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ABSTRACT 

We present the development o f  five fuzzy multiattribute decision-making methods. 
These methods are based on the analytic hierarchy process (original and ideal mode), 
the weighted-sum model, the weighted-product model, and the TOPSlS method. More- 
over, these methods are examined in terms of  two evaluative criteria. Computational 
results on test problems suggest that although all the methods are inaccurate, some of  
them seem to be more accurate than the others. The proposed evaluation methodology 
can easily be used in evaluating more fuzzy multiattribute decision making methods. 

KEYWORDS:  Fuzzy decision-making, multiattribute decision.making, rank- 
ing of fuzzy numbers, pairwise comparisons, analytic hierarchy process, 
weighted-sum model, weighted-product model, TOPSlS method. 

1. BACKGROUND INFORMATION 

One of the most crucial problems in many decision-making methods 
is the precise evaluation of the pertinent data. Very often in real-life 
decision-making applications data are imprecise and fuzzy (see, for in- 
stance, [32], [21, [34], [4], [24, 261, and [15]). For example, how can one 
quantify statements such as "What  is the value of the j th  alternative in 
terms of an environmental impact criterion?" A decision maker may 
encounter difficulty in quantifying and processing such linguistic state- 
ments. Therefore, it is desirable to develop decision-making methods 
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which use fuzzy data. It is equally important to evaluate the performance 
of these fuzzy decision-making methods. 

In [6], [8], and [16] a fuzzy version of Saaty's [20] AHP method was 
developed. In that version of fuzzy AHP, triangular fuzzy numbers were 
used with pairwise comparisons in order to compute the weights of 
importance of the decision criteria. Also, the fuzzy performance values of 
the alternatives in terms of each decision criterion were computed by using 
triangular fuzzy numbers. The fuzzy operations which were used by these 
authors are also applied later in this paper to fuzzify four more crisp 
decision-making methods. These five methods are the weighted-sum model 
(WSM), the weighted-product model (WPM), the revised AHP (RAHP) (as 
proposed by Belton and Gear [3]; it is also known as the ideal model AHP 
[21]), and the TOPSlS method [13]. These methods are briefly described in 
the next section. 

2. SOME CRISP DECISION-MAKING METHODS 

2.1. The Weighted-Sum Model 

The WSM is probably the best-known and most widely used method of 
decision making. Suppose that there are M alternatives and N criteria in a 
decision-making problem. Then the best alternative, A*, is the one which 
satisfies (in the maximization case) the following expression [12, 11]: 

N 

* = ~ aijWj, (2-1) PWS M max 
M>_i>_l i - I  

where PWSM is the WSM priority score of the best alternative, aij is the 
measure of performance of the ith alternative in terms of the j th  decision 
criterion, and wj is the weight of importance of the j th  criterion. 

The WSM method can be applied without difficulty in single-dimen- 
sional cases where all units of measurement are identical (for example, 
dollars, milage, hours, etc.). Because of the additivity utility assumption, a 
conceptual violation occurs when the WSM is used to solve multidimen- 
sional problems in which the units are different. 

2.2. The Weighted-Product Model 

The WPM uses multiplication to rank alternatives. Each alternative is 
compared with others by multiplying a number of ratios, one for each 
criterion. Each ratio is raised to the power of the relative weight of the 
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corresponding criterion. Generally, in order to compare  the two alterna- 
tives A K and A L, the following formula is used [7, 19, 11]: ()6()w 

A K aK__L 

R ~ L  = j= 1 aLj  ' 
(2-2) 

If  the above ratio is greater  than or equal to one, then (in the maximiza- 
tion case) the conclusion is that alternative A K is bet ter  than alternative 
A L. Obviously, the best alternative A* is the one which is bet ter  than or at 
least as good as all other alternatives. 

Note that the WPM is very similar to the WSM. The WPM is sometimes 
called dimensionless  analysis because its structure eliminates any units of 
measure.  Thus, the WPM can be used in single- and multidimensional 
decision problems. Also, the relative values of the measure of the ith 
alternative in terms of the j th  criterion can be replaced with actual values 
in this method.  

2.3. The Analytic Hierarchy Process 

The final step of the A H P  approach deals with the construction of an 
M × N matrix (where M is the number  of  alternatives and N is the 
number  of criteria). In this matrix the element aij represents the relative 
performance of the ith alternative in terms of the j th  criterion. The vector 
X i = ( a i d  a i 2 , . . .  , a i N )  for the ith alternative (i = 1,2,-.., M)  is the eigen- 
vector of an N × N reciprocal matrix which is determined through a 
sequence of pairwise comparisons [20]. Also, the elements in each such 
vector add up to one. The A H P  uses relative values instead of actual ones. 
Therefore,  the A H P  can be used in single- and multidimensional decision- 
making problems. The formula used by the A H P  (or the RAHP)  is the 
same as the one used by the WSM [i.e., Equation (2-1)]. 

2.4. The Revised Analytic Hierarchy Process 

The RAHP,  which was proposed by Belton and Gear  [3], is a revised 
version of the original A H P  model. They observed that sometimes it is 
possible for the A H P  to yield unjustifiable ranking reversals. In [3] a 
numerical example is demonstra ted which consists of  three alternatives 
and three criteria. Next, a new alternative, identical to a nonoptimal 
alternative, is introduced. As result, the ranking of the existing alternatives 
changes. 

The reason for that ranking inconsistency, according to Belton and 
Gear,  is that the relative performance measures of all alternatives in terms 
of each criterion summed to one. Instead of having the relative values sum 
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to one, they propose to divide each relative value by the maximum value in 
the corresponding vector of relative values. Later, Saaty [21] accepted this 
variant of the original AHP,  and now it is also known as the ideal-mode 
AHP.  

2.5. The TOPSIS Method 

TOPSIS (the Technique for Order Preference by Similarity to Ideal Solution) 
was developed by Hwang and Yoon [13] as an alternative to the ELZCTRE 
method [5]. The basic concept of this method is that the selected best 
alternative should have the shortest distance from the ideal solution and 
the farthest distance from the negative-ideal solution in a geometrical (i.e., 
Euclidean) sense. 

TOPSlS assumes that each attribute has a tendency toward monotonically 
increasing or decreasing utility. Therefore,  it is easy to locate the ideal and 
negative-ideal solutions. The Euclidean distance is used to evaluate the 
relative closeness of alternatives to the ideal solution. Thus, the preference 
order of  alternatives is derived by comparing these relative distances. 

The TOPSIS method evaluates the following decision matrix, which refers 
to m alternatives which are evaluated in terms of n criteria: 

Criterion 

C 1 C 2 C 3 "" C,, 
Alt. W 1 W 2 W 3 "'" W n 

A1 Xll x12 x13 . . .  Xln 

A2 x21 x22 x23 • .. X2n 

A3 x31 x32 x33 •. .  X3n 

A m  Xml Xm2 Xm3 "'" Xmn 

where A i is the ith alternative, Cj is the j th  criterion, and xij is the 
performance measure of the ith alternative in terms of the j th  criterion. 
Then the TOPSIS method consists of the following steps (which are adapta- 
tions of  the corresponding steps of  the ELECTRE method). 

Step 1: Construct the normalized decision matrix. This step converts the 
various attribute dimensions into nondimensional attributes, as in the 
ELECTRE method.  An element rij of the normalized decision matrix R 
is calculated as follows: 

xij (2-3) 
rij  ~ m  l X 2  
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Step 2: Construct the weighted normalized de~ision matrix. A set of  weights 
W = (w 1, w 2, ... w n) (such that  Ew i = 1), specified by the decision 
maker ,  is used in conjunct ion with the previous  normal ized  decision 
matr ix  to de t e rmine  the weighted  normal ized  matr ix  V defined as 
V = (rijWj). 

Step 3: Determine the ideal and the negative-ideal solutions. T h e  ideal 
(A*)  and the  negat ive- ideal  ( A - )  solutions are def ined as follows: 

 or/= m) 

= {v~', v~, v 3 , " ' ,  v,  }, (2-4) 

= { V l ,  U 2 , U 3 , ' " ,  Un} , ( 2 - 5 )  

where  

J = {j -- 1 ,2 , - - -  n I j associated with the benef i t  criteria} 

and 

J '  = {j = 1 ,2 , - . -  n L j associa ted with the cost criteria}. 

For  benefi t  criteria, the decision m a k e r  desires to have a m a x i m u m  
value a m o n g  the alternatives.  Fo r  cost criteria, however ,  the decision 
m a k e r  desires to have a m i n i m u m  value among  them.  Obviously,  A* 
indicates the mos t  p re fe rab le  a l ternat ive or  ideal solution. Similarly, 
A -  indicates the least p re fe rab le  a l ternat ive or  negat ive- ideal  solu- 
tion. 

Step 4: Calculate the separation measure. In this step the concept  of  the 
n-d imens iona l  Eucl idean  distance is used to measu re  the separa t ion  
distances of  each a l ternat ive  to the ideal solut ion and negat ive- ideal  
solution. The  cor responding  fo rmulas  are 

S i . = V [ ~ (Uij -- V j ,  )2 for  i = 1, 2, 3,---, m ,  (2-6) 

where  S i . is the separa t ion  (in the Eucl idean  sense)  of  a l ternat ive i 
f rom the ideal solution, and 

S i = ~/  ~ (Vij -- Vj_ )2 for  i = 1 ,2 ,  3 , - " ,  m ,  (2-7) 
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where S i is the separation (in the Euclidean sense) of alternative i 
from the negative-ideal solution. 

Step 5: Calculate the relative closeness to the ideal solution. Next, the 
relative closeness of alternative Ai with respect to the ideal solution 
A* is defined as follows: 

S i _ 
Ci ,  0 < C i ,  <_ 1, i = 1 ,2 , - ' . ,m .  (2-8) 

S i  , -~- S i 

E v i d e n t l y ,  C i , = ] if and only if A i = A*, and C i _  : 0 if and only if 
A i = A - .  

Step 6: Rank the preference order. The best satisfied alternative can now 
be decided according to preference rank order  of C i , .  It is the one 
which has the shortest distance to the ideal solution. The way the 
alternatives are processed in the previous steps reveals that if an 
alternative has the shortest distance to the ideal solution, then this 
alternative is guaranteed to have the longest distance to the 
negative-ideal solution. 

3. OPERATIONS ON FUZZY TRIANGULAR NUMBERS 

Most of the decision making in the real world takes place in a situation 
in which the pertinent data and the sequences of possible actions are not 
precisely known. Therefore,  it is very important to adopt fuzzy data to 
express such situations in decision-making problems. In order to fuzzify 
the previous five crisp decision-making methods, it is important to know 
how fuzzy operations are used on fuzzy numbers. Fuzzy operations were 
first introduced by Dubois and Prade [10, 9]. Other researchers, such as 
Laarhoven and Pedrycz [16], Buckley [8], and Boender et al. [6], treated a 
fuzzy version of the AHP by using the fuzzy operations introduced by 
Dubois and Prade. 

When the decision maker considers the problem of ranking the M 
alternatives A s, A2,-.., A M with respect to the N criteria C~, C2,..., CN, he 
or she will feel great difficulty in assigning numbers, or ratios of numbers 
to alternatives in terms of these criteria. The merit of using a fuzzy 
approach is to assign the relative importance of attributes using fuzzy 
numbers instead of crisp numbers. For fuzzy numbers we use triangular 
fuzzy numbers (that is, fuzzy numbers with lower, modal, and upper 
values), because they are simpler than trapezoidal fuzzy numbers. A fuzzy 
triangular number is defined as follows: 
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DEFINITION [9] A fuzzy number M on R ~ ( - oo, + be) is defined to be a 
fuzzy triangular number if its membership function ]£m : g ~ [0, 1] i s  equal 
to 

/+:m/ 
m,(x)  = l (3-1) 

, x ~ [ m ,  u ] ,  

~ o - U  m - u  otherwise, 

where l _< m _< u, and l and u stand for the lower and upper values of 
the support of the fuzzy number M, respectively, and m for the modal 
value. A fuzzy triangular number, as expressed by Equation (3-1), will be 
denoted by (l, m, u). 

Laarhoven and Pedrycz [16], Buckley [8], and Boender et al. [6] intro- 
duced fuzzy number operations in Saaty's AHP method by replacing crisp 
numbers with triangular fuzzy numbers. The distinction of Buckley's 
method from Boender's is that the fuzzy solution of a decision-making 
problem does not need to be approximated by fuzzy triangular numbers. 
However, the triangular approximation of fuzzy operations is plausible for 
fuzzifying the implicit solution of a decision-making problem and provides 
fuzzy solutions with much smaller spread than Buckley's method [6]. Also, 
Boender et al. proposed the use of a geometric ratio scale as opposed the 
original Saaty equidistant scale in quantifying the gradations of a human's 
comparative judgements. The basic operations on fuzzy triangular numbers 
which were developed and used in [16] are defined as follows: 

711 ~ n2 = (nat + n2l, nlm + n2m, nlu + n2u) for addition, 

/~1 ~ fi2 = (rill  >( n21, him X n2rn, nlu x nzu ) for multiplication, 

Off1 = (-nmu, -n~m, - n i t )  for negation, 

1/fi I --- (1/nlu, 1/n lm,  1~nit) for division, 

ln(fi l) --- (In(nit), ln(nim), ln(nl~)) for natural logarithm, 

exp(fi 1) =- (exp(nlt), exp(nlm), exp(nlu)) for exponential, 

where -- denotes approximation, and f i l - - (n l l ,  nlm, nlu) and fi2 = 
(n2l , n2m , n2u) represent two fuzzy triangular numbers with lower, modal, 
and upper values. For the special case of raising a fuzzy triangular number 
of the power of another fuzzy triangular number, the following approxima- 
tion was used: 

n 1 tl2m n2u fi~2 -_ (nl{ ,nl  m ,nl  ~ ). 
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Note that this formula was used only in the development of the fuzzy 
WPM (as explained later). 

4. RANKING OF FUZZY NUMBERS 

The problem of ranking fuzzy numbers appears very often in the 
literature. For instance, a comparison and evaluation of different ranking 
approaches is described in [18] and [33]. As each method of ranking fuzzy 
numbers has its advantages over the others in certain situations, it is very 
difficult to determine which method is the best one. Some important 
factors in deciding which ranking method is the most appropriate for a 
given situation include the complexity of the algorithm, its flexibility, 
accuracy, ease of interpretation, and the shape of the fuzzy numbers which 
are used. 

A widely accepted method for comparing fuzzy numbers was first intro- 
duced by Baas and Kwakernaak [1]. Tong and Bonissone [22] introduced 
the concept of a dominance measure and proved it to be equivalent to 
Baas and Kwakernaak's ranking measure. This method was also later 
adopted by Buckley [8]. According to Zhu and Lee [33] this ranking 
method is less complex and still effective. It allows a decision maker to 
implement it without difficulty and with ease of interpretation. Therefore,  
in this paper we use this method in ranking fuzzy triangular numbers. 
However, a given problem may require a different method. 

The above procedure for ranking triangular fuzzy numbers is used as 
follows. Let /~i(x) denote the membership function for the fuzzy number 
fi i. Next, define 

max min( /~i (x) , /~ j (y))}  for all i, j = 1,2, 3,-.., m. (4-1) CiJ ~" x>y_ { 

Then /2i dominates (or outranks) fij, written as fii > fij, if and only if 
eij = 1 and eji < Q, where Q is some fixed positive fraction less than one. 
Values such as 0.7, 0.8, or 0.9 might be appropriate for Q; the value should 
be set by the analyst and possibly be varied for a sensitivity analysis. In the 
computational experiments reported later in this study the value Q = 0.9 
was used. The above concepts are best explained in the following illustra- 
tive example: 

EXAMPLE 4-1 Suppose that the importances of two alternatives A 1 and 
A 2 are represented by the two fuzzy triangular numbers fil = (0.2, 0.4, 0.6) 
and fi2 = (0.4,0.7,0.9), respectively. Next, observe from Figure l that 
e21 = 1 and e12 = 0 . 4  < Q = 0.9. Therefore,  the best alternative is A 1. 
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/.£m 

51 ~2 
l .  00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#,( n= 

elo = 0.40 

0.00 
g . 8 0  0 . 2 8  0 . 4 0  0 . 6 0  0 . B 0  J . . ~  

X 

Figure 1. Membership functions for the fuzzy alternatives A 1 and A 2. 

5. FUZZIFICATION OF THE CRISP MADM METHODS 

In the following subsections the procedures applied by Laarhoven and 
Pedrycz [16] and Boender et al. [6] will be used on the crisp multiattribute 
decision methods (MADM) described in Section 2. Some numerical exam- 
ples are also given for a better illustration of these procedures. 

5.1. The Fuzzy Weighted-Sum Model 

Recall that the best alternative according to this model is the one which 
satisfies Equation (2-1). Now, the performance value of the ith alternative 
in terms of the j th  criterion is a fuzzy triangular number denoted as 
aij = (aijl,  aijm, aiju). Analogously, it is assumed that the decision maker 
will use fuzzy triangular numbers in order to express the weights of 
importance of the criteria. These weights are denoted as ~j = (Wyl, Wjm , Wju). 
Also, to be consistent with the basic requirement that the weights usually 
add up to one (in a crisp environment), now it is required that the sum of 
Wjm (the modal values of the fuzzy triangular numbers which represent the 
criterion weights) be equal to one. From the above considerations it 
follows that now the best alternative is the one which satisfies the follow- 
ing relation: 

N 

PFWSM : max ~ aijWj f o r  i = 1 , 2 , 3 , ' " ,  M. (5-1) 
j = l  
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EXAMPLE 5-1 Let a decision problem be defined on the four criteria 
CI, C 2, C 3, C a and the three alternatives A1, A z, A 3. Suppose that the data 
for this problem are as shown in the following fuzzy decision matrix: 

C 1 C 2 C3 Ca 
(0.13,0.20,0.31) (0.08,0.15,0.25) (0.29,0.40,0.56) (0.17,0.25,0.38) 

~zl 1 

A2 
A3 

(3.00, 4.00, 5.00) 
(6.00, 7.00, 8.00) 
(4.00, 5.00, 6.00) 

(5.00, 6.00, 7.00) (5.00, 6.00, 7.00) 
(5.00, 6.00, 7.00) (0.50, 1.00, 2.00) 
(3.00, 4.00, 5.00) (7.00, 8.00, 9.00) 

(2.00, 3.00, 4.00) 
(4.00, 5.00, 6.00) 
(6.00, 7.00, 8.00) 

Therefore, when the fuzzy WSM approach is used, the final priority scores 
(denoted as P1, P2, and P3) of the alternatives are 

P1 = (0.13,0.20,0.31) × (3.00,4.00,5.00) + (0.08,0.15,0.25) 

× (5.00, 6.00, 7.00) 
+ (0.29, 0.40, 0.56) × (5.00, 6.00, 7.00) + (0.17, 0.25, 0.38) 
× (2.00, 3.00, 4.00) 

= (2.583, 4.850, 8.750), 
and similarly, 

P2 = (1.979~ 3.950, 7.625), 

P3 = (3.792, 6.550, 11.188). 

Figure 2 displays the membership functions of these final results. They 
could be interpreted as a measure of the ability of each alternative to meet 

1 . 0 0  . . . . . . . . . . . . . . . . . .  

Q = 0 . 9 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / .  . . . . . . . . . . . . . . . . .  

d 

0 . 0 0  

3 .0  2 . 0  4 . 0  6 . 0  g . g  1 0 . 0  1 2 . 0  

X 
Figure 2. Membership functions of the alternatives A1, A 2, and A 3 of Example 
5-1 according to the fuzzy WSM. 



Five Multiattribute DM Methods 291 

the decision criteria. From this figure it is clear that e31 = e32 = el2 = 1, 
and e13, e23 , and e21 are less than Q (=  0.9). Thus, according to the 
ranking procedure which was discussed in Section 4, alternative A 3 is the 
most preferred alternative. 

5.2. The Fuzzy Weighted-Product Model 

The best alternative according to this model is the one which satisfies 
Equation (2-2). For the fuzzy version of this model the corresponding 
formula is 

A K  aKj  
R ~- , 

j = l  aLj  
(5-2) 

where aKj, aLj, and ffj are fuzzy triangular numbers. Alternative A K 

dominates alternative A t if and only if the numerator in Equation (5-2) is 
greater than the denominator. The application of (5-2) is also illustrated in 
the following example: 

EXAMPLE 5-2 The data used in Example 5-1 are also used here. When the 
relation (5-2) is used, the following ratios are obtained: 

R(A1/A 2) = [(3.00, 4.00, 5.00) (0"13'0'20'0"31) X (5.00, 6.00, 7.00)(0-08,0.t5,0 -25) 

X (5.00, 6.00, 7.00) (0"29'0"40'0"56) X (2.00,  3.00, 4.00) (0"17'0"25'0"38) 

/ ( 6 . 0 0 ,  7.00, 8.00) (°'13'0"2°'°'31) X (5.00,  6.00, 7.00) (°'°8'°'15'°'25) 

x (0.50, 1.00, 2.00) (0"29'0"40'0"56) x (4.00,  5.00, 6.00) (0"17'0'25 ,0.38)] 

= (2.355, 4.652, 13.516)/(1.473, 2.887, 9.008), 

and similarly, 

R(A1/A 3) = (2.355,4.652, 13.516)/(3.099, 6.348, 19.649), 

R(Az /A  3) = (1.473, 2.887, 9.008)/(3.099, 6.348, 19.649). 

According to (4-1) the eq values are as follows: e31 = e32 = e12 = 1, and 
e13 , e23 , e21 are less than Q (=  0.9). Obviously, alternative A 3 dominates 
all other alternatives. The priority values (as fuzzy numbers) are shown in 
Figure 3. Note that the best alternative according to the fuzzy WSM and 
WPM approaches is identical (in this numerical example) although the 
fuzzy WPM requires more complicated operations to reach the final 
results. 
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1. oe 

~.0 a.i 

A t A 3 

) 
5.a 7 .e 

X 
Figure 3. Membership functions of alternatives A1, A2, and A3 of Example 5-2 
according to the fuzzy WPM. 

5.3 The Fuzzy Analytic Hierarchy Process 

In [16] and [6] a fuzzy version of the AHP method was presented. An 
example is shown below to illustrate that approach by using fuzzy triangu- 
lar numbers. 

EXAMPLE 5-3 Consider a decision problem with four criteria and three 
alternatives. Suppose that when the decision maker is asked to compare 
the three alternatives in terms of the first criterion by using pairwise 
comparisons, the following reciprocal judgment matrix was derived: 

A 1 

A2 
A 3 

A 1 A 2  A 3  

(1,1,1) (~, ½, 2) (~-, 1 4-, 1 2  .~) 
(½, 2, 6) (1, 1, 1) (½, ~, 1) 
(3, 4, 10) (1, 3, 8) (1, 1, 1) 

Note that when an alternative is compared with itself, the fuzzy number 
(1, 1, 1) is used instead of the crisp number 1.00. 

Next, the fuzzy eigenvector of the above matrix is estimated. Recall that 
given a crisp reciprocal matrix, then according to Saaty the right principal 
eigenvector of the matrix expresses the importances of the alternatives. 
Some alternative procedures for estimating importances from pairwise 
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comparisons are discussed by Triantaphyllou et al. in [24, 26], and a 
partitioning method is presented by Triantaphyllou in [30]. Saaty [21] 
approximates the eigenvector by multiplying the elements in each row and 
then taking the nth root (an evaluation of that procedure can be found in 
[25, 28]). Therefore, the fuzzy version of the above procedure yields the 
following fuzzy importances of the three alternatives: 

1 1/3 
U 1 ~-~ [(1, 1, 1) × (-~, ½,2) x ( ~ ,  %, 2)] 

1 v2 [(5,2, 6/ × (1, 1, 1) x (½, ½, 1)] 1/3 

3 U3 [ ( 5 '  4, 10) X (1,3,8) X (1,1, 1)] 1/3 

= (0.25, 0.50, 1.10), 

= (0.40, 0.87, 1.82), 

= (1.14, 2.29, 4.31). 

Next, the above vector is normalized according to the corresponding 
requirement in the original crisp AHP. The normalized vector is derived by 
dividing each entry by the sum of the entries in the vector. It can be easily 
verified that the normalized priority vector is 

(0.02, 0.14, 0.99) ] 
(0.06, 0.24, 1.02)/. 
(0.16, 0.62, 2.41) J 

At this point let us assume that the fuzzy eigenvectors of the pairwise 
comparisons when the three alternatives are compared in terms of each of 
the remaining criteria are also derived in a similar manner, along with the 
weights of importance of the four criteria, and form the vectors in the 
following fuzzy decision matrix: 

C 1 C 2 C 3 C 4 

(0.08,0.18,0.46) (0.08,0.16,0.39) (0.17,0.40,0.86) (0.11,0.26,0.61) 

A 1 

A2 
A3 

(0.02, 0.14, 0.99) 
(0.06, 0.24, 1.02) 
(0.16, 0.62, 2.41) 

(0.18,0.44,0.95) (0.22,0.37,0.64) (0.12,0.23,0.55) 
(0.14,0.35,0.83) (0.07,0.10,0.15) (0.13,0.30,0.69) 
(0.11,0.21,0.53) (0.30,0.53,0.91) (0.19,0.47,1.00) 

According to Equation (5-1) the final priority scores (denoted as P1, P2, 
and P3 ) of the three alternatives are as follows: 

P1 = (0.02, 0.14, 0.99) x (0.08, 0.18, 0.46) 

+ (0.18, 0.44, 0.95) x (0.08, 0.16, 0.39) 

+ (0.22, 0.37, 0.64) x (0.17, 0.40, 0.86) 

+(0.12,0.23,0.55) x (0.11,0.26,0.61) 

= (0.068, 0.474, 1.887), 
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and similarly, 

P2 = (0.772, 0.208, 1.908), 

P3 = (0.897, 0.480, 2.696). 

When the ranking procedure described in Section 4 is applied on P~, P2, 
and /'3, it can be easily shown that alternative A 3 is the best one. 

Finally, it should be stated here that other pairwise comparison proce- 
dures require the comparisons not to be considered as ratios but as 
differences (see, for instance, [27]). A survey of some critical issues in the 
use of pairwise comparisons is presented in [29]. 

5.4. The Revised Analytic Hierarchy Process 

As mentioned in Section 2.4., the revised version of the AHP (which is 
also called the ideal-modeAHP [21]) as proposed by Belton and Gear [3] is 
to normalize the relative performance measures of the alternatives in 
terms of each criterion by dividing the values by the largest one. This is the 
only difference from the original AHP method. The fuzzy version of the 
revised AHP is best illustrated in the following example, which uses the 
same numerical data as the last example. 

EXAMPLE 5-4 In this example the vectors in the fuzzy decision matrix of 
Example 5-3 are divided by the largest entry in that vector. In this way the 
following decision matrix is derived: 

A 1 

A2 
A3 

C 1 C 2 C 3 C 4 
(0.08,0.18,0.46) (0.08,0.16,0.39) (0.17,0.40,0.86) (0.11,0.26,0.61) 

(0.01, 0.21, 9.90) (0.44, 1.00, 2.29) 
(0.01, 0.38, 1.14) (0.35, 0.79, 2.00) 
(0.07, 1.00, 15.1) (0.26, 0.50, 1.26) 

(0.41, 0.69, 1.26) 
(0.13, 0.19, 0.30) 
(0.56, 1.00, 1.78) 

(0.26, 0.50, 1.26) 
(0.30, 0.63, 1.59) 
(0.44, 1.00, 2.29) 

In a manner similar to the one used in the original AHP, the final scores 
of the alternatives are calculated as follows: 

P~ = (0.08, 0.18, 0.46) × (0.01,0.21,9.90) 

+ (0.08, 0.16, 0.39) x (0.44, 1.00, 2.29) 

+ (0.17, 0.40, 0.86) x (0.41, 0.69, 1.26) 

+ (0.11, 0.26, 0.61) × (0.26, 0.50, 1.26) 

= (0.130, 0.605, 2.923). 
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and similarly, 

P2 = (0.081,0[422, 2.525), 

P3 = (0.167, 0.932, 11.45). 

When the ranking procedure described in Section 4 is applied on P1, P2, 
and P3, it can be easily shown that alternative Z 3 is the best one. 

5.2. The Fuzzy TOPSIS Method 

The fuzzy version of the TOPSIS method is best illustrated in the 
following numerical example. 

EXAMPLE 5-5 

Step 1: Construct the normalized decision matrix. Suppose that when a 
decision problem with four criteria and three alternatives is consid- 
ered, the following fuzzy decision matrix was derived: 

C 1 C 2 C 3 C 4 
(0.13,0.20,0.31) (0.08,0.15,0.25) (0.29,0.40,0.56) (0.17,0.25,0.38) 

A l (0.08,0.25,0.94) (0.25,0.93,2.96) (0.34,0.70,1.71) (0.12,0.24,0.92) 
A 2 (0.23, 1.00, 3.10) (0.13, 0.60, 2.24) (0.03, 0.05, 0.09) (0.12, 0.40, 1.48) 
A 3 (0.15,0.40,1.48) (0.13,0.20,0.88) (0.62, 1.48,3.41) (0.24,1.00,3.03) 

Step 2: Construct the weighted normalized decision matrix. Given the 
previous fuzzy decision matrix, the corresponding fuzzy weighted 
normalized matrix is 

A 1 

A2 
A3 

C 1 C 2 C 3 C 4 

(0.01,0.05,0.29) (0.02,0.14,0.74) (0.10,0.28,0.96) (0.02,0.06,0.35) 
(0.03, 0.20, 0.96) (0.01, 0.09, 0.56) (0.01, 0.02, 0.05) (0.02, 0.10, 0.55) 
(0.02,0.08,0.46) (0.01,0.03,0.22) (0.18,0.59,1.91) (0.04,0.25,1.15) 

Step 3: Determine the Meal and negative-ideal solutions. According to the 
fuzzy version of Equations (2-4) and (2-5), the ideal solution A* and 
the negative-ideal solution A -  are as follows: 

A* = {(0.03, 0.20, 0.96), (0.02, 0.14, 0.74), (0.18, 0.59, 1.91), 

(0.04, 0.25, 1.15)}, 

A -  = {(0.01,0.05, 0.29), (0.01,0.02, 0.22), (0.01,0.02, 0.05), 

(0.02, 0.06, 0.35)}. 
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Step 4: Calculate the separation measure. W h e n  the fuzzy versions o f  
Equat ions  (2-6) and (2-7) are used, the following separat ion distances 
between each alternative and the ideal and negative-ideal solutions 
are derived: 

S 1 . = (0.09, 0.39, 1.41), $1_ = (0.09, 0.28, 1.04), 

S 2 . = (0.17, 0.59, 1.95), S 2_ = (0.02, 0.16, 0.76), 

$3 ,  = (0 .02,0 .16,0 .71) ,  $3 = (0 .17,0 .60,2 .03) .  

For  instance, 

$1 ,  = {[(0.01,0.05, 0.29) - (0.03, 0.20, 0.96)] 2 

x [(0.02, 0.14, 0.74) - (0.02, 0.14, 0.74)] 2 

× [(0.02, 0.06, 0.35) - (0.04, 0.25, 1 . ]5 ) ]  2 

× [(0.10, 0.28, 0.96) - (0.18, 0.59, 1.91)]2} 1/2 

= (0.09, 0.39, 1.41). 

Step 5: Calculate the relative closeness to the ideal solution. The relative 
closeness to the ideal solution of  the three alternatives is defined by 
the fuzzy version of  Equat ion  (2-8) as follows: 

S i_ (0.09, 0.39, 1.41) 
C1.  

S 1 , + S 1 _ (0.09, 0.39, 1.41) + (0.09, 0.28, 1.04) 

= (0.04, 0.42, 5.83), 

and similarly, 

C 2 , = (0 .01 ,0 .21,3 .99) ,  

C 3 , = (0.06, 0.79, 10.42). 

W h e n  the ranking p rocedure  described in Section 4 is applied, it can 
be easily shown that  the previous closeness measures  are ranked 
as follows: C 3 ,  > C 1, > C 2 , .  Therefore ,  the preference  order  of  
the three alternatives is A 3 > A 1 > A 2. That  is, the best alternative 
is A 3. 

6. EVALUATIVE CRITERIA FOR FUZZY MADM METHODS 

The previous five fuzzy decision-making methods  can all be used in fuzzy 
decis ion-making problems.  However ,  these methods  may derive different 
answers for  the same problem. Since the best alternative should be the 
same no mat ter  which me thod  is used, an examinat ion of  the accuracy and 
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consistency of these methods is highly desirable. Two evaluative criteria 
are introduced in this section to examine the performance of these fuzzy 
decision-making methods. 

In [23] the effectiveness of four crisp decision-making me thods - - the  
WSM, the WPM, the AHP, and the revised A H P - - w a s  studied. Two 
evaluative criteria were used in that research to test these crisp decision- 
making methods. These two criteria are adopted here and are used to 
examine the performance of the five fuzzy decision-making methods de- 
fined previously. 

The first evaluative criterion deals with the consistency of a method when 
single-dimensional problems are considered (i.e., problems in which there 
is only one unit of measurement).  That  is, if a method is accurate in 
multidimensional problems, then it should also be accurate in single- 
dimensional problems. This is true because single-dimensional problems 
can be viewed as a special case of multidimensional problems. 

In a crisp and single-dimensional environment the WSM yields the most 
reasonable results. Therefore,  in a crisp single-dimensional problem one 
may want to compare the results of the WPM, AHP, and TOPSIS with the 
results derived by using the WSM. In a fuzzy setting, however, one may 
want to apply the above evaluative criterion by comparing the result of the 
fuzzy WSM with those obtained by applying the fuzzy versions of the 
WPM, AHP, and TOPSIS methods. In comparing the ranking derived by 
using the fuzzy WSM and any one of the other methods, two contradiction 
rates can be determined. The first is the rate at which the best alternative is 
not the same by both methods. The second is the rate at which two 
rankings are different in terms of any (i.e., not just the best) alternative. 

The second evaluative criterion examines the stability of the results 
derived by a method when a nonoptimal alternative is replaced by a worse 
one. A perfectly accurate method should rank some alternative as the best, 
even after a nonoptimal alternative is replaced by a worse alternative (and 
assuming that the rest of the data remain the same). The second evaluative 
criterion considers the premise that a method should not change its 
indication of the best alternative when a nonoptimal alternative is replaced 
by a worse one. 

In [29] data for simulation experiments when the AHP is tested are 
generated by using the concepts of RCP (real and continuous pairwise) 
and CDP (closest and discrete pairwise) matrices. These matrices are used 
to emulate the derivation of pairwise comparisons by a decision maker 
under the assumption that h e / s h e  is as accurate as possible. Some 
interesting properties of these classes of matrices are elaborated in [29]. 
The notion of these matrices, along with their fuzzy extensions, is dis- 
cussed in the following examples, which demonstrate the application of the 
two evaluative criteria. 
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6.1. Using the First Evaluative Criterion 

The following example illustrates the procedure of testing the fuzzy 
decision-making methods by using the first evaluative criterion. 

EXAMPLE 6-1 Let a decision problem involve four decision criteria and 
three alternatives. Let all the data be expressed in terms of the same unit 
of measurement (e.g. dollars, hours, kilograms). Suppose that the following 
decision matrix depicts the actual (and thus unknown to the decision 
maker) data for this problem: 

A 1 

A2 
A 3  

C 1 C 2 C 3 C 4 
6.015 5.526 8.349 5.721 

4.454 3.253 3.987 5.816 
3.647 8.450 1.447 2.189 
6.232 7.273 2.496 4.756 

The decision maker is assumed not to know these data. Next, h e / s h e  is 
asked to use triangular fuzzy numbers in which the lower, modal, and 

| 1 upper values are members of the set of the numbers: {~, 8, 7, 
• -. ,1, 2, 3,..., 7, 8, 9}. These are the values recommended by the Saaty scale 

[21] when one wishes to quantify pairwise comparisons. It is also assumed 
here that the decision maker is as accurate as possible. Therefore,  for 
instance, when the decision maker attempts to estimate the performance 
of the first alternative in terms of the first criterion, the fuzzy number (3, 4, 
5) is used. Observe that the modal value of this number is the closest 
number in the above set to the actual value of 4.454. Also, the lower and 
upper values of that fuzzy number are one unit apart. In a similar manner 
the rest of the entries are estimated, and thus the following fuzzy decision 
matrix is assumed to have been obtained by the decision maker: 

C 1 C 2 C 3 C4 
(5, 6, 7) (5, 6, 7) (7, 8, 9) (5, 6, 7) 

A 1 

A2 
A3 

(3, 4, 5) (2, 3, 4) (3, 4, 5) (5, 6, 7) 
(3, 4, 5) (7, 8, 9) (0.5, 1, 2) (1, 2, 3) 
(5, 6, 7) (6, 7, 8) (1, 2, 3) (4, 5, 6) 

Therefore,  the final priority scores of the alternatives are calculated as 
follows: 

PI = (5 ,6 ,7 )  X (3 ,4 ,5 )  + (5 ,6 ,7 )  x (2 ,3 ,4 )  + (7 ,8 ,9 )  X (3 ,4 ,5)  

+ ( 5 , 6 , 7 )  x (5 ,6 ,7 )  

= (71,105,157),  
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and similarly, 

P2 = (58.5,92,135),  

P3 = (82,124,174).  

When the ranking procedure which was discussed in Section 4 is used, it 
can be easily determined that the best alternative is A 3 and the three 
alternatives are ranked as follows: A 3 > A 1 > A 2. 

In the following paragraphs it is assumed that the decision maker is 
using the fuzzy AHP method. Observe that if the decision maker knew the 
actual data shown in the original crisp decision matrix, then the matrix of 
the actual pairwise comparisons (call it a) when the four decision criteria 
are compared with each other would be as follows (this is the correspond- 
ing RCP matrix): 

6.0151 [ 1 1.09 0.72 1.05] 
5 .526 |  ~ |0 .91  1 0.66 0 .97 |  = 
8.349 | | 1.39 1.52 1 1 .46 |  
5.721] L0.95 1.03 0.68 1 ]  

OZ. 

For instance, the entry o~12 = 1.09 = 6.015/5.526. However, in reality the 
decision maker will never know the actual values of the pairwise compar- 
isons. At this point, it is assumed that the decision maker is as accurate as 
possible, and when he / she  is asked to use fuzzy triangular numbers, then 
he / she  is able to determine the following matrix (say matrix /3) with the 
closest fuzzy pairwise comparisons (this is the corresponding fuzzy CDP 
matrix): 

/ 3  = 

(1,1,  1) (0.50, 1,2) (0.30, 0.50, 1) (0.50, 1,2) ] 
(0.50, 1, 2) (1, 1, 1) (0.30, 0.50, 1) (0.50, 1, 2) | 
(0.50, 1, 2) (1, 2, 3) (1, 1, 1) (0.50, 1,2) 1" 
(0.50, 1,2) (0.50, 1,2) (0.30,0.50, 1) (1, 1, 1) J 

For instance, the value /332 = (1, 2, 3) is derived from oL32 ( =  1.52), in 
which 1.52 has the absolute minimal difference from the value 2 from 
Saaty's original scale. Therefore, the modal value of /332 is set equal to 2, 
and the upper and lower values of /332 a r e  1 and 3, respectively, which are 
one unit separated from the modal value. Similarly, the fuzzy pairwise 
comparisons (i.e., the corresponding fuzzy CDP matrices) of the three 
alternatives in terms of each decision criterion are derived in accordance 
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with the Saaty scale and are as follows: 

4.454 ] 
3.647 | 
6.232_1 

3.253 ] 
8.450 | 
7.273 J 

3.987 ] 
1.447 ] 
2.496.] 

5.816] 
2.189 =~ 
4.736 

1 1.22 0.71] 
0.82 1 0.59 
1.41 1.69 1 

(1, 1, 1) (0.50, 1, 2) 
(0.50, 1,2) (1, 1, 1) 

(1,2, 3) (2, 3, 4) 

1 0.38 0.45] 
1 ,16j 

2.22 0.86 

(1,  1, 1) (0.25,0.30,0.50) 
(2, 3, 4) (1, 1, 1) 
(1, 2, 3) (0.50, 1,2) 

1 2.76 1.60] 
0.36 1 0.58 l 0.63 1.72 1 

(1, 1, 1) (2, 3, 4) 
(0.25, 0.30, 0.50) (1, 1, 1) 

(0.30,0.50,1) (1,2,3) 

1 2.66 1.23] 
0.38 1 0.46] 
0.81 2.17 

(0.30, 0.50, 1) ] 
(0.30, 0.50, 1) 1' 

(1, 1,1) 

(0.30, 0.50, 1) ] 
(0.50, 1,2) 1' 

(1, 1,1) 

(1,2,3) ] 
(0.30,0.50, 1) , 

(1,1,1) 

(1,1,1) (2,3,4) (0.50,1,2) ] 
= (0.25, 0.30, 0.50) (1, 1, 1) (0.30, 0.50, 1) ]. 

(0.50, 1, 2) (1, 2, 3) (1, 1, 1) 

Next, the eigenvector approach and normalization procedure are applied 
to the above fuzzy reciprocal matrices in order to derive the relative 
preference values of the alternatives in terms of the criteria, along with the 
weights of importance of the four decision criteria. Therefore, the derived 
fuzzy decision matrix (which we assume the decision maker has estimated) 
is as follows: 

C1 C 2 
(0.09, 0.22, 0.69) (0.08, 0.23, 0.61) 

(0.13, 0.29, 0.67) (0.10, 0.17, 0.35) 
(0.10, 0.22, 0.52) (0.24, 0.47, 0.90) 
(0.24, 0.49, 0.84) (0.16, 0.36, 0.66) 

C3 C 4 
(0.11, 0.32, 0.73) (0.08, 0.23, 0.61) 

A 1 
A2 
A3 

(0.29, 0.55, 0.98) (0.23, 0.46, 0.91) 
(0.09,0.16,0.34) (0.09,0.16,0.36) 
(0.14, 0.29, 0.60) (0.16, 0.38, 0.81) 
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The final priority scores P1, P2, and P3 of the three alternatives are 
derived as before and are as follows: 

P1 = (0.09, 0.26, 0.72) × (0.12, 0.28, 0.66) + (0.08, 0.22, 0.60) 

× (0.09, 0.16, 0.34) 

+ (0.11,0.30, 0.72) x (0.28, 0.54, 0.97) + (0.08, 0.22, 0.60) 

× (0.22, 0.45, 0.90) 

= (0.070, 0.384, 1.946), 

and similarly, 

P2 = (0.045, 0.245, 1.376), 

P3 = (0.063, 0.371, 1.914). 

When these priority values are ranked as before, then the three alterna- 
tives are ranked as follows: A~ > A 3 > A 2. That  is, alternative A 1 turns 
out now to be the best one. Obviously, this is in contradiction with the 
results derived when the fuzzy WSM was applied at the beginning of this 
illustrative example. 

At the same time, it can also be observed that the entire ranking order 
of the alternatives as derived by the fuzzy WSM and the fuzzy AHP has 
also changed (that is, from A 3 > A 1 > A 2 to A 1 > A 3 > A2). Therefore,  a 
contradiction occurs between fuzzy WSM and fuzzy AHP when one 
compares the entire ranking orders of the three alternatives for this 
illustrative example. 

It is possible that the best alternative derived from the fuzzy WSM and 
other fuzzy methods is identical but the remaining alternatives change 
their orders. The revised (i.e., ideal-mode) AHP, WPM, and TOPSIS meth- 
ods can be examined as above, and it can be similarly demonstrated that 
they also yield contradictions when a single-dimensional environment is 
assumed and the fuzzy WSM is used as the norm. 

6.2. Using the Second Evaluative Criterion 

Similarly to Section 6.2, the use of the second evaluative criterion is best 
illustrated by an example. 

EXAMPLE 6-2 As with the previous example, suppose that a decision 
problem with four criteria and three alternatives has the following decision 
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matrix (again, i t is  assumed that these values are unknown to the decision 
maker): 

A 1 

A2 
A3 

C 1 C 2 C 3 C 4 
2.885 3.987 2.434 4.894 

8.283 7.851 1.064 4.554 
5.284 8.626 4.161 3.750 
1.358 2.905 8.501 4.888 

When one generates the fuzzy triangular numbers as before and pro- 
ceeds as in the previous example, it can be easily shown that the corre- 
sponding fuzzy decision matrix (which we assume the decision maker can 
derive for this problem) is as follows: 

A 1 

A2 
A3 

C1 C2 C3 C4 
(0.08,0.18,0.47) (0.11,0.30,0.74) (0.08,0.18,0.47) (0.13,0.35,0.82) 

(0.35, 0.59, 0.91) 
(0.21, 0.32, 0.57) 
(0.06, 0.09, 0.13) 

(0.22, 0.43, 0.83) (0.06, 0.08, 0.11) 
(0.22, 0.43, 0.83) (0.20, 0.31, 0.54) 
(0.09, 0.14, 0.26) (0.38, 0.62, 0.94) 

(0.13,0.33,0.84) 
(0.13,0.33,0.84) 
(0.13,0.33,0.84) 

Also, the final priority scores P1, P2, and P3 of the three alternatives can 
be shown to be as follows: 

P1 = (0.073,0.361,1.889), 

P2 = (0.073,0.355,1.824), 

P3 = (0.061,0.284,1.388). 

Evidently, alternative A 1 is the best one. 
Next, alternative A 3 (which is not the best one) in the original matrix is 

replaced by A' 3, which is worse than the original A 3. The performance 
values of A' 3 are the same as in the original alternative A 3 except that the 
third value in terms of criterion C3, 8.501, is replaced by the least one, 
1.064. Thus, the original matrix of crisp numbers is modified as follows: 

..41 

A2 
A; 

C 1 C 2 C 3 C 4 
2.885 3.987 2.434 4.894 

8.283 7.851 1.064 4.554 
5.284 8.626 4.161 3.750 
1.358 2.905 1.064 4.888 
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In order to test the stability of the fuzzy AHP method, the same 
procedure as above is repeated in order  to determine the best alternative. 
The new fuzzy decision matrix can be shown to be as follows: 

A 1 

A2 
M' 3 

C 1 C 2 C 3 C 4 
(0.08, 0.18, 0.47) (0.11, 0.30, 0.74) (0.08, 0.18, 0.47) (0.13, 0.35, 0.82) 

(0.35, 0.59, 0.91) 
(0.21, 0.32, 0.57) 
(0.06, 0.09, 0.13) 

(0.22, 0.43, 0.83) (0.10, 0.17, 0.29) (0.13,0.33, 0.84) 
(0.22, 0.43, 0.83) (0.45, 0.67, 0.97) (0.13, 0.33, 0.84) 
(0.09, 0.14, 0.26) (0.10, 0.17, 0.29) (0.13, 0.33,0.84) 

The final priority scores now become 

P1 = (0.077, 0.377, 1.872), 

P2 = (0.092, 0.418, 2.030), 

P~ = (0.040, 0.205, 1.082). 

From the above scores it is obvious that now the best alternative is A 2. 
This result is in contradiction with the earlier result, namely that the best 
alternative is A 1. This analysis indicates that a contradiction may occur 
when the fuzzy AHP (original version) is used and a nonoptimal alterna- 
tive is replaced by a worse one. In a similar manner  it can be shown that 
the ideal AHP, WPM, and TOPSIS methods may also fail when they are 
tested in a similar manner. 

7. COMPUTATIONAL EXPERIMENTS 

The previous fuzzy decision-making methods were evaluated by generat- 
ing test problems which were treated like Examples 6-1 and 6-2 and then 
recording the contradiction rates. These experiments were conducted in an 
attempt to examine the performance of the previously mentioned fuzzy 
decision-making methods in terms of the two evaluative criteria. There- 
fore, the three contradiction rates which were considered in these compu- 
tational experiments are summarized as follows: 

R l l  is the rate at which the fuzzy WSM and another fuzzy method 
disagree in the indication of the best alternative. 

R12 is the rate at which the fuzzy WSM and another fuzzy method 
disagree on the entire ranking of the alternatives. 

R21 is the rate at which a method changes the indication of the best 
alternative when a nonoptimal alternative is replaced by a worse 
alternative. 



304 Evangelos Triantaphyllou and Chi-Tun Lin 

The  c o m p u t e r  p r o g r a m  was wr i t t en  in FORTRAN and run on an I B M  
3090 m a i n f r a m e  compute r .  A to ta l  of  400 (i.e., 10 a l te rna t ives  × 10 
cr i ter ia  × 4 me thods )  cases  were  examined  with 3, 5, 7, . . . ,  19, 21 a l te rna-  
tives and  3 ,5 ,7 , . . . ,  19,21 cr i ter ia .  T h r e e  kinds of  con t rad ic t ion  ra tes  
were  r e c o r d e d  for  each case by runn ing  each  case with 500 r a n d o m  
repl ica t ions .  

As  s ta ted  in the  prev ious  sect ions,  it was a s sumed  that  the  dec is ion  
m a k e r  d id  not  know the ac tual  values  o f  the  a l te rna t ives  in t e rms  of  the  
decis ion cr i ter ia  o r  the  weights  of  i m p o r t a n c e  of  the  dec is ion  cr i ter ia .  
F o r  the  pu rposes  o f  these  s imula t ions ,  the  or iginal  i m p o r t a n c e  measu re s  
of  the  a l te rna t ives  in t e rms  of  the  decis ion cr i ter ia  were  g e n e r a t e d  
r andomly  within the  interval  [1, 9] (which is the  interval  o f  the  values  
accord ing  to the  or iginal  Saa ty  scale).  The  fuzzy A H P  (or iginal  and  
revised),  W P M ,  and  TOPSlS m e t h o d s  were  then  examined  in t e rms  o f  the  
two evaluat ive  cr i te r ia  in a m a n n e r  s imi lar  to the  p r o c e d u r e s  desc r ibed  
in E x a m p l e s  6-1 and  6-2. The  compu ta t i on a l  resul ts  a re  dep ic t ed  in 
F igures  4 to 8 and  are  also discussed in the  fol lowing two subsect ions.  

7.1. Description of the Computational Results 

In F igures  4 to 8 the  fuzzy A H P ,  fuzzy revised A H P ,  fuzzy W P M ,  and  
fUZzy TOPSIS are  d e n o t e d  as F - A H P ,  F - R A H P ,  F - W P M ,  and F - T O P S I S ,  
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respectively. The computational results suggest that the contradiction rate 
RI!  increases as the number of alternatives increases. For a more trans- 
parent illustration, Figures 4 and 5 depict the results only for the cases 
where the number of alternatives is equal to 3 and 21. These results reveal 
that the rate of change of the indication of the best alternative increases as 
the number of alternatives increases, no matter which method is used. 
However, the number of criteria does not seem to be important. 

For the contradiction rate R21, which indicates changes of the best 
alternative when a nonoptimal alternative is replaced by a worse one, it 
can be seen from the plots in Figures 6 and 7 that the fuzzy revised (i.e., 
ideal-mode) AHP is slightly better than the other methods. 

Similarly, the contradiction rate R12, which indicates changes in the 
entire ranking of alternatives between the fuzzy WSM and other methods, 
shows similar behavior. In this case only the results for number of 
alternatives equal to 3 are shown (in Figure 8). This is because the results 
for rate R12 when the number of alternatives is 21 were equal to 100% (or 
very near that value). 

Despite the increasing inaccuracy of these fuzzy methods when the 
decision-making problems become more complex, it can be seen from 
these graphs that the fuzzy revised AHP is better than any other fuzzy 
decision-making method in most cases. This results turns out to be in 
agreement with the results originally reported in [23] (which examined the 
same problems in a crisp setting). However, now the fuzzy WPM becomes 
the worst method in terms of the contradiction rate R21 (it was the second 
best method in the crisp setting). 

7.2. Findings of the Simulation Experiments 

The results derived from the computational experiments lead to some 
interesting observations. First, none of the fuzzy decision-making methods 
examined in this study is perfectly effective in terms of both evaluative 
criteria. The results indicate that each method yields different rates of 
contradiction. 

Secondly, the results reveal that the contradiction rates increase when 
the number of alternatives increases. That is, the methods are less accu- 
rate when the decision-making problems become more complex. 

Finally, it appears that the revised fuzzy AHP is the best method in most 
cases, although the difference in performance may be small in certain 
cases. From these results, the fuzzy revised AHP has the smallest contra- 
diction rates in terms of both evaluative criteria. As was stated in the 
previous subsection, this should not come as a surprise to anyone. 

At this point it should also be stated that we also experimented with 
more scales for quantifying the pairwise comparisons. In particular, we 



308 Evangelos Triantaphyllou and Chi-Tun Lin 

considered two geometric scales introduced by Lootsma [17] in which the 
parameter  y was equal to 0.50 and 1.00. However, the derived contradic- 
tion rates were significantly higher than when the Saaty scale was used, 
and thus these results were not plotted. For  a deeper  analysis of some 
families of scales for quantifying pairwise comparisons, the interested 
reader may want to see [29]. 

In summary, the findings of this study reveal that some methods are 
better  than others in some cases even though none of the methods is 
perfectly accurate. This study gives an experimentally proved suggestion 
that some fuzzy decision-making methods are more effective than others in 
solving real-life fuzzy multiattribute decision-making problems. 

8. CONCLUDING REMARKS 

The previous analyses reveal that none of the five fuzzy decision-making 
methods is completely perfect in terms of both evaluative criteria. Differ- 
ent contradiction rates are yielded when these methods are tested accord- 
ing to the two evaluative criteria. The fuzzy WSM could be the simplest 
method to solve single-dimensional decision-making problems. However, 
the other more systematic approaches- - the  fuzzy AHP, the fuzzy RAHP, 
and the fuzzy TOPS~S--are more capable of capturing a human's appraisal 
of ambiguity when complex decision-making problems are considered. This 
is true because pairwise comparisons provide a flexible and realistic way to 
accommodate real-life data. The experimental results reveal that the fuzzy 
revised (ideal-mode) AHP is better than the other methods in terms of the 
previous two evaluative criteria. 

It needs to be emphasized here that these fuzzy decision-making pro- 
cesses are best used as decision tools. Individual decision makers may 
reach their own solution after applying any one of them. This study 
provides only a general view of different methods under certain situations. 
A broader  understanding of the characteristics of the methods and evalua- 
tive criteria is required for successful solution of real-life fuzzy multicrite- 
ria decision-making problems. 
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