a compact is the split interval (but it is not the only important one — see Remark 5
below). Under the above terminology we have the following.

Theorem 16. Let X be a Polish space andK a separable Rosenthal compact on X. IfK is pre-metric of degree exactly
two, then for every dense sequence f = ( fn)n in K the set Lf is Borel.

Proof. Let f = ( fn)n be a dense sequence in K and C be the set of codes of ( fn)n . Let also D ⊆ X countable and
D ⊆ K countable verifying that K is pre-metric of degree exactly two.

CLAIM. There exists D′
⊆ K countable with D ⊆ D′ and such that for every c ∈ C with fc ∈ K \ D′ there exists

c′
∈ C such that fc′ 6= fc and fc′ coincides with fc on D.
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Proof of the claim. Let c ∈ C be such that fc ∈ K \D. Let g be the (unique) function in K with g 6= fc and such that
g coincides with fc on D. If there does not exist c′

∈ C with g = fc′ , then g is an isolated point of K. We set

D′
= D ∪ { f ∈ K : ∃g ∈ K isolated such that f (x) = g(x) ∀x ∈ D}.

As the isolated points of K are countable and K is pre-metric of degree at most two, we get that D′ is countable.
Clearly D′ is as desired. ♦

Let D′ be the set obtained above and put

LD′ =

⋃
f ∈D′

Lf, f =

⋃
f ∈D′

{L ∈ [N] : ( fn)n∈L is pointwise convergent to f }.

As every point in K is Gδ , we see that LD′ is Borel (actually it is 60
4). Consider the following equivalence relation ∼

on C , defined by

c1 ∼ c2 ⇔ ∀x ∈ D fc1(x) = fc2(x).

By Lemma 4, the equivalence relation ∼ is Borel. Consider now the relation P on C × C × K (X)× X defined by

(c1, c2, K , x) ∈ P ⇔ (c1 ∼ c2) ∧ (x ∈ K ) ∧ (| fc1(x)− fc2(x)| > 0).

Again P is Borel. Moreover notice that for every c1, c2 ∈ C the function x 7→ | fc1(x) − fc2(x)| is Baire-1, and so,
for every (c1, c2, K ) ∈ C × C × K (X) the section P(c1,c2,K ) = {x ∈ X : (c1, c2, K , x) ∈ P} of P is Kσ . By Theorem
35.46 in [9], the set S ⊆ C × C × K (X) defined by

(c1, c2, K ) ∈ S ⇔ ∃x (c1, c2, K , x) ∈ P

is Borel and there exists a Borel map φ : S → X such that for every (c1, c2, K ) ∈ S we have(
c1, c2, K , φ(c1, c2, K )

)
∈ P . By the above claim, we have that for every c ∈ C \ LD′ there exist c′

∈ C and
K ∈ K (X) such that (c, c′, K ) ∈ S. Moreover, observe that the set D ∪

{
φ(c, c′, K )

}
determines the neighborhood

basis of fc. The crucial fact is that this can be done in a Borel way.
Now we claim that

L ∈ Lf ⇔ (L ∈ LD′) ∨

[
(∀x ∈ D

(
fn(x)

)
n∈L converges) ∧{

∃s ∈ S with s = (c1, c2, K ) such that

[∀x ∈ D fc1(x) = lim
n∈L

fn(x)] ∧

[
(

fn(φ(s))
)

n∈L converges] ∧

[ fc1(φ(s)) = lim
n∈L

fn(φ(s))]
}]
.

Grating this, the proof is completed as the above expression gives a 61
1 definition of Lf. As Lf is also 51

1, this implies
that Lf is Borel, as desired.

It remains to prove the above equivalence. First assume that L ∈ Lf. We need to show that L satisfies the expression
on the right. If L ∈ LD′ this is clearly true. If L /∈ LD′ , then pick a code c ∈ C \ LD′ such that fc = fL . By the
above claim and the remarks of the previous paragraph we can easily verify that again L satisfies the expression
on the right. Conversely, let L fulfill the right side of the equivalence. If L ∈ LD′ we are done. If not, then by the
Bourgain–Fremlin–Talagrand theorem, it suffices to show that all convergent subsequences of ( fn)n∈L have the same
limit. The first two conjuncts enclosed in the square brackets on the right side of the equivalence guarantee that each
such convergent subsequence of ( fn)n∈L converges either to fc1 or to fc2 . The last two conjuncts guarantee that it is
not fc2 , so it is always fc1 . Thus L ∈ Lf and the proof is completed. �

Remark 5. (1) Let K be a pre-metric compactum of degree at most two and let D ⊆ X countable such that at most
two functions in K coincide on D. Notice that the set C of codes of K is naturally divided into two parts, namely

C2 = {c ∈ C : ∃c′
∈ C with fc 6= fc′ and fc(x) = fc′(x) ∀x ∈ D}
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and its complement C1 = C \ C2. The assumption that K is pre-metric of degree exactly two simply reduces to the
assumption that the functions coded by C1 are at most countable. We could say that C1 is the set of metrizable codes,
as it is immediate that the set { fc : c ∈ C1} is a metrizable subspace of K. It is easy to check, using the set S defined
in the proof of Theorem 16, that C2 is always 61

1. As we shall see, it might happen that C1 is 51
1-true. However, if

the set C1 of metrizable codes is Borel, or equivalently if C2 is Borel, then the set Lf is Borel too. Indeed, let Φ be
the second part of the disjunction of the expression in the proof of Theorem 16. Then it is easy to see, using the same
arguments as in the proof of Theorem 16, that

L ∈ Lf ⇔ (L ∈ Φ) ∨

(
∃c ∈ C1 ∀x ∈ D fc(x) = lim

n∈L
fn(x)

)
.

Clearly the above formula gives a 61
1 definition of Lf, provided that C1 is Borel.

(2) Besides the split interval, there exists another important example of a separable Rosenthal compact which is pre-
metric of degree exactly two. This is the separable companion of the Alexandroff duplicate of the Cantor set D(2N)
(see [25] for more details). An interesting feature of this compact is that it is not hereditarily separable.

Example 1. We proceed to give examples of pre-metric compacta of degree at most two for which Theorem 16 is not
valid. Let us recall first the split Cantor set S(2N), which is simply the combinatorial analogue of the split interval. In
what follows by 6 we shall denote the lexicographical ordering on 2N and by < its strict part. For every x ∈ 2N let
f +
x = χ{y:x6y} and f −

x = χ{y:x<y}. The split Cantor set S(2N) is { f +
x : x ∈ 2N} ∪ { f −

x : x ∈ 2N}. Clearly S(2N) is
a hereditarily separable Rosenthal compact and it is a fundamental example of a pre-metric compactum of degree at
most two (see [25]). There is a canonical dense sequence in S(2N) defined as follows. Fix a bijection h : 2<N → N
such that h(s) < h(t) if |s| < |t | and enumerate the nodes of Cantor tree as (sn)n according to h. For every s ∈ 2<N

let x0
s = sa0∞

∈ 2N and x1
s = sa1∞

∈ 2N. For every n ∈ N let f4n = f +

x0
sn

, f4n+1 = f +

x1
sn

, f4n+2 = f −

x0
sn

and

f4n+3 = f −

x1
sn

. The sequence ( fn)n∈N is a dense sequence in S(2N).

Let A be a subset of 2N such that A does not contain the eventually constant sequences. To every such A one
associates naturally a subset of RA, which we will denote by S(A), by simply restricting every function of S(2N) on
A. Clearly if A is 61

1, then S(A) is again a hereditarily separable Rosenthal compact. Notice however that if 2N \ A
is uncountable, then S(A) is not of degree exactly two. The dense sequence ( fn)n of S(2N) still remains a dense
sequence in S(A). Viewing ( fn)n as a dense sequence in S(A), we let

LA = {L ∈ [N] : ( fn|A)n∈L is pointwise convergent on A}.

Under the above notations we have the following.

Proposition 17. Let A ⊆ 2N be 61
1 and such that A does not contain the eventually constant sequences. Then 2N \ A

is Wadge reducible to LA. In particular, if A is 61
1-complete, then LA is 51

1-complete. Moreover, if A is Borel, then
LA is Borel too.

Proof. Consider the map Φ : 2N → 22<N , defined by

Φ(x) =
{

x(0)+ 1, x(0)a(x(1)+ 1), x(0)ax(1)a(x(2)+ 1), . . .
}

where the above addition is taken modulo 2. Clearly Φ is continuous. Let h : 2<N → N be the fixed enumeration of
the nodes of the Cantor tree. For every x ∈ 2N we put Lx = {h(t) : t ∈ Φ(x)} ∈ [N] and also for every t ∈ Φ(x)
let x0

t = ta0∞
∈ 2N. Notice that (tn)n∈Lx is the enumeration of Φ(x) according to h and moreover that x is the limit

of the sequence (x0
tn )n∈Lx . However, as one easily observes, if x is not eventually constant, then there exist infinitely

many n ∈ Lx such that x0
tn < x and infinitely many n ∈ Lx such that x < x0

tn .

Now define H : 2N → [N] by

H(x) = {4h(t) : t ∈ Φ(x)} = {4n : n ∈ Lx }.

Clearly H is continuous. We claim that

x /∈ A ⇔ H(x) ∈ LA.
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Indeed, first assume that x /∈ A. As we have remarked before, we have that x = limn∈Lx x0
tn . Notice that the sequence

( fn)n∈H(x) is simply the sequence
(

f +

x0
t

)
t∈Φ(x). Observe that for every y 6= x the sequence

(
fn(y)

)
n∈H(x) converges

to 0 if y < x and to 1 if x < y. As x /∈ A, this implies that ( fn)n∈H(x) is pointwise convergent, and so H(x) ∈ LA.
Conversely, assume that x ∈ A. As A does not contain the eventually constant sequences, by the remarks after
the definition of Φ, we get that there exist infinitely many n ∈ H(x) such that fn(x) = 0 and infinitely many
n ∈ H(x) such that fn(x) = 1. Hence the sequence

(
fn(x)

)
n∈H(x) does not converge, and as x ∈ A, we conclude that

H(x) /∈ LA. As H is continuous, this completes the proof that 2N \ A is Wadge reducible to LA. Finally, the fact that
if A is Borel, then LA is Borel too follows by straightforward descriptive set-theoretic computation and we prefer not
to bother the reader with it. �

Remark 6. Besides the fact that Theorem 16 cannot be lifted to all pre-metric compacta of degree at most two,
Proposition 17 has another consequence. Namely, that we cannot bound the Borel complexity of Lf for a dense
sequence f = ( fn)n in K. This is in contrast with the situation with Lf, f for some f ∈ K, which when it is Borel
(equivalently when f is a Gδ point), it is always 50

3.

Concerning the class of not first countable separable Rosenthal compacta we have the following.

Proposition 18. Let K be a separable Rosenthal compact. If there exists a non-Gδ point f in K, then for every dense
sequence f = ( fn)n in K the set Lf is 51

1-complete.

The proof of Proposition 18 is essentially based on a result of A. Krawczyk from [11]. To state it, we need to recall
some pieces of notation and few definitions. For every a, b ∈ [N] we write a ⊆

∗ b if a \ b is finite, while we write
a ⊥ b if the set a ∩ b is finite. If A is a subset of [N], we let A⊥

= {b : b ⊥ a ∀a ∈ A} and A∗
= {N \ a : a ∈ A}.

For every A,B ⊆ [N] we say that A is countably B-generated if there exists {bn : n ∈ N} ⊆ B such that for every
a ∈ A there exists k ∈ N with a ⊆ b0 ∪ · · · ∪ bk . An ideal I on N is said to be bi-sequential if for every p ∈ βN with
I ⊆ p∗, I is countably p∗-generated. Finally, for every t ∈ N<N let t̂ = {s : t @ s}. We will use the following result
of Krawczyk (see [11], Lemma 2).

Proposition 19. Let I be 61
1, bi-sequential and not countably I-generated ideal on N. Then there exists a 1–1 map

ψ : N<N → N such that, setting J = {ψ−1(a) : a ∈ I}, the following hold.

(P1) For every σ ∈ NN, {σ |n : n ∈ N} ∈ J .
(P2) For every b ∈ J and every n ∈ N, there exist t0, . . . , tk ∈ Nn with b ⊆

∗ t̂0 ∪ · · · ∪ t̂k .

We continue with the proof of Proposition 18.

Proof of Proposition 18. Let f = ( fn)n be a dense sequence in K and let f ∈ K be a non-Gδ point. Consider the
ideal

I = {L ∈ [N] : f /∈ { fn}
p
n∈L}.

In [11], page 1099, it is shown that I is a 61
1, bi-sequential ideal on N which is not countably I-generated (the bi-

sequentiality of I can be derived either by a result of Pol [20], or by the non-effective version of Debs’ theorem [3]).
Also, by the Bourgain–Fremlin–Talagrand theorem, we have that I⊥

= Lf, f . We apply Proposition 19 and we get a
1–1 map ψ : N<N → N satisfying (P1) and (P2).

CLAIM. For every T ∈ WF infinite, T ∈ J ⊥.

Proof of the claim. Assume not. Then there exist T ∈ WF infinite and b ∈ J with b ⊆ T . For every s ∈ T let
Ts = {t ∈ T : s v t}. We let S = {s ∈ T : Ts ∩ b is infinite}. Then S is downwards closed subtree of T . Moreover,
by (P2) in Proposition 19, we see that S is finitely splitting. Finally, notice that for every s ∈ S there exists n ∈ N
with san ∈ S. Indeed, let s ∈ S and put bs = Ts ∩ b ∈ J . Let Ns = {n ∈ N : san ∈ T } and observe that
bs \ {s} =

⋃
n∈Ns

(Tsan ∩ bs). By (P2) in Proposition 19 again, we get that there exists n0 ∈ Ns with Tsan0
∩ bs

infinite. Thus san0 ∈ S. It follows that S is a finitely splitting, infinite tree. By König’s Lemma, we see that S /∈ WF.
But then T /∈ WF, a contradiction. The claim is proved. ♦
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Fix T0 ∈ WF infinite. The map Ψ : Tr → [N] defined by Ψ(T ) = {ψ(t) : t ∈ T ∪ T0} is clearly continuous. If
T ∈ WF, then T ∪ T0 ∈ WF. By the above claim, we see that T ∪ T0 ∈ J ⊥, and so, Ψ(T ) ∈ I⊥

= Lf, f ⊆ Lf. On
the other hand, if T /∈ WF, then by (P1) in Proposition 19 and the above claim, we get that there exist L ∈ Lf \ Lf, f
and M ∈ Lf, f with L ∪ M ⊆ Ψ(T ). Hence Ψ(T ) /∈ Lf. It follows that WF is Wadge reducible to Lf and the proof is
completed. �

The last part of this section is devoted to the construction of canonical 51
1-ranks on the sets Lf and Lf, f . So let X

be a Polish space, f = ( fn)n a sequence relatively compact in B1(X) and f an accumulation point of ( fn)n . As the
sets Lf and Lf, f do not depend on the topology on X , we may assume, by enlarging the topology of X if necessary,
that the functions ( fn)n and the function f are continuous (see [9]). We need to deal with decreasing sequences
of closed subsets of X à la Cantor. We fix a countable dense subset D of X . Let (Bn)n be an enumeration of all
closed balls in X (taken with respect to some compatible complete metric) with centers in D and rational radii. If
X happens to be locally compact, we will assume that every ball Bn is compact. We will say that a finite sequence
w = (l0, . . . , lk) ∈ N<N is acceptable if

(i) Bl0 ⊇ Bl1 ⊇ · · · ⊇ Blk , and
(ii) diam(Bli ) ≤

1
i+1 for all i = 0, . . . , k.

By convention (∅) is acceptable. Notice that if w1 @ w2 and w2 is acceptable, then w1 is acceptable too. We will also
need the following notations.

Notation 1. By Fin we denote the set of all finite subsets of N. For every F,G ∈ Fin we write F < G if
max{n : n ∈ F} < min{n : n ∈ G}. For every L ∈ [N], by Fin(L) we denote the set of all finite subsets of L .

Finally, by [Fin(L)]<N we denote the set of all finite sequences t = (F0, . . . , Fk) ∈
(
Fin(L)

)<N which are increasing,
i.e. F0 < F1 < · · · < Fk .

The construction of the 51
1-ranks on Lf and Lf, f will be done by finding appropriate reductions of the sets in question

to well-founded trees. In particular, we shall construct the following.

(C1) A continuous map [N] 3 L 7→ TL ∈ Tr(N × Fin × N), and
(C2) a continuous map [N] 3 L 7→ SL ∈ Tr(N × N)
such that

(C3) L ∈ Lf if and only if TL ∈ WF(N × Fin × N), and
(C4) L ∈ Lf, f if and only if SL ∈ WF(N × N).

It follows, by (C1)–(C4) above, that the maps L → o(TL) and L → o(SL) are 51
1-ranks on Lf and Lf, f .

1. The reduction of Lf to WF(N × Fin × N). Let d ∈ N. For every L ∈ [N] we associate a tree T d
L ∈ Tr(N × Fin × N)

as follows. We let

T d
L =

{
(s, t, w) : ∃k with |s| = |t | = |w| = k,

s = (n0 < · · · < nk−1) ∈ [L]
<N,

t = (F0 < · · · < Fk−1) ∈ [Fin(L)]<N,

w = (l0, . . . , lk−1) ∈ N<N is acceptable and

∀0 ≤ i ≤ k − 1 ∀z ∈ Bli there exists mi ∈ Fi with

| fni (z)− fmi (z)| >
1

d + 1

}
.

Next we glue the sequence of trees (T d
L )d∈N in a natural way and we build a tree TL ∈ Tr(N × Fin × N) defined by

the rule

(s, t, w) ∈ TL ⇔ ∃d ∃(s′, t ′, w′) such that (s′, t ′, w′) ∈ T d
L and

s = das′, t = {d}
at ′, w = daw′.

It is clear that the map [N] 3 L 7→ TL ∈ Tr(N × Fin × N) is continuous. Moreover the following holds.
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Lemma 20. Let L ∈ [N]. Then L ∈ Lf if and only if TL ∈ WF(N × Fin × N).

Proof. First, notice that if L /∈ Lf, then there exist L1, L2 ∈ [L] such that L1 ∩ L2 = ∅, L1, L2 ∈ Lf and fL1 6= fL2 ,
where as usual fL1 and fL2 are the pointwise limits of the sequences ( fn)n∈L1 and ( fn)n∈L2 respectively. Pick
x ∈ X and d ∈ N such that | fL1(x) − fL2(x)| >

1
d+1 . Clearly we may assume that | fn(x) − fm(x)| > 1

d+1 for
every n ∈ L1 and every m ∈ L2. Let L1 = {n0 < n1 < · · ·} and L2 = {m0 < m1 < · · ·} be the increasing
enumerations of L1 and L2. Using the continuity of the functions ( fn)n , we find w = (l0, . . . , lk, . . .) ∈ NN such
that w|k is acceptable for all k ∈ N,

⋂
k Blk = {x} and | fnk (z) − fmk (z)| >

1
d+1 for all k ∈ N and z ∈ Blk . Then(

(n0, . . . , nk), ({m0}, . . . , {mk}), w|k
)

∈ T d
L for all k ∈ N, which shows that TL /∈ WF(N × Fin × N).

Conversely assume that TL is not well-founded. There exists d ∈ N such that T d
L is not well-founded too. Let(

(sk, tk, wk)
)

k be an infinite branch of T d
L . Let N =

⋃
k sk = {n0 < · · · < nk < · · ·} ∈ [L], F =

⋃
k tk =

(F0 < · · · < Fk < · · ·) ∈ Fin(L)N and w =
⋃

k wk = (l0, . . . , lk, . . .) ∈ NN. By the definition of T d
L , we get that⋂

k Blk = {x} ∈ X and that for every k ∈ N there exists mk ∈ Fk ⊆ L with | fnk (x) − fmk (x)| >
1

d+1 . As Fi < F j
for all i < j , we see that mi < m j if i < j . It follows that M = {m0 < · · · < mk < · · ·} ∈ [L]. Thus, the sequence(

fn(x)
)

n∈L is not Cauchy and so L /∈ Lf, as desired. �

By Lemma 20, the reduction of Lf to WF(N × Fin × N) is constructed. Notice that for every L ∈ Lf and every
d1 ≤ d2 we have o(T d1

L ) ≤ o(T d2
L ) and moreover o(TL) = sup{o(T d

L ) : d ∈ N} + 1.

Remark 7. We should point out that the reason why in the definition of T d
L the node t is a finite sequence of finite sets

rather than natural numbers, is to get the estimate in Proposition 22 below. Having natural numbers instead of finite
sets would also lead to a canonical rank.

2. The reduction of Lf, f to WF(N × N). The reduction is similar to that of the previous step, and so, we shall indicate
only the necessary changes. Let d ∈ N. As before, for every L ∈ [N] we associate a tree Sd

L ∈ Tr(N × N) as follows.
We let

Sd
L =

{
(s, w) : ∃k ∈ N with |s| = |w| = k,

s = (n0 < · · · < nk−1) ∈ [L]
<N,

w = (l0, . . . , lk−1) ∈ N<N is acceptable and

∀0 ≤ i ≤ k − 1 ∀z ∈ Bli we have | fni (z)− f (z)| >
1

d + 1

}
.

Next we glue the sequence of trees (Sd
L)d∈N as we did with the sequence (T d

L )d∈N and we build a tree SL ∈ Tr(N×N)
defined by the rule

(s, w) ∈ SL ⇔ ∃d ∃(s′, w′) such that (s′, w′) ∈ T d
L and

s = das′, w = daw′.

Again it is easy to check that the map [N] 3 L 7→ SL ∈ Tr(N × N) is continuous. Moreover we have the following
analogue of Lemma 20. The proof is identical and is left to the reader.

Lemma 21. Let L ∈ [N]. Then L ∈ Lf, f if and only if SL ∈ WF(N × N).

This gives us the reduction of Lf, f to WF(N × N). As before we have o(SL) = sup{o(Sd
L) : d ∈ N} + 1 for every

L ∈ Lf, f .
We proceed now to discuss the question whether for a given L ∈ Lf, f we can bound the order of the tree SL by the

order of TL . The following example shows that this is not in general possible.

Example 2. Let A(2N) = {δσ : σ ∈ 2N} ∪ {0} be the one point compactification of 2N. This is not a separable
Rosenthal compact, but it can be supplemented to one in a standard way (see [18,13,25]). Specifically, let (sn)n be the
enumeration of the Cantor tree 2<N as in Example 1. For every n ∈ N, let fn = χVsn

, where Vsn = {σ ∈ 2N : sn @ σ }.
Then A(2N) ∪ { fn}n is a separable Rosenthal compact. Now let A be a 61

1 non-Borel subset of 2N. Following [19]
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(see also [13]), let KA be the separable Rosenthal compact obtained by restricting every function in A(2N)∪ { fn}n on
A. The sequence fA = ( fn|A)n is a countable dense subset of KA consisting of continuous functions and 0 ∈ KA is a
non-Gδ point (and obviously continuous). Consider the sets

LA
f = {L ∈ [N] : ( fn|A)n∈L is pointwise convergent on A}

and

LA
f,0 = {L ∈ [N] : ( fn|A)n∈L is pointwise convergent to 0 on A}.

Let φ be a 51
1-rank on LA

f and ψ a 51
1-rank on LA

f,0. We claim that there does not exist a map Φ : ω1 → ω1 such that

ψ(L) ≤ Φ
(
φ(L)

)
for all L ∈ LA

f,0. Assume not. Let

R = {L ∈ [N] : ∃σ ∈ 2N with sn @ σ ∀n ∈ L}.

Then R is a closed subset of LA
f . For every L ∈ R, let σL =

⋃
n∈L sn ∈ 2N. The map R 3 L 7→ σL ∈ 2N is

clearly continuous. Observe that for every L ∈ R we have that L ∈ LA
f,0 if and only if σL /∈ A. As R is a Borel

subset of LA
f , by boundedness we get that sup{φ(L) : L ∈ R} = ξ < ω1. Let ζ = sup{Φ(λ) : λ ≤ ξ}. The set

B = R ∩ {L ∈ LA
f,0 : ψ(L) ≤ ζ } is Borel and B = R ∩ LA

f,0. Hence, the set ΣB = {σL : L ∈ B} is an analytic subset

of 2N \ A. As 2N \ A is 51
1-true, there exists σ0 ∈ 2N \ A with σ0 /∈ ΣB . Pick L ∈ R with σL = σ0. Then L ∈ B yet

σL /∈ ΣB , a contradiction.

Although we cannot, in general, bound the order of the tree SL by that of TL , the following proposition shows that
this is possible for an important special case.

Proposition 22. Let X be locally compact, K a separable Rosenthal compact on X, f = ( fn)n a dense sequence in K
consisting of continuous functions and f ∈ K. If f is continuous, then o(SL) ≤ o(TL) for all L ∈ Lf, f .

In particular, there exists a 51
1-rank φ on Lf and a 51

1-rank ψ on Lf, f with ψ(L) ≤ φ(L) for all L ∈ Lf, f .

Proof. We will show that for every d ∈ N we have o(Sd
L) ≤ o(T d

L ) for every L ∈ Lf, f . This clearly completes the
proof. So fix d ∈ N and L ∈ Lf, f . We shall construct a monotone map Φ : Sd

L → [Fin(L)]<N such that for every
(s, w) ∈ Sd

L the following hold.

(i) |(s, w)| = |Φ
(
(s, w)

)
|.

(ii) If s = (n0 < · · · < nk), w = (l0, . . . , lk) and Φ
(
(s, w)

)
= (F0 < · · · < Fk), then for every i ∈ {0, . . . , k} and

every z ∈ Bli there exists mi ∈ Fi with | fni (z)− fmi (z)| >
1

d+1 .

Assuming that Φ has been constructed, let M : Sd
L → T d

L be defined by

M
(
(s, w)

)
=

(
s,Φ

(
(s, w)

)
, w

)
.

Then it is easy to see that M is a well-defined monotone map, and so, o(Sd
L) ≤ o(T d

L ) as desired.
We proceed to the construction of Φ. It will be constructed by recursion on the length of (s, w). We set

Φ
(
(∅,∅)

)
= (∅). Let k ∈ N and assume that Φ

(
(s, w)

)
has been defined for every (s, w) ∈ Sd

L with |(s, w)| ≤ k.
Let (s′, w′) = (sank, w

alk) ∈ Sd
L with |s′

| = |w′
| = k +1. By the definition of Sd

L , we have that | fnk (z)− f (z)| > 1
d

for every z ∈ Blk . Put p = max
{
n : n ∈ F and F ∈ Φ

(
(s, w)

)}
∈ N. For every z ∈ Blk we may select mz ∈ L with

mz > p and such that | fnk (z)− fmz (z)| >
1

d+1 . As the functions ( fn)n are continuous, we pick an open neighborhood

Uz of z such that | fnk (y) − fmz (y)| >
1

d+1 for all y ∈ Uz . By the compactness of Blk , there exists z0, . . . , z jk ∈ Blk
such that Uz0 ∪ · · · ∪ Uz jk

⊇ Blk . Let Fk = {mzi : i = 0, . . . , jk} ∈ Fin(L) and notice that F ≤ p < Fk for every
F ∈ Φ

(
(s, w)

)
. We set

Φ
(
(s′, w′)

)
= Φ

(
(s, w)

)aFk ∈ [Fin(L)]<N.

It is easy to check that Φ
(
(s′, w′)

)
satisfies (i) and (ii) above. The proof is completed. �
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