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In this paper, we shall study the uniqueness problems of meromorphic functions sharing a
small function. Our results improve or generalize many previous results on value sharing
of meromorphic functions.
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1. Introduction and main results

Let C denote the complex plane and f (z) be a non-constant meromorphic function on C. We assume the reader is
familiar with the standard notion used in the Nevanlinna value distribution theory such as T (r, f ),m(r, f ),N(r, f ), and
S(r, f ) denotes any quantity that satisfies the condition S(r, f ) = o(T (r, f )) as r → ∞ outside of a possible exceptional
set of finite linear measure. A meromorphic function a(z) is called a small function with respect to f (z), provided that
T (r, a) = S(r, f ).

Let f (z) and g(z) be two non-constant meromorphic functions. Let a be a small function with respect to f and g . We
say that f (z), g(z) share a(z) CM (counting multiplicities) if f (z) − a(z), g(z) − a(z) have the same zeros with the same
multiplicities and we say that f (z), g(z) share a(z) IM (ignoring multiplicities) if we do not consider the multiplicities.
Nk(r, f )denotes the truncated counting function boundedby k.Moreover,GCD(n1, n2, . . . , nk)denotes the greatest common
divisor of positive integers n1, n2, . . . , nk.

We say that a finite value z0 is called a fixed point of f if f (z0) = z0 or z0 is a zero of f (z) − z.
For the sake of simplicity, we also use the notionm∗

:= χµm, where

χµ =


0, µ = 0,
1, µ ≠ 0.

The following theorem in the value distribution theory is well-known [1,2].

Theorem A. Let f (z) be a transcendental meromorphic function, n ≥ 1 a positive integer. Then f nf ′
= 1 has infinitely many

solutions.
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Fang and Hua [3], Yang and Hua [4] obtained a unicity theorem respectively corresponding to Theorem A.

Theorem B. Let f and g be two non-constant entire (meromorphic) functions and n ≥ 6 (n ≥ 11) be a positive integer. If
f n(z)f ′(z) and gn(z)g ′(z) share 1 CM, then either f (z) = c1ecz, g(z) = c2e−cz , where c1, c2 and c are three constants satisfying
4(c1c2)n+1c2 = −1, or f (z) ≡ tg(z) for a constant t such that tn+1

= 1.

Note that f n(z)f ′(z) =
1

n+1 (f
n+1(z))′, Fang [5] considered the case of the kth derivative and proved

Theorem C. Let f and g be two non-constant entire functions, and let n, k be two positive integers with n > 2k + 4. If
(f n(z))(k) and (gn(z))(k) share 1 CM, then either f (z) = c1ecz, g(z) = c2e−cz , where c1, c2 and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1, or f (z) ≡ tg(z) for a constant t such that tn = 1.

Theorem D. Let f and g be two non-constant entire functions, and let n, k be two positive integers with n > 2k + 8. If
(f n(z)(f (z) − 1))(k) and (gn(z)(g(z) − 1))(k) share 1 CM, then f (z) ≡ g(z).

Zhang and Lin [6,7] generalized Theorems C and D as follows.

Theorem E. Let f and g be two non-constant entire functions, and let n,mand k be three positive integers with n > 2k+m∗
+4,

and λ, µ be constants such that |λ| + |µ| ≠ 0. If (f n(z)(µf m(z) + λ))(k) and (gn(z)(µgm(z) + λ))(k) share 1 CM, then

(i) when λ µ ≠ 0, f d ≡ gd, d = GCD(m, n); especially, when d = 1, f ≡ g.
(ii) when λ µ = 0, either f (z) ≡ tg(z), where t is a constant satisfying tn+m∗

= 1, or f (z) = c1ecz, g(z) = c2e−cz , where c1, c2
and c are three constants satisfying (−1)kλ2(c1c2)n+m∗

[(n + m∗)c]2k = 1 or (−1)kµ2(c1c2)n+m∗

[(n + m∗)c]2k = 1.

Theorem F. Let f and g be two non-constant entire functions, and let n,m, k be three positive integers with n > 2k + m + 4. If
(f n(z)(f (z) − 1)m)(k) and (gn(z)(g(z) − 1)m)(k) share 1 CM, then either f (z) ≡ g(z), or f and g satisfy the algebraic equation
R(f , g) ≡ 0, where R(ω1, ω2) = ωn

1(ω1 − 1)m − ωn
2(ω2 − 1)m.

Moreover, Zhang et al. [8] considered some more general differential polynomials. They obtained

Theorem G. Let f and g be two nonconstant entire functions. Let n, k, and m be three positive integers with n ≥ 3m + 2k + 5
and let P(w) = amwm

+ am−1w
m−1

+· · ·+ a1w + a0 or P(w) ≡ c0, where a0 ≠ 0, a1, . . . , am−1, am ≠ 0, c0 ≠ 0 are complex
constants. If [f nP(f )](k) and [gnP(g)](k) share 1 CM, then

(i) when P(w) = amwm
+ am−1w

m−1
+ · · · + a1w + a0, either f (z) ≡ tg(z) for a constant t such that td = 1, where

d = GCD(n + m, . . . , n + m − i, . . . , n), am−i ≠ 0 for some i = 0, 1, . . . ,m, or f and g satisfy the algebraic equation
R(f , g) ≡ 0, where R(ω1, ω2) = ωn

1(amωm
1 + am−1ω

m−1
1 + · · · + a0) − ωn

2(amωm
2 + am−1ω

m−1
2 + · · · + a0);

(ii) when P(w) ≡ c0, either f (z) = c1/ n
√
c0ecz, g(z) = c2/ n

√
c0e−cz , where c1, c2, and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = 1, or f ≡ tg for a constant t such that tn = 1.

Theorem H. Let f and g be two nonconstant meromorphic functions. Let n and m be two positive integers with n > max{m +

10, 3m + 3}, and let P(w) = amwm
+ am−1w

m−1
+ · · · + a1w + a0, where a0 ≠ 0, a1, . . . , am−1, am ≠ 0 are

complex constants. If f nP(f )f ′ and gnP(g)g ′ share 1 CM, then either f ≡ tg for a constant t such that td = 1, where
d = GCD(n + m + 1, . . . , n + m + 1 − i, . . . , n + 1), am−i ≠ 0 for some i = 0, 1, . . . ,m, or f and g satisfy the algebraic

equation R(f , g) ≡ 0, where R(ω1, ω2) = ωn+1
1


amωm

1
n+m+1 +

am−1ω
m−1
1

n+m + · · · +
a0
n+1


− ωn

2


amωm

2
n+m+1 +

am−1ω
m−1
2

n+m + · · · +
a0
n+1


.

Related to Theorem A, Fang [9] proved that a meromorphic function f nf ′ has infinitely many fixed points when f is
transcendental and n is a positive integer. Then Fang and Qiu [10] obtained the following uniqueness theorem.

Theorem I. Let f and g be two non-constant entire functions and n ≥ 6 be a positive integer. If f n(z)f ′(z) and gn(z)g ′(z) share
z CM, then either f (z) = c1ecz

2
, g(z) = c2e−cz2 , where c1, c2 and c are three constants satisfying 4(c1c2)n+1c2 = −1, or

f (z) ≡ tg(z) for a constant t such that tn+1
= 1.

Lin and Yi [11] obtained:

Theorem J. Let f and g be two non-constant entire functions, and let n ≥ 7 be a positive integer. If f n(f − 1)f ′ and gn(g − 1)g ′

share z CM, then f ≡ g.

Zhang [12] extended Theorems I and J as follows.

Theorem K. Let f and g be two non-constant entire functions, and let n, k be two positive integers with n > 2k + 4. If (f n)(k)
and (gn)(k) share z CM, then either

(1) k = 1, f (z) = c1ecz
2
, g(z) = c2e−cz2 , where c1, c2 and c are three constants satisfying 4(c1c2)n(nc)2 = −1, or

(2) f (z) ≡ tg(z) for a constant t such that tn = 1.
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Theorem L. Let f and g be two non-constant entire functions, and let n, k be two positive integers with n > 2k + 6. If
(f n(f − 1))(k) and (gn(g − 1))(k) share z CM, then f ≡ g.

Regarding Theorems K and L, Xu et al. [13] considered the case of meromorphic functions. They obtained

TheoremM. Let f and g be two non-constant meromorphic functions, and let n, k be two positive integers with n > 3k + 10.
If (f n)(k) and (gn)(k) share z CM, f and g share ∞ IM, then either f (z) = c1ecz

2
, g(z) = c2e−cz2 , where c1, c2 and c are three

constants satisfying 4(c1c2)n(nc)2 = −1, or f (z) ≡ tg(z) for a constant t such that tn = 1.

Theorem N. Let f and g be two non-constant meromorphic functions satisfying Θ(∞, f ) > 2/n, and let n, k be two positive
integers with n > 3k + 12. If (f n(f − 1))(k) and (gn(g − 1))(k) share z CM, f and g share ∞ IM, then f ≡ g.

Formore results in such directions, see [14–17]. The purpose of this paper is to study the uniqueness theorem for general
differential polynomials [f nP(f )](k) and [gnP(g)](k) sharing a small function and its applications. Now we state our results.

Theorem 1.1. Let f and g be two non-constant meromorphic functions, and a(z)(≢0, ∞) be a small function with respect to f .
Let n, k, andm be three positive integers with n > 3k+m+8 and P(w) be defined as in TheoremG. If [f nP(f )](k) and [gnP(g)](k)
share a CM, then

(I) when P(w) = amwm
+ am−1w

m−1
+ · · · + a1w + a0, one of the following three cases holds:

(I1) f (z) ≡ tg(z) for a constant t such that td = 1, where d = GCD(n + m, . . . , n + m − i, . . . , n), am−i ≠ 0 for some
i = 0, 1, . . . ,m,

(I2) f and g satisfy the algebraic equation R(f , g) ≡ 0, where R(ω1, ω2) = ωn
1(amωm

1 +am−1ω
m−1
1 +· · ·+a0)−ωn

2(amωm
2 +

am−1ω
m−1
2 + · · · + a0),

(I3) [f nP(f )](k)[gnP(g)](k) = a2;
(II) when P(w) ≡ c0, one of the following two cases holds:

(II1) f ≡ tg for a constant t such that tn = 1,
(II2) c20 [f

n
]
(k)

[gn
]
(k)

= a2.

Remark 1.1. In Theorem 1.1, one cannot easily get the representation of f (z) and g(z) like in Theorems B and C from (I3) or
(II2).Wang andGao [18, Remark 3.1, Examples 3.2–3.4] gave some examples at the end of their paper to discuss the problem.

Now we give some applications of Theorem 1.1. The following theorem improves or generalizes Theorems D, F, L and N.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions, a(z)(≢0, ∞) be a small function with respect to f with
finitely many zeros and poles. Let n, k and m be three positive integers with n > 3k + m + 7, P(w) = amwm

+ am−1w
m−1

+

· · · + a1w + a0, where a0 ≠ 0, a1, . . . , am−1, am ≠ 0, are complex constants. If [f nP(f )](k) and [gnP(g)](k) share a CM, f and g
share ∞ IM, then one of the following two cases holds:

(1) f (z) ≡ tg(z) for a constant t such that td = 1, where d = GCD(n + m, . . . , n + m − i, . . . , n), am−i ≠ 0 for some
i = 0, 1, . . . ,m;

(2) f and g satisfy the algebraic equation R(f , g) ≡ 0, where R(ω1, ω2) = ωn
1(amωm

1 + am−1ω
m−1
1 + · · · + a0) − ωn

2(amωm
2 +

am−1ω
m−1
2 + · · · + a0).

Many authors have considered uniqueness theorems concerning fixed points, such as Theorems J–N and I. Here we do
further consideration and replace z by a general polynomial p(z) with deg(p) ≤ 5, we get

Theorem 1.3. Let f and g be two transcendental meromorphic functions, let p(z) be a nonzero polynomial with deg(p) = l ≤

5, n, k and m be three positive integers with n > 3k + m + 7. Let P(w) = amwm
+ am−1w

m−1
+ · · · + a1w + a0 be a nonzero

polynomial. If [f nP(f )](k) and [gnP(g)](k) share p CM, f and g share ∞ IM, then one of the following three cases holds:

(1) f (z) ≡ tg(z) for a constant t such that td = 1, where d = GCD(n + m, . . . , n + m − i, . . . , n), am−i ≠ 0 for some
i = 0, 1, . . . ,m;

(2) f and g satisfy the algebraic equation R(f , g) ≡ 0, where R(ω1, ω2) = ωn
1(amωm

1 + am−1ω
m−1
1 + · · · + a0) − ωn

2(amωm
2 +

am−1ω
m−1
2 + · · · + a0);

(3) P(z) is reduced to a nonzero monomial, namely, P(z) = aiz i ≢ 0 for some i ∈ {0, 1, . . . ,m}; if p(z) is not a constant, then
f = c1ecQ (z), g = c2e−cQ (z), where Q (z) =

 z
0 p(z) dz, c1, c2 and c are constants such that a2i (c1c2)

n+i
[(n + i)c]2 = −1,

if p(z) is a nonzero constant b, then f = c3ecz, g = c4e−cz , where c3, c4 and c are constants such that (−1)ka2i (c3c4)
n+i

[(n +

i)c]2k = b2.

Note that n > 2k + m + 4 ≥ k + 6. It is easy to obtain from Theorem 1.3 that
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Corollary 1.4. Let f and g be two transcendental entire functions, p(z) be a nonzero polynomial with deg p = l ≤ 3, n, k, and
m be three positive integers with n > 2k + m + 4, let P(w) be defined as in Theorem 1.3. If [f nP(f )](k) and [gnP(g)](k) share p
CM. Then the conclusions of Theorem 1.3 hold.

Remark 1.2. From the proof of Theorem 1.3, we can see that the computation will be very complicated when deg(p)
becomes large, so we are not sure whether Theorem 1.3 holds for the general polynomial p(z). Nevertheless, Theorem 1.3
and Corollary 1.4 improve or generalize the previous results such as Theorems B–F, K–N, I and G.

The following theorem generalizes Theorems H and J.

Theorem 1.5. Let f and g be two non-constant meromorphic functions and a(z)(≢0, ∞) be a small function of f . Let n and
m be two positive integers with n > max{m + 10, 3m + 3}, and let P(w) = amwm

+ am−1w
m−1

+ · · · + a1w + a0, where
a0 ≠ 0, a1, . . . , am−1, am ≠ 0 are complex constants. If f nP(f )f ′ and gnP(g)g ′ share a CM, then either f ≡ tg for a constant
t such that td = 1 where d = GCD(n + m + 1, . . . , n + m + 1 − i, . . . , n + 1), am−i ≠ 0 for some i ∈ {0, 1, . . . ,m},

or f and g satisfy the algebraic equation R(f , g) ≡ 0, where R(ω1, ω2) = ωn+1
1


amωm

1
n+m+1 +

am−1ω
m−1
1

n+m + · · · +
a0
n+1


−

ωn+1
2


amωm

2
n+m+1 +

am−1ω
m−1
2

n+m + · · · +
a0
n+1


.

2. Preliminary lemmas and a main proposition

Lemma 2.1 ([19]). Let f (z) be a non-constant meromorphic function and let a0(z), a1(z), . . . , an(z)(≢0) be small functions
with respect to f . Then

T (r, anf n + an−1f n−1
+ · · · + a0) = nT (r, f ) + S(r, f ).

Lemma 2.2 ([20–22]). Let f (z) be a non-constant meromorphic function. Let k be a positive integer, and let c be a nonzero finite
complex number. Then

T (r, f ) ≤ N(r, f ) + N

r,

1
f


+ N


r,

1
f (k) − c


− N


r,

1
f (k+1)


+ S(r, f )

≤ N(r, f ) + Nk+1


r,

1
f


+ N


r,

1
f (k) − c


− N0


r,

1
f (k+1)


+ S(r, f ),

where N0


r, 1

f (k+1)


is the counting function which only counts those points such that f (k+1)

= 0 but f (f (k)
− c) ≠ 0.

Lemma 2.3 ([23]). Let f (z) be a non-constant meromorphic function and s, k be two positive integers. Then

Ns


r,

1
f (k)


≤ T (r, f (k)) − T (r, f ) + Ns+k


r,

1
f


+ S(r, f ),

Ns


r,

1
f (k)


≤ kN(r, f ) + Ns+k


r,

1
f


+ S(r, f ).

Lemma 2.4 ([21]). Let f (z) be a non-constant meromorphic function, and let k be a positive integer. Suppose that f (k)
≢ 0, then

N

r,

1
f (k)


≤ N


r,

1
f


+ kN(r, f ) + S(r, f ).

Lemma 2.5 ([4]). Let f (z) and g(z) be two non-constant meromorphic functions and n, k be two positive integers, a be a finite
nonzero constant. If f and g share a CM, then one of the following cases holds:
(i) T (r, f ) ≤ N2(r, 1/f ) + N2(r, 1/g) + N2(r, f ) + N2(r, g) + S(r, f ) + S(r, g). The same inequality holding for T (r, g);
(ii) fg ≡ a2;
(iii) f ≡ g.

By using a similar method to Yang and Hua [4], we can prove the following lemma.

Lemma 2.6. Let f (z) and g(z) be two non-constant meromorphic functions, let n, k be two positive integers and a be a finite
nonzero constant. If f and g share a CM and ∞ IM, then one of the following cases holds:
(i) T (r, f ) ≤ N2(r, 1/f ) + N2(r, 1/g) + 3N(r, f ) + S(r, f ) + S(r, g). The same inequality holding for T (r, g);
(ii) fg ≡ a2;
(iii) f ≡ g.
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Lemma 2.7. Let f , g be non-constant meromorphic functions, let n, k be two positive integers with n > k + 2, and let
P(w) be defined as in Theorem G. Let a(z)(≢0, ∞) be a small function of f . If [f nP(f )](k) and [gnP(g)](k) share a IM, then
T (r, f ) = O(T (r, g)), T (r, g) = O(T (r, f )).

Proof. Let F = f nP(f ). By the second fundamental theorem for small functions (see [24]), we have

T (r, F (k)) ≤ N(r, f ) + N

r,

1
F (k)


+ N


r,

1
F (k) − a


+ (ε + o(1))T (r, F) (2.1)

for all ε > 0.
By (2.1), Lemmas 2.1 and 2.3 with s = 1 applying to F , we have

(n + m)T (r, f ) ≤ Nk+1


r,

1
F


+ N


r,

1
F (k) − a


+ N(r, f ) + (ε + o(1))T (r, f )

≤ (k + 1)N

r,

1
f


+ Nk+1


r,

1
P(f )


+ N(r, f ) + N


r,

1
[f nP(f )](k) − a


+ (ε + o(1))T (r, f )

≤ (k + 2 + m)T (r, f ) + N

r,

1
[gnP(g)](k) − a


+ (ε + o(1))T (r, f ),

namely

(n − k − 2)T (r, f ) ≤ N

r,

1
[gnP(g)](k) − a


+ (ε + o(1))T (r, f )

≤ (n + m)(k + 1)T (r, g) + (ε + o(1))T (r, f ).

Since n > k + 2, take ε < 1 and we have T (r, f ) = O(T (r, g)). Similarly we have T (r, g) = O(T (r, f )). This completes the
proof of Lemma 2.7. �

By the similar arguments to the proof of Lemma 2.7, we get the following proposition.

Proposition 2.1. Let f be a transcendental meromorphic function. Let n, k be two positive integers with n > k+2, and let P(w)
be defined as in Theorem G, a(z)(≢0, ∞) be a small function with respect to f . Then [f nP(f )](k) − a(z) has infinitely many zeros.

By the same reason as in Lemma 5 of [13], we obtain the following lemma.

Lemma 2.8. Let f and g be two non-constant meromorphic functions. Let P(w) be defined as in Theorem G, and k,m, n >
2k + m + 1 be three positive integers. If [f nP(f )](k) = [gnP(g)](k), then f nP(f ) = gnP(g).

Lemma 2.9. Let f , g be non-constant meromorphic functions, let n, k be two positive integers with n > k + 2, and let P(w)
be defined as in Theorem G. Let a(z)(≢0, ∞) be a small function with respect to f with finitely many zeros and poles. If
[f nP(f )](k)[gnP(g)](k) = a2, f and g share ∞ IM, then P(w) is reduced to a nonzero monomial, namely, P(w) = aiwi

≢ 0
for some i ∈ {0, 1, . . . ,m}.

Proof. If P(w) is not reduced to a nonzero monomial, then, without loss of generality, we assume that P(w) = amwm
+

am−1w
m−1

+ · · · + a1w + a0, where a0 ≠ 0, a1, . . . , am−1, am ≠ 0 are complex constants.
Under the conditions of Lemma 2.9, by Lemma 2.7, we know that either f and g are both transcendental meromorphic

functions or they are both rational functions. Since f and g share ∞ IM, the poles of f and g can only come from the poles
of a, whose number is finite. Thus both f and g have only finitely many poles. If z0 is a zero of f , then z0 is a zero of a, the
number of whose zeros is finite, hence f has finitely many zeros and so does g .
Case 1. If f and g are transcendental meromorphic functions. Let f = heα , where α is a non-constant entire function and h
is a nonzero rational function. Thus, by induction we have

[aif i+n
]
(k)

= Pi(α′, α′′, . . . , α(k), h, h′, . . . , h(k))e(i+n)α, (2.2)

where Pi (i = 1, 2, . . . ,m) are differential polynomials with coefficients which are rational functions in h or its derivatives.
Obviously, P0 ≢ 0, . . . , Pm ≢ 0, where if ai ≠ 0 for some i ∈ {0, 1, . . . ,m − 1}, then Pi ≢ 0.

T (r, Pi) = S(r, f ),N

r, 1

Pmemα+···+P0


= S(r, f ). By the second fundamental theorem for small functions (see [24]), we

have

mT (r, f ) = T (r, Pmemα
+ · · · + P1eα) + S(r, f )

≤ N

r,

1
Pmemα + · · · + P1eα


+ N


r,

1
Pmemα + · · · + P0


+ N(r, Pmemα

+ · · · + P1eα)

+ (ε + o(1))T (r, f )



X.-B. Zhang, J.-F. Xu / Computers and Mathematics with Applications 61 (2011) 722–730 727

≤ N

r,

1
Pme(m−1)α + · · · + P2eα + P1


+ (ε + o(1))T (r, f )

≤ (m − 1)T (r, f ) + (ε + o(1))T (r, f ),

for all ε > 0. Take ε < 1 and we obtain a contradiction.
Case 2. If f and g are rational functions, then a is a nonzero constant, thus f and g have no zeros and no poles, which is
impossible since f and g are not constants.

The above two cases imply that P(w) is reduced to a nonzero monomial, namely, P(w) = aiwi
≢ 0 for some

i ∈ {0, 1, . . . ,m}. �

Lemma 2.10 ([20, Theorem 3.10]). Suppose that f is a non-constant meromorphic function, k ≥ 2 is an integer. If

N(r, f ) + N(r, 1/f ) + N(r, 1/f (k)) = S(r, f ′/f ),

then f = eaz+b, where a ≠ 0, b are constants.

Lemma 2.11. Let p(z), q(z), r(z) be three polynomials satisfying

p2(z) − q2(z) = r2(z). (2.3)

If deg(p) = deg(r) > 2 deg(q), then q(z) ≡ 0.

Proof. Suppose that q(z) ≢ 0, then p2(z) ≢ r2(z), namely, p(z) + r(z) ≢ 0 and p(z) − r(z) ≢ 0. Rewrite (2.3) as

q2(z) = p2(z) − r2(z) = (p(z) + r(z))(p(z) − r(z)). (2.4)

It is easy to obtain from (2.4) that 2 deg(q) = deg(q2) ≥ deg(p) > 2 deg(q), which is a contradiction. This completes the
proof of Lemma 2.11. �

3. Proof of Theorem 1.1

Let F = [f nP(f )](k), G = [gnP(g)](k), F∗
= f nP(f ), G∗

= gnP(g), F1 = F/a, G1 = G/a, then F1 and G1 share 1 CM.
(I) P(w) = amwm

+ am−1w
m−1

+ · · · + a1w + a0. Since a is a small function with respect to f . By Lemma 2.7, a is a small
function with respect to g . Thus by Lemma 2.5, one of the following cases holds:

(i) T (r, F1) ≤ N2(r, 1/F1) + N2(r, 1/G1) + N2(r, F1) + N2(r,G1) + S(r, F1) + S(r,G1), the same inequality holding for
T (r,G1);

(ii) FG ≡ a2;
(iii) F ≡ G.

For Case (i), we have

T (r, F) ≤ N2(r, 1/F) + N2(r, 1/G) + N2(r, F) + N2(r,G) + S(r, F) + S(r,G). (3.1)

By Lemma 2.3 with s = 2, we obtain

T (r, F∗) ≤ T (r, F) − N2(r, 1/F) + Nk+2(r, 1/F∗) + S(r, F), (3.2)

and

N2(r, 1/G) ≤ Nk+2(r, 1/G∗) + kN(r,G) + S(r,G). (3.3)

Combining (3.1)–(3.3) gives

T (r, F∗) ≤ Nk+2(r, 1/F∗) + Nk+2(r, 1/G∗) + (k + 2)N(r, g) + 2N(r, f ) + S(r, f ) + S(r, g)

≤ (k + 2)N(r, 1/f ) + N(r, 1/P(f )) + (k + 2)N(r, 1/g)

+N(r, 1/P(g)) + (k + 2)N(r, g) + 2N(r, f ) + S(r, f ) + S(r, g)
≤ (2k + m + 4)T (r, g) + (k + m + 4)T (r, f ) + S(r, f ) + S(r, g).

It follows from Lemma 2.1 and the above inequality that

(n + m)T (r, f ) ≤ (2k + m + 4)T (r, g) + (k + m + 4)T (r, f ) + S(r, f ) + S(r, g). (3.4)

Similarly we have

(n + m)T (r, g) ≤ (2k + m + 4)T (r, f ) + (k + m + 4)T (r, g) + S(r, f ) + S(r, g). (3.5)

From (3.4) and (3.5) we deduce that

(n − 3k − m − 8)(T (r, f ) + T (r, g)) ≤ S(r, f ) + S(r, g), (3.6)

which is a contradiction since n > 3k + m + 8.
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For Case (ii), we have [f nP(f )](k)[gnP(g)](k) = a2.
For Case (iii), we have [f nP(f )](k) ≡ [gnP(g)](k). By Lemma2.8,we get f nP(f ) ≡ gnP(g). Similar to the proof in TheoremG,

we can obtain the desired results.
(II) P(w) ≡ c0. The case can be dealt with as in part of the proof of Case (I).
This completes the proof of Theorem 1.1. �

4. Proof of Theorem 1.3

By Lemma 2.6, and similar method to the proof of Theorem 1.1, we only need to consider

[f nP(f )](k)[gnP(g)](k) = p2. (4.1)

Note that n > 3k + m + 7 > k + 2. By Lemma 2.9, P(w) is reduced to a nonzero monomial, namely, P(w) = aiwi
≢ 0 for

some i ∈ {0, 1, . . . ,m}. Thus we have

a2i [f
n+i

]
(k)

[gn+i
]
(k)

= p2. (4.2)

Let s = n+ i. Since f and g share∞ IM, we get that f and g have no poles, thus they are both transcendental entire functions.
Since l ≤ 5 and s ≥ n > 3k + m + 7 ≥ k + 10 ≥ k + 2l, by computation we deduce that f and g have no zeros. Thus

f = eα, g = eβ , (4.3)

where α(z), β(z) are two non-constant entire functions.
We claim that α + β ≡ C , where C is a constant.
We deduce from (4.2) and (4.3) that either both α and β are transcendental entire functions or both α and β are

polynomials. Moreover, we have

N(r, 1/(f s)(k)) ≤ N(r, 1/p2(z)) = O(log r).

From this and (4.3), we get

N(r, f s) + N(r, 1/f s) + N(r, 1/(f s)(k)) = O(log r).

Let k ≥ 2. Suppose that α is a transcendental entire function. Note that S(r, sα′) = S

r, (f s)′

f s


. Then

N(r, f s) + N(r, 1/f s) + N(r, 1/(f s)(k)) = S(r, sα′) = S

r,

(f s)′

f s


.

We deduce from Lemma 2.10 that α is a polynomial, which is a contradiction.
Thus α is a polynomial and so is β .
We deduce from (4.3) that (f s)(k) = A[(α′)k + Pk−1(α

′)]esα, (g s)(k) = B[(β ′)k + Qk−1(β
′)]esβ , where A, B are nonzero

constants, Pk−1(α
′) and Qk−1(β

′) are differential polynomials in α′ and β ′ of degree at most k − 1, respectively. Thus we
obtain

AB[(α′)k + Pk−1(α
′)][(β ′)k + Qk−1(β

′)]es(α+β)
= p2(z). (4.4)

We deduce from (4.4) that α(z) + β(z) ≡ C for a constant C .
Let k = 1, from [f nP(f )]′[gnP(g)]′ = p2 we get

ABα′β ′es(α+β)
= p2(z). (4.5)

Let α + β = γ . If α and β are transcendental entire functions, obviously γ is not a constant, then (4.5) implies that

ABα′(γ ′
− α′)esγ = p2(z). (4.6)

Since T (r, γ ′) = m(r, γ ′) ≤ m

r, (esγ )′

esγ


+ O(1) = S(r, esγ ). Thus (4.6) implies that

T (r, esγ ) ≤ T

r,

p2

α′(γ ′ − α′)


+ O(1)

≤ (2 + o(1))T (r, α′) + S(r, esγ ),

which implies that

T (r, esγ ) = O(T (r, α′)).
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Thus T (r, γ ′) = S(r, esγ ) = S(r, α′). In view of (4.6) and by the second fundamental theorem for small functions (see [24]),
we get

(1 − ε)T (r, α′) ≤ N

r,

1
α′


+ N


r,

1
α′ − γ ′


+ o(T (r, α′))

≤ O(log r) + o(T (r, α′)),

for all ε > 0. Take ε < 1/2 and we get that α′ is a polynomial, which contradicts that α is a transcendental entire function.
Thus α and β are both polynomials and α(z) + β(z) ≡ C for a constant C . Hence from (4.4) we get

C1(α
′)2k = p2 +P2k−1(α

′), (4.7)

where C1 is a nonzero constant andP2k−1 is a differential polynomial in α′ of degree at most 2k − 1.
We shall divide our argument into two cases.

Case 1. p(z) is not a constant. Then α′ is a non-constant polynomial. For the sake of simplicity, let C ≡ 0, ai = 1, where ai is
defined as in (4.2). If k ≥ 2, we distinguish into five subcases below.
Subcase 1. l = 1. Since α′ is not a constant, deg(α′) ≥ 1, by (4.7) we immediately get a contradiction.
Subcase 2. l = 2. Since k ≥ 2, by (4.7) we get deg(α′) = 1 and k = 2. Thus α′′ is a nonzero constant. From (4.4) we get

[(sα′)2 + sα′′
][(sβ ′)2 + sβ ′′

] = p2. (4.8)

Note that α + β ≡ 0. Then α′
+ β ′

≡ 0 and α′′
+ β ′′

≡ 0. From (4.8) we obtain

[(sα′)2]2 − (sα′′)2 = p2. (4.9)

By Lemma 2.11, we derive α′′
= 0 from (4.9), which is a contradiction.

Subcase 3. l = 3. Similarly as above, we get deg(α′) = 1 and k = 3. Thus α′′ is a nonzero constant. From (4.4) we get

[s3(α′)3 + 3s2α′α′′
][s3(β ′)3 + 3s2β ′β ′′

] = p2. (4.10)

Thus we have

(3s2α′α′′)2 − ((sα′)3)2 = p2. (4.11)

By Lemma 2.11, we arrive at the same contradiction.
Subcase 4. l = 4. Similarly as above, we get either deg(α′) = 1 and k = 4 or deg(α′) = 2 and k = 2. If deg(α′) = 1 and
k = 4, then α′′ is a nonzero constant. From (4.4) we get

[(sα′)4 + 3(sα′′)2]2 − [6s3(α′)2α′′
]
2

= p2. (4.12)

Without loss of generality, suppose that α′
= z, or else, we only need to do a transformation of p(z). We deduce from (4.12)

that

(sz)8 − 30s6z4 + 9s4 = p2(z), (4.13)

which implies p2(z) = p2(−z). Thus p(z) = p(−z) or p(z) = −p(−z). Note that l = 4. Thus p(z) = p(−z). Suppose that
p(z) = a4z4 + a2z2 + a0, where a4 ≠ 0, a2, a0 are constants. Comparing with the coefficients at both sides of (4.13), we get
a2 = 0, we derive a contradiction by calculation.

If deg(α′) = 2 and k = 2, then we get (4.9). By Lemma 2.11, we arrive at a contradiction.
Subcase 5. l = 5. Similarly as above, we get deg(α′) = 1 and k = 5.

From (4.4) we get

[10s4(α′)3α′′
+ 12s3α′α′′

]
2
− [(sα′)5 + 3s3α′(α′′)2]2 = p2. (4.14)

By a similar argument to Subcase 4, we get a contradiction.
Hence k = 1. By induction we get

α′
+ β ′

≡ 0,
a2i (n + i)2α′β ′

= p2(z).

By computation we get

α′
= cp(z), β ′

= −cp(z). (4.15)

Hence

α = cQ (z) + l1, β = −cQ (z) + l2, (4.16)
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where Q (z) is defined as in Theorem 1.3, and l1, l2 are constants. Rewrite f and g as

f = c1ecQ (z), g = c2e−cQ (z),

where c1, c2 and c are constants such that a2i (c1c2)
n+i

[(n + i)c]2 = −1.
Case 2. If p(z) is a nonzero constant b, similar to the proof as above, we deduce that α′ is a nonzero constant. Thus
α = cz + l3, β = −cz + l4. We can rewrite f and g as

f = c3ecz, g = c4e−cz,

where c3, c4 and c are nonzero constants. In the end we deduce that (−1)ka2i (c3c4)
n+i

[(n + i)c]2k = b2.
This completes the proof of Theorem 1.3. �
The proof of Theorem 1.2 is analogous to that of Theorem 1.1, by Lemma 2.9, the case of (I3) in Theorem 1.1 does not

exist.
The proof of Theorem 1.5 is analogous to that of Theorem H, a(z) has no influence on the result, thus we omit the details

here.

5. Open problem

It is mentioned as in Remark 1.2, we pose the following

Problem 5.1. What happens to Theorem 1.3 if the condition ‘‘l ≤ 5’’ is removed?
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