Remarks on the decay of the local energy for semilinear wave equation

Ahmed Bchatnia

Département de Mathématiques, Faculté des sciences de Tunis, 2092 El Manar Il Tunis, Tunisie

A R T I C L E I N F O

Article history:
Received 15 December 2009
Received in revised form 15 April 2010
Accepted 15 April 2010

Keywords:
Semilinear wave equation
Local energy decay

A B S T R A C T

In this note, we prove the global well posedness and the local energy decay for semilinear wave equation with small data.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and position of the problem

The aim of this note is to study the following nonlinear wave equation,

\[
\begin{align*}
\Box u + \lambda u |u|^{p-1} &= 0, \quad \text{in} \, \mathbb{R} \times \mathbb{R}^3, \\
u(0, x) &= f(x) \in C^1(\mathbb{R}^3) \quad \text{and} \quad \partial_t u(0, x) = g(x) \in C^0(\mathbb{R}^3),
\end{align*}
\]

(1.1)

where \(\Box = \partial^2_t - \Delta \) and \(\lambda \in \mathbb{R} \).

We assume that \(|f(x)| \leq \frac{\varepsilon}{(1+|x|)^{p-1}} \) and \(|g(x)| + |\nabla f(x)| \leq \frac{\varepsilon}{(1+|x|)^{p}} \), for some \(\varepsilon > 0 \). We notice that a large amount of works have been devoted to the existence and uniqueness of solutions to systems of type (1.1) In addition to the works of Pecher [1] and John [2], we have the result of Li [3] who obtained in particular the existence and uniqueness for system (1.1) with \(p > \frac{8}{3} \).

The main purpose of this note is to study the local energy decay of the solutions of (1.1).

The global energy of \(u \) at time \(t \) is defined by

\[
E(u(t)) = \frac{1}{2} \int_{\mathbb{R}^3} \left(|\partial_t u(t, x)|^2 + |\nabla u(t, x)|^2 \right) \, dx + \frac{\lambda}{p+1} \int_{\mathbb{R}^3} |u(t, x)|^{p+1} \, dx,
\]

(1.2)

which is time independent.

We also define the local energy by

\[
E_\rho(u(t)) = \frac{1}{2} \int_{B_\rho} \left(|\partial_t u(t, x)|^2 + |\nabla u(t, x)|^2 \right) \, dx + \frac{\lambda}{p+1} \int_{B_\rho} |u(t, x)|^{p+1} \, dx,
\]

(1.3)

where \(B_\rho = B_{\rho/2}(0, \rho) \).

For the literature we essentially quote the result of Lin [4] who obtained a super-exponential decay of solutions of a semilinear wave equation when the initial data decays sufficiently rapid at infinity and \(1 < p < 5 \). We also mention the results of C. Morawetz and Strauss [5,6] who obtained a various rates of decay (from polynomial to exponential) in free space.

* Tel.: +216 98651585; fax: +216 71885350.
E-mail address: Ahmed.Bchatnia@fst.rnu.tn.
Now, we define the following functional space which is inspired from the space introduced in [1].

\[
X^p_{\delta, R} = \left\{ u \in C^0(\mathbb{R} \times \mathbb{R}^3), 0 \leq l \leq 1, \left\| u \right\|_{V^p} \leq \delta \right\},
\]

where we denoted

\[
\left\| u \right\|_{V^p} = \sup_{x \in \mathbb{R}^3} \left(1 + \left| \left| x \right| \right| + \left| \left| t \right| \right| \right) \left(1 + \left| \left| x \right| \right| - \left| \left| t \right| \right| \right)^{p-2} \left| u(t, x) \right|.
\]

We then prove the global well posedness and the local energy decay for (1.1).

Theorem 1.1. Assume that \(p > 1 + \sqrt{2} \). Then there exist \(\varepsilon_0 > 0, \delta \) and \(R > 0 \) such that, for every \(\varepsilon \in [0, \varepsilon_0] \) the system (1.1) admits a unique solution in the space \(X^p_{\delta, R} \). Moreover, there exists a constant \(C = C(\rho, \varepsilon_0) > 0 \) such that following inequality

\[
E_p(u)(t) = \frac{1}{2} \int_{B^p} \left(|\partial_t u(t, x)|^2 + |\nabla_x u(t, x)|^2 \right) dx + \frac{\lambda}{p-1} \int_{B^p} |u(t, x)|^{p+1} \leq \frac{C}{(1 + t)^{2/p-2}},
\]

holds for every \(u \) solution of (1.1).

Remark 1.1.

(1) The results in Theorem 1.1 complete the work of Pecher [1] who proves the global well posedness and scattering for \(p \in [1 + \sqrt{2}, 3] \).

(2) Let also indicate that optimality of the decay rate is still an open problem.

(3) The proof of Theorem 1.1 is based on a fixed point process and uses in crucial way the properties of the fundamental solution of the wave operator on \(\mathbb{R}^3 \).

2. Fundamental lemmas

In this section, we give some preliminary lemmas.

Lemma 2.1 ([1]). If \(h \) is a continuous function and \(r = \left| x \right| \) then

\[
\int_{\left| y - x \right| = t} h(y) dS_y = \frac{2\pi t}{r} \int_{\left| r - t \right|}^{t+r} \sigma h(\sigma) d\sigma.
\]

Lemma 2.2. Assume \(p > 1 + \sqrt{2} \) and define

\[
g(\sigma, s) = \frac{\sigma}{(1 + \sigma + s)^p (1 + |s - \sigma|)^{p-2}}.
\]

Then for some \(C = C(p) \) the following inequality holds

\[
\int_0^t \left(\int_{|r-t|}^{r+t-s} g(\sigma, s) d\sigma \right) ds \leq \frac{C_0}{(1 + r + t)(1 + |r - t|)^{p-2}} = N(r, t) \text{ for } r \geq 0, t \in \mathbb{R}_+.
\]

Proof. The region of integration is divided into three parts as follows:

\[
0 \leq r \leq t - 1, \quad t - 1 \leq r \leq t + 1 \quad \text{and} \quad r \geq t + 1.
\]

We just treat the first case and we note that the other cases can be treated in the same way.

We substitute \(\gamma = s + \sigma, \beta = s - \sigma \)

\[
\int_0^t \left(\int_{|r-t|}^{r+t-s} g(\sigma, s) d\sigma \right) ds \leq \int_0^t \left(\int_{|r-t|}^{r+t-s} \frac{d\sigma}{(1 + \sigma + s)^p (1 + |s - \sigma|)^{p-2}} \right) ds
\]

\[
\leq \int_{t-r}^{t+r} \frac{dy}{(1 + y)^{p-1}} \int_{-\infty}^{r-t} \frac{d\beta}{(1 + |\beta|)^{p-2}}
\]

\[
\leq C \int_{t-r}^{t+r} \frac{dy}{(1 + y)^{p-1}}.
\]

If \(1 + t - r \geq \frac{1 + t + r}{2} \), i.e \(1 + t \geq 3r \) one can estimate

\[
\int_{t-r}^{t+r} \frac{dy}{(1 + y)^{p-1}} \leq \frac{2r}{(1 + t - r)^{p-1}} \leq \frac{4r}{(1 + t + r)(1 + t - r)^{p-2}}.
\]
Whereas in the case $1 + t - r \geq \frac{1+\alpha^2}{2}$ i.e $1 + t \leq 3r$ one estimates by

$$\int_{t-r}^{t+r} \frac{dy}{(1 + y)^{p-1}} \leq \frac{1}{p-2} \left[\frac{1}{c} \left(\frac{1}{(1 + t - r)^{p-2}} - \frac{1}{(1 + t + r)^{p-2}} \right) \right] \leq \frac{1}{(1 + t - r)^{p-2}} \leq \frac{c}{(1 + t + r)(1 + t - r)^{p-2}}.$$

This completes the proof of Lemma 2.2. □

Remark 2.1. As a direct consequence of Lemma 2.2 we define

$$V_p = \left\{ u \in C^0(\mathbb{R} \times \mathbb{R}^3) \mid \|u\|_{V_p} < \infty \right\}.$$

Note that $\| \cdot \|_{V_p}$ is an algebra norm.

Lemma 2.3. Let u_0 be the solution of the following linear wave equation

$$\left\{ \begin{array}{l}
\partial_t^2 u_0 - \Delta u_0 = 0, \\
u_0(x, 0) = f(x) \in C^1(\mathbb{R}^3), \ \partial_t u_0(x, 0) = g(x) \in C^0(\mathbb{R}^3),
\end{array} \right.$$

and take $\varepsilon > 0$ and $k > 2$ such that

$$|f(x)| \leq \frac{\varepsilon}{(1 + |x|)^{k-1}} \quad \text{and} \quad |g(x)| + |\nabla f(x)| \leq \frac{\varepsilon}{(1 + |x|)^k}, \quad \text{for all} \ x \in \mathbb{R}^3.$$

Then

$$|u_0(x, t)| \leq \frac{C \varepsilon}{(1 + |x| + t)(1 + |x| - t)^{k-2}}, \quad \text{for} \ x \in \mathbb{R}^3 \ \text{and} \ t \in \mathbb{R}^+, \ i.e. u_0 \in V_k.$$

Proof. According to the classical representation formula, we have

$$u_0(x, t) = \frac{t}{4\pi} \int_{|y|=1} g(x + ty) dS_y + \frac{\partial}{\partial t} \left(\frac{t}{4\pi} \int_{|y|=1} f(x + ty) dS_y \right)$$

$$= \frac{t}{4\pi} \int_{|y|=1} g(x + ty) dS_y + \frac{t}{4\pi} \int_{|y|=1} f(x + ty) dS_y + \frac{t}{4\pi} \int_{|y|=1} (\nabla_y f(x + ty), \xi) dS_y$$

$$= \frac{1}{4\pi t} \int_{|y| \leq t} g(y) dS_y + \frac{1}{4\pi t^2} \int_{|y| = t} f(y) dS_y + \frac{t}{4\pi} \int_{|y| = 1} (\nabla_y f(x + ty), y) dS_y$$

$$= I_1 + I_2 + I_3.$$

We treat the first term as follows

$$|I_1| = \frac{C}{t} \int_{|y| \leq t} |g(y)| dS_y \leq \frac{C \varepsilon}{t} \int_{|y| \leq t} \frac{dS_y}{(1 + |y|)^k} \leq \frac{2\pi C \varepsilon}{r} \frac{\sigma d\sigma}{(1 + \sigma)^k}.$$

If $r \geq 1$ and $r \geq \frac{1}{2}$ we estimate

$$\frac{1}{r} \int_{|r-t|}^{r+t} \frac{\sigma d\sigma}{(1 + \sigma)^k} \leq \frac{c}{r} \int_{|r-t|}^{\infty} \frac{d\sigma}{(1 + \sigma)^{k-1}} \leq \frac{c}{(1 + r + t)(1 + |r-t|)^{k-2}}.$$

If $r \leq \frac{1}{2}$ or $\frac{1}{2} \leq r \leq 1$ we have

$$\frac{1}{r} \int_{|r-t|}^{r+t} \frac{\sigma d\sigma}{(1 + \sigma)^k} \leq \frac{1}{r} \int_{|r-t|}^{r+t} \frac{d\sigma}{(1 + |r-t|)^{k-1}} \leq \frac{2}{c} \frac{1}{(1 + |r-t|)^{k-2}}.$$

Finally the second and third terms can be handled in the same way.

The proof of Lemma 2.3 is achieved. □
3. Proof of Theorem 1.1: Existence and decay of the local energy

We denote by

$$\mathcal{E}(u)(t, x) = \frac{\lambda}{4\pi} \int_0^t \frac{1}{t - \tau} \left(\int_{|y - x| = t - \tau} u^p(\tau, y) dS_y \right) d\tau,$$

where u satisfies (1.1).

In order to run a fixed point theorem we estimate for $u \in V_p$

$$|\mathcal{E}(u)(t, x)| \leq C \frac{1}{4\pi} \int_0^t \frac{1}{t - \tau} \left(\int_{|y - x| = t - \tau} |u^p(\tau, y)| dS_y \right) d\tau$$

$$\leq C \frac{1}{4\pi} \int_0^t \frac{1}{t - \tau} \left(\int_{|y - x| = t - \tau} \frac{dS_y}{(1 + |y - x|)^{p(1 + \nu^2)(p - 2)}} \right) d\tau \|u\|_{V_p}^p$$

$$\leq \frac{C_1}{r} \int_0^t \left(\int_{|y - x| = t - \tau} (1 + \sigma + |y - x|)^p \frac{\sigma d\sigma}{(1 + \sigma + |y - x|)^{p(1 + \nu^2)(p - 2)}} \right) d\tau \|u\|_{V_p}^p$$

$$\leq \frac{C_2}{(1 + r + t)(1 + |r - t|)^{p(1 - \nu^2)}} \|u\|_{V_p}^p$$

which gives

$$\|\mathcal{E}(u)\|_{V_p} \leq C \|u\|_{V_p}^p. \quad (3.1)$$

One can easily verify that $\partial_{k_n} \mathcal{E}(u) = \mathcal{E}(\partial_{k_n} u^p)$.

Consequently one proves

$$\|\partial_{k_n} \mathcal{E}(u)\|_{V_p} \leq C \|u\|_{V_p}^{p-1} \|\partial_{k_n} u\|_{V_p}. \quad (3.2)$$

On the other hand

$$|(\mathcal{E}(u) - \mathcal{E}(v))(t, x)| \leq C \frac{1}{4\pi} \int_0^t \frac{1}{t - \tau} \left(\int_{|y - x| = t - \tau} |u^p - v^p| (\tau, y) dS_y \right) d\tau$$

$$\leq C \frac{1}{4\pi} \int_0^t \frac{1}{t - \tau} \left(\int_{|y - x| = t - \tau} (u(v + 1))^{p-1} (\tau, y) dS_y \right) d\tau.$$

Thus

$$\|\mathcal{E}(u) - \mathcal{E}(v)\|_{V_p} \leq C \|u - v\|_{V_p} \|u\|_{V_p}^{p-1} \|u\|_{V_p} \|v\|_{V_p} \|u - v\|_{V_p}. \quad (3.3)$$

and one easily verifies

$$\|\partial_{k_n} \mathcal{E}(u) - \partial_{k_n} \mathcal{E}(v)\|_{V_p} \leq C \|u - v\|_{V_p} \|u\|_{V_p}^{p-2} \|\partial_{k_n} u\|_{V_p} + \|\partial_{k_n} u - \partial_{k_n} v\|_{V_p} \|u\|_{V_p}^{p-1} \|v\|_{V_p} \|u - v\|_{V_p} \|u\|_{V_p}^{p-1}. \quad (3.4)$$

Then we write

$$\mathcal{E}(u)(t, x) = \frac{1}{4\pi} \int_0^t (t - \tau) \left(\int_{|y - x| = t} u^p(\tau, x + (t - \tau) y) dS_y \right) d\tau.$$

It is easy to check that

$$\partial_t \mathcal{E}(u)(t, x) = p \mathcal{E}(\partial_t u u^{p-1})(t, x) + \frac{1}{4\pi t} \int_{|y - x| = t} u^p(0, y) dS_y.$$

As $|u^p(0, y)| \leq \frac{C}{(1 + |y|^p)^{p-1}}$, we deduce that

$$|\partial_t \mathcal{E}(u)(t, x)| \leq p \left| \mathcal{E}(\partial_t u u^{p-1})(t, x) \right| + \frac{C}{t} \int_{|y - x| = t} \frac{dS_y}{(1 + |y|^{p-1})} \|u\|_{V_p}^p$$

$$\leq p \left| \mathcal{E}(\partial_t u u^{p-1})(t, x) \right| + \frac{C}{r} \int_{t - |t|}^{t + |t|} \frac{\sigma d\sigma}{(1 + \sigma)^{p+1}} \|u\|_{V_p}^p$$

since $p > 1 + \sqrt{2}$.

Similarly to the proof of Lemma 2.3 and in order to estimate the second term of the last inequality, we distinguish the two following cases:
If \(r \geq 1 \) and \(r \geq t/2 \) we obtain
\[
\frac{1}{r} \int \frac{\sigma \, d\sigma}{(1 + \sigma)^{p+1}} \leq \frac{1}{r} \int \frac{d\sigma}{(1 + |r-t|)^{p+1}} \leq \frac{c}{(1 + r + t)(1 + |r - t|)^{p-1}}.
\]

If \(r \leq \frac{t}{r} \) or \(\frac{t}{r} \leq r \leq 1 \) it follows that
\[
\frac{1}{r} \int \frac{\sigma \, d\sigma}{(1 + \sigma)^{p+1}} \leq \frac{1}{r} \int \frac{d\sigma}{(1 + |r-t|)^{p+1}} \leq \frac{2}{(1 + r + t)(1 + |r - t|)^{p-1}}.
\]

and we obtain
\[
\| \partial_t \mathcal{E}(u) \|_{V_p} \leq C \| u \|_{V_p}^{p-1} (\| \partial_t u \|_{V_p} + \| u \|_{V_p}).
\]

Finally we write
\[
(\partial_t \mathcal{E}(u) - \partial_t \mathcal{E}(v))(t, x) = p \mathcal{E}(\partial_t (u^{p-1} - v^{p-1}))(t, x) + p \mathcal{E}(v^{p-1}(\partial_t u - \partial_t v))(t, x)
\]
\[
+ \frac{1}{4\pi t} \int_{|x-y|=t} (u^p(0, y) - v^p(0, y)) dS_y.
\]

Consequently
\[
\| \partial_t \mathcal{E}(u) - \partial_t \mathcal{E}(v) \|_{V_p} \leq C \| \partial_t u \|_{V_p} \| u - v \|_{V_p} (\| u \|_{V_p}^{p-2} + \| v \|_{V_p}^{p-2})
\]
\[
+ \| \partial_t u - \partial_t v \|_{V_p} \| v \|_{V_p}^{p-1} + \| u - v \|_{V_p} (\| u \|_{V_p}^{p-1} + \| v \|_{V_p}^{p-1}).
\]

The rest of the proof is standard.

The estimates (3.1), (3.2) and (3.5) show that for an arbitrary given \(R \) one has
\[
\| \mathcal{E}(u) \|_{V_p} \leq C \delta^p, \quad \| \partial_q \mathcal{E}(u) \|_{V_p} \leq C \delta^{p-1} R \quad \text{and} \quad \| \partial_t (\mathcal{E}(u)) \|_{V_p} \leq C (\delta^p + \delta^{p-1} R).
\]

So \(u_0 + \mathcal{E}(u) \in X \) if \(u \in X^0_{\delta, R} \). Now we take \(\delta > 0 \) small enough, say,
\[
C \delta^{p-1} \leq \frac{1}{4} \quad \text{and} \quad C \delta^{p-2} R \leq \frac{1}{4},
\]

and we consider the sequence \(u_{n+1} = u_0 + \mathcal{E}(u_n), \ n \geq 0 \).

By (3.3), (3.5) and (3.6), we have
\[
\| u_{n+1} - u_n \|_{V_p} \leq \frac{1}{2} \| u_n - u_{n-1} \|_{V_p}.
\]

Consequently, we have
\[
\| u_{n+1} - u_n \|_{V_p} \leq \frac{c}{2n}, \quad \| \partial_q (u_{n+1} - u_n) \|_{V_p} \leq \frac{c}{2n} + \frac{1}{2} \| \partial_q (u_n - u_{n-1}) \|_{V_p}.
\]

Thus, we deduce that
\[
\| \partial_q (u_{n+1} - u_n) \|_{V_p} \leq \frac{c n}{2n} \quad \text{and} \quad \| \partial_t (u_{n+1} - u_n) \|_{V_p} \leq \frac{c n}{2n}.
\]

We then conclude that \((u_n) \) converges in \(X^0_{\delta, R} \) to \(u \) which is the unique solution of the system (1.1).

Finally as \(u \in X^0_{\delta, R} \) then for \(t \geq 0 \) and \(x \in B(0, \rho) \) we have
\[
|\partial_t u(t, x)|^2 + |\nabla u(t, x)|^2 \leq \frac{C}{(1 + t)^{2p-2}},
\]
and then
\[
|u(t, x)|^{p+1} \leq \frac{C}{(1 + |x| + |t|)^{p+1}(1 + \| x - |t| \|)^{(p+1)(p-2)}}.
\]

This gives the energy decay.

References