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Abstract

Subject of this paper is the design of optimal experiments for chemical processes described by nonlinear DAE models.
The optimization aims at maximizing the statistical quality of a parameter estimate from experimental data. This leads to
optimal control problems with an unusual and intricate objective function which depends implicitly on �rst derivatives of
the solution of the underlying DAE. We treat these problems by the direct approach and solve them using a structured
SQP method. The required �rst and second derivatives of the solution of the DAE are computed very e�ciently by a
special coupling of the techniques of internal numerical di�erentiation and automatic di�erentiation. The performance of
our approach is demonstrated for an application to chemical reaction kinetics. c© 2000 Elsevier Science B.V. All rights
reserved.

Keywords: Optimum experimental design; Parameter estimation; Nonlinear DAE models; Direct approach; Internal
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1. Introduction

Computational simulation and optimization of chemical processes based on mathematical models is
essential in today’s chemical industry. From the planning of a production plant via the optimization
of the production process, regarding, e.g., yield maximization or minimization of the formation of
pollutants, up to the training of employees and the simulation of critical scenarios, mathematical
tools can be applied to support the decisions of chemical engineers. To reproduce the real-world
behaviour properly the processes must be described by mathematical models which are valid over a
wide range. In this paper we consider the so-called rigorous models which are based on physical and
chemical laws. Especially, we concentrate on processes in reaction kinetics and chemical engineering
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which can be modeled by systems of di�erential algebraic equations (DAE). Typically, these DAE
systems are nonlinear and sti�.
Often the models depend on parameters the values of which have to be determined from measure-

ments. Typically, these parameters describe speci�c properties of the reactions and of the involved
species, for example reaction orders, reaction rates, velocity constants, equilibrium constants, or
reaction enthalpies.
The parameters are estimated by �tting measurement data given from experiments. The conduction

of these experiments is often extremely expensive and time consuming. Depending on the design
of the experiments the con�dence regions of the estimated parameters may be small or large. The
aim of optimum experimental design is to determine experiments that yield a parameter estimation
with maximum statistical quality. This leads to intricate in�nite-dimensional nonlinear optimization
problems. This paper deals with the formulation of these problems, the solution procedures, and their
capabilities.
Additionally, several constraints have to be considered in the experimental design problem, such

as cost limitations, restrictions on the number of measurements, safety and environmental protec-
tion rules, or the validity of the model describing the process. The mathematical formulation of
these restrictions yields numerous nonlinear and particularly time-dependent equality and inequality
constraints.
Optimum experimental design applied to linear models has been investigated already for a long

time, see, e.g., the textbooks of Atkinson and Donev [1] or Pukelsheim [22]. Nowadays, these
methods are frequently used in industry.
In contrast to this, there are only a few papers on optimum experimental design for nonlinear mod-

els and especially for models describing dynamic processes. Rudolph and Herrend�orfer [23] applied
experimental design to nonlinear regression models used in long-term selection. For a system with
three unknown model parameters, the optimum experimental design is calculated analytically. Baltes
et al. [2] studied a nonlinear dynamical system in unstructured growth models. To design optimal
experiments they set up an unconstrained nonlinear optimization problem which they solved by a
simplex algorithm, see [20]. Nonlinear optimum experimental design for chemical reaction systems
was treated by Lohmann et al. [18,19]. He considered the optimal selection of the measurements but
the variables describing the behavior of the process were kept �xed. Consequently, his optimization
problems have a simpler structure than the ones presented in this paper. Hilf [16] developed and
implemented methods for nonlinear optimum experimental design for mechanical problems described
by DAE systems. In this case, he only had to consider optimum experimental design problems in
which the underlying parameter estimation problems are unconstrained. Moreover, the di�erential
equations describing the mechanical models are not sti�.
Our paper is structured as follows: in Section 2, the experimental design optimization problem

is formulated, resulting in a nonlinear state-constrained optimal control problem in DAE systems
where the objective function implicitly depends on �rst derivatives of the solution of the under-
lying constrained parameter estimation problem. In Section 3, we present a direct approach to
solve these problems. In Section 4, we introduce the SQP method which we use for the numer-
ical solution and we describe the special requirements in the case of optimum experimental design.
How we compute the required derivatives of the objective function and the constraints using tech-
niques of internal numerical di�erentiation combined with automatic di�erentiation and semi-analytic
formulas is explained in Section 5. In Section 6, we present a sequential procedure for optimum
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experimental design and parameter estimation and brie
y sketch a method based on multiple shoot-
ing to solve the occurring constrained parameter estimation problems numerically. Finally, in
Section 7, we give applications of our methods to an example from chemical reaction kinetics,
the reaction of urethane.

2. Formulation of the optimum experimental design problem

The aim of optimum experimental design is to plan experiments in order to maximize the statistical
reliability of some variables estimated from the experimental data. These variables are typically the
unknown parameters in the process model – here we consider DAE systems – but may also be
additional characteristic quantities such as, e.g., initial values of the state variables or other trajectory
values that may be important.

2.1. Parameter estimation

We �rst describe the underlying constrained parameter estimation problem and consider an aug-
mented formulation which already contains the quantities required for optimum experimental design.
Typically, not all unknown variables can be estimated from a single experiment with su�cient re-
liability. Therefore, we consider parameter estimation problems for multiple experiments containing
Nex single experiments:

min
x;p

Nex∑
i=1

nmi∑
j=1

wij · (�ij − bij(tij; xi(tij); p; qi))
2

�2ij
(1)

subject to for (i = 1; : : : ; Nex):

xi = (yi; zi) ful�lls the DAE system

ẏ i = fi(t; xi; p; qi; ui); (2)

0 = gi(t; xi; p; qi; ui) (3)

+ additional interior point constraints

di(xi(ti;0); : : : ; xi(ti;fi); p; qi) = 0: (4)

A least-squares functional is minimized subject to the parameters p∈Rnp and the di�erential and
algebraic state variables yi : [ti;0; ti;fi ] → Rnyi and zi : [ti;0; ti;fi ] → Rnzi in order to approximate the
experimental data best. We consider experimental data

�ij = bij(tij; xi(tij); p; qi) + �ij; i = 1; : : : ; Nex; j = 1; : : : ; nmi (5)
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with measurement values �ij ∈R and the corresponding values of the model responses bij(tij; xi(tij);
p; qi). The measurement errors � = (�1; : : : ; �Nex ); �i = (�i1; : : : ; �inmi ); i = 1; : : : ; Nex, are assumed to
be independent and normally distributed with expected value zero and known variance–covariance
matrix �2 = diag(�2ij):

� ∼ N(0; �2):

The weights wi ∈{0; 1}nmi describe a selection of measurement points out of the possible ones. They
are �xed in the parameter estimation problem as well as the control variables qi ∈Rnqi and the control
pro�les ui : [ti;0; ti;fi ] → Rnui . The measurement values �ij and the standard deviations �i ∈Rnmi are
given from the experimental data.
Note that all variables besides the parameters p are only locally de�ned in each experiment. The

model equations (2) and (3) of the DAE system may di�er from one experiment to another as well
as the constraints and the dimensions of the variables yi; zi; qi; ui; wi, and �i.

2.2. Parametrization of the solution of the DAE system

The constrained parameter estimation problem (1)–(4) depends on the solution functions xi : [ti;0;
ti;fi ]→ Rnyi+nzi ; i=1; : : : ; Nex, of the DAE system (2) and (3). We use a direct approach to transfer
the in�nite-dimensional optimization problem to a �nite-dimensional one. Therefore, we introduce
additional variables si; i = 1; : : : ; Nex, which, e.g., can be the initial values of the DAE system at
time t = ti;0. We add the consistency conditions

gi(ti;0; si; p; qi; ui) = 0; i = 1; : : : ; Nex; (6)

to the vector of constraints di; i = 1; : : : ; Nex, of the parameter estimation problem. The solution
of the DAE system can now be considered as a function of the �nite-dimensional variables si (of
course also depending on the parameters p and the �xed controls q and u), which is computed by
an integration method solving the DAE system with initial values x(ti;0) = si. Possible additional
constraints for the variables si are also added to the constraints di.
Thus we can write the parameter estimation problem (1)–(4) in an equivalent form as a �nite-

dimensional constrained least-squares problem in the variables s and p:

min
p; s

Nex∑
i=1

nmi∑
j=1

wij · (�ij − bij(tij; xi(tij; p; si; qi; ui); p; qi))
2

�2ij

=:
Nex∑
i=1

‖ri(p; si; qi; ui; wi)‖22 =: ‖r(p; s; q; u; w)‖22
(7)

subject to

di(p; si; qi; ui) = 0; i = 1; : : : ; Nex: (8)

Remark. Like the parameters p, also the introduced variables si are random variables. If the user
is not only interested in the reliability of the model parameters and initial values, but also in the
reliability of the trajectories of some important components, additional variables si; j at some interior
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points ti; j ∈ [ti;0; ti;fi ] may be introduced. The underlying parameter estimation problem is then of the
form (29)–(32) as described in Section 6.2.

2.3. Variance–covariance matrix

We linearize the constrained parameter estimation problem (7)–(8) at a given point (p̂; ŝ) and
obtain a linear constrained least-squares problem in the unknowns (�p;�s):

min
�p;�s

∥∥∥∥J1(p̂; ŝ) · (�p�s
)
+ r(p̂; ŝ)

∥∥∥∥2
2

subject to

J2(p̂; ŝ) ·
(
�p
�s

)
+ d(p̂; ŝ) = 0;

where the matrix

J =

(
J1

J2

)
=


dr

d(p; s)
(p̂; ŝ)

dd
d(p; s)

(p̂; ŝ)


denotes the Jacobian of the constrained parameter estimation problem (7)–(8). In vector d =
(dT1 ; : : : ; d

T
Nex )

T we summarize the equality constraints.
A necessary condition for (p̂; ŝ) to be a local minimum of (7)–(8) is that

J+(p̂; ŝ) ·
(
r(p̂; ŝ)

d(p̂; ŝ)

)
= 0;

where J+ denotes the generalized inverse

J+ =
(
I 0

)( J T1 J1 J T2

J2 0

)−1(
J T1 0

0 I

)
(9)

of the Jacobian J of the constrained parameter estimation problem.
As the experimental data is random the estimated solution (p̂; ŝ) of the parameter estimation

problem is also a random variable which is in a �rst-order approximation normally distributed

(p̂; ŝ) ∼ N((p∗; s∗); C)

with the (unknown) true value (p∗; s∗) as expected value and variance–covariance matrix

C = C(p̂; ŝ; q; u; w) = J+
(
I 0

0 0

)
J+

T

: (10)

The variance–covariance matrix describes the con�dence ellipsoid which is an approximation of a
nonlinear con�dence region of the estimated variables. The 100�% con�dence ellipsoid (06�61)
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can be described by

GL(�; p̂; ŝ; q; u; w) =
{
(p; s): (p− p̂; s− ŝ)TC(p̂; ŝ; q; u; w) (p− p̂; s− ŝ)6
2(�)} :

The probability factor 
(�) is given by


2(�) = �2l1−l2 (1− �);
where l1 is the dimension of (p; s); l2 is the dimension of the constraints d, and �2l1−l2 (1− �) is the
quantile of the �2-distribution.

2.4. Experimental design optimization problem

Optimum experimental design aims at maximizing the reliability of the variables to be estimated by
the underlying constrained parameter estimation problem. Therefore we minimize a design criterion
on the variance–covariance matrix C. As described above, the in�nite-dimensional solution of the
DAE system is parametrized by �nite-dimensional variables s.
The optimum experimental design approach then leads to an optimal control problem of the

following form:

min
q; u;w; s

�(C(p; s; q; u; w)) (11)

subject to (for every experiment i; i = 1; : : : ; Nex):

control and path constraints

ci(t; xi(t; p; si; qi; ui); p; qi; ui(t); wi)¿0; t ∈ [ti;0; ti;fi ]; (12)

constraints of the underlying parameter estimation problem

di(p; si; qi; ui) = 0 (13)

and the integrality constraints

wi ∈{0; 1}nmi : (14)

Note that for every evaluation of the objective function and of the state constraints the solutions of
the underlying DAE systems are required. For the objective function additionally derivatives of the
solution of the DAE with respect to the parameters have to be computed.

Remark. Formally, we have introduced all initial values as variables s to obtain a �nite-dimensional
formulation of the optimization problem. If parts of the initial values are known in advance, they
can be eliminated a priori in order to save computational e�ort.

Free variables of the optimization problem are the control pro�les ui(t), the time-independent
control variables qi, and the weights wi on possible measurements. The elements �ij of the variance–
covariance matrix �2 of the measurement errors are now no longer considered as �xed values. This
takes into account that the standard deviations of the measurement methods may depend on the
experimental settings qi or on the states xi: �ij = &ij(xi; qi) with &ij :Rnyi+nzi × Rnqi → Rnmij . Thus we
are able to formulate also measurements with a relative or more complex measurement error.
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Possible design criteria to minimize the con�dence ellipsoid are:

• A-criterion: Minimizing the average half-axis length of the con�dence ellipsoid resp. the average
variance of the parameters

�A(C) =
1
l1
trace(C); l1 = np + ns:

• E-criterion: Minimizing the largest expansion of the con�dence ellipsoid
�E(C) = �max(C);

where �max denotes the largest eigenvalue of C.
• D-criterion: Minimizing the volume of the con�dence ellipsoid.
In case of constrained parameter estimation problems we restrict on a regular submatrix of the
variance–covariance matrix C corresponding to a linear combination KT · (p̂; ŝ) of the variables
of the parameter estimation problem. Matrix K ∈Rl1×lK is of full rank. We obtain a restricted
variance–covariance matrix CK =Cov(KT(p̂; ŝ)) = KT · Cov(p̂; ŝ) · K . For regular CK ∈RlK×lK we
apply the D-criterion to the matrix CK

�D(CK) = det(CK)1=lK :

In principle, also other functions on the variance–covariance matrix can be treated, e.g., minimizing
the maximal edge of a box enclosing the con�dence ellipsoid, i.e., minimizing the maximal (scaled)
variance of the parameters, or criteria de�ned on the o�-diagonals of the variance–covariance matrix
or on the correlation matrix, minimizing correlations of the parameters.

3. Direct approach

To solve the state-constrained optimal control problem (11)–(14) numerically we use a direct
approach. We parametrize the control functions and discretize the solution of the DAE system and
the state constraints to obtain a �nite-dimensional constrained nonlinear optimization problem.

3.1. Parametrizing the control functions

The control functions are parametrized on an appropriate user-de�ned grid

ti;0 = �i;0¡ · · ·¡�i;n�i = ti;fi (15)

and replaced by piecewise continuous functions with a �nite-dimensional number of degrees of free-
dom. Typically, these functions are piecewise constant or piecewise linear, but also other parametriza-
tions are possible. If continuity at grid points �i; j is required, additional constraints have to be
introduced.
In the following we denote by the vector q not only the time-independent control variables but

also the the additional control variables introduced by the parametrization of the control functions.
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3.2. Discretization of state constraints and state variables

The state constraints in (12) are discretized on an appropriate grid de�ned by the user. They are
replaced by interior point constraints on this grid. The grid does not need to be the same as for the
parametrization of the control functions.
The solution of the DAE system is discretized applying methods of variable step size and order

based on backward di�erentiation formulae. The algebraic equations (3) of the DAE system depend
on the control variables q which vary in every iteration of the optimization process. Thus the algebraic
equations will normally not be consistent. Therefore, we use a relaxed formulation of the algebraic
equations (see, e.g., [12])

0 = gi(t; xi; p; qi)− #i(t)gi(ti;0; xi(ti;0); p; qi) (16)

instead of (3) which allows us to solve the initial value problem for the modi�ed DAE system
(2) and (16) with consistent initial values xi(ti;0). The damping factor #i(t), with #i(ti;0) = 1 and
06#i(t)61 for t ∈ [ti;0; ti;fi ], should be non-increasing and may be chosen, e.g., as #i(t) ≡ 1 or as
#i(t) = e−�(t−ti; 0) with �¿ 0.
Consistent initial values for the original DAE system are eventually ensured by the consistency

conditions

gi(ti;0; xi(ti;0); p; qi) = 0 (17)

which we add to the constraints of the optimization problem.

3.3. Relaxation of the integrality constraints

The weights w on the measurements are 0–1-variables:

wi ∈{0; 1}nmi ; i = 1; : : : ; Nex: (18)

For the numerical solution of the optimization problem, we use a relaxed formulation of these
integrality constraints:

wi ∈ [0; 1]nmi ; i = 1; : : : ; Nex: (19)

A measurement with a weight 0.5, e.g., may be interpreted as a measurement with twice the variance
as a measurement with weight 1. In an analogous way, also measurements with weights ¿ 1 can
be treated if desired. To obtain an integer solution we apply rounding heuristics to the solution of
the relaxed problem if necessary. For example if we only have to ful�ll restrictions on the number
of measurements for each measurement method, we can round up the largest weights belonging to
a measurement method and round o� the smallest ones keeping the sum of all weights below or
equal to the allowed maximum number. Another possibility is to accumulate the weights for each
measurement method for increasing measurement times. If the accumulated sum is smaller than 1,
round the current weight o� to 0. If the sum reaches 1, round the current weight up to 1, decrease
the sum by 1 and continue accumulating. Our computational results have shown that the solutions
of the relaxed problems tend to be almost integer. Rounding in the described ways a�ects the value
of the optimality criterion only slightly.
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4. Numerical solution of the nonlinear optimization problem

We obtain a nonlinear �nite-dimensional equality and inequality constrained optimization problem
which we write in abbreviated form as

min
v

F(v)

s:t: G(v) = 0;

H (v)¿0:

(20)

In the vector v we summarize the parametrized control variables q, the variables s describing the
parametrization of the solution of the DAE system, and the weights w on the measurements. The
consistency conditions (17) of the DAE system are contained in the equality constraints G(v) = 0.
We choose the method of sequential quadratic programming (SQP) for the solution of the opti-

mization problem (20). The general approach of this method is as follows.
We start with an initial guess v0 and calculate in a loop the subsequent iterate

vk+1 = vk + r k �vk ; k = 0; 1; : : : : (21)

The step length r k ∈ (0; 1] is determined by a line-search. The search direction �vk solves the
quadratic subproblem (QP)

min
�v

1
2�v

T Ak �v+3F(vk)T �v

s:t: G(vk) +3G(vk)T �v= 0;

H (vk) +3H (vk)T �v¿0:

(22)

Here the matrix Ak denotes an approximation of the Hessian of the Lagrangian function

L(v; �; �) = F(v)− �TG(v)− �TH (v);
where � and � are the Lagrangian multipliers.

5. Derivative generation

The solution of the optimization problem with an SQP-method requires the evaluation of the
objective function F and of the equality and inequality constraints G and H . Furthermore, the
gradient of the objective function 3F and the derivatives of the constraints 3G and 3H with
respect to the optimization variables v are needed. The approximation of the Hessian Ak is updated
from step to step. The modi�cations are based on derivatives of the Lagrangian function.
We obtain the derivatives of the constraints c; d; and g with respect to the optimization variables

v= (s; q; w) by applying the chain rule

d(c; d; g)
dv

=
@(c; d; g)
@x

@x
@v
+
@(c; d; g)
@v

: (23)
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The derivatives of the constraint functions with respect to x and v are calculated by automatic
di�erentiation, see [9]. The calculation of the derivatives of the solution trajectory x(t) with respect
to the variables s and the controls q is explained in Section 5.4. Since the variable x(t) does not
depend on w, the derivative of x with respect to the weights w is trivially equal to zero.
It remains to derive formulas needed for the computation of the derivatives of the objective

function with respect to the optimization variables v = (s; q; w). Since in most applications only
directional derivatives are required, only (d�=dv)�v with a suitable direction �v has to be computed.
Using the chain rule we obtain

�� :=
d�
dv
�v=

d�
dC
dC
dJ
d J
dv
�v: (24)

In the following sections, we describe in detail how the required terms

�J :=
dJ
dv
�v; �C :=

dC
dJ

�J; ��=
d�
dC

�C

are calculated.

5.1. Derivative of the design criteria with respect to the variance–covariance matrix

For the derivative of the design criteria � with respect to the variance–covariance matrix C explicit
formulas are available (see, e.g., [21]):

• A-criterion:
d�A
dC

�C =
1
l1

· trace(�C):

• E-criterion: Let �E(C) = �max(C) be a single eigenvalue of C and let z be the corresponding
normalized eigenvector which is unique up to the sign. Then

d�E
dC

�C = zT�Cz:

• D-criterion:
d�D
dC

�C =
1
lK
(detCK)1=lK

lK∑
i=1

lK∑
j=1

(C−1
K )ij · (KT ·�C · K)ij :

5.2. Derivative of the variance–covariance matrix with respect to the Jacobian

In this subsection, the calculation of the derivative of the variance–covariance matrix C with
respect to the Jacobian J of the underlying parameter estimation problem and the corresponding
numerical implementations are discussed. The variance–covariance matrix

C = J+
(
I 0

0 0

)
J+

T
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may be written as

C = (I 0)

(
J T1 J1 J T2

J2 0

)−1(
J T1 J1 0

0 0

)(
J T1 J1 J T2

J2 0

)−1 (
I
0

)

= : I1 ·M−1 · S ·M−1 · IT1 :
Some technical manipulations yield

C = (I1M−1)((I1M−1)S)T

for the variance–covariance matrix and
dC
dJ
�J = (I1M−1)((I1M−1)(−(SIT1 (I1M−1)�M)T + �S − (SIT1 (I1M−1)�M)T)T

for its derivative, with

�M =

(
�(J T1 J1) �J T2

�J2 0

)
=

(
�J T1 J1 + J

T
1 �J1 �J T2

�J2 0

)
and

�S =

(
�(J T1 J1) 0

0 0

)
=

(
�J T1 J1 + J

T
1 �J1 0

0 0

)
:

Both for the calculation of the variance–covariance matrix C and for its derivative, formally (I1M−1)
has to be multiplied with di�erent matrices. To realize this operation, we use a generalized QR
decomposition of the Jacobian J . The matrices J1 and J2 have to be decomposed only once.

5.3. Derivative of the Jacobian with respect to the optimization variables

It remains to establish formulas for the computation of the derivatives of the matrices J1 and J2
with respect to the optimization variables v.
We write the Jacobian J1 of the least-squares problem (7) in abbreviated form as

J1 =
dr

d(p; s)
=−W�−1

(
@b
@x

@x
@(p; s)

+
@b

@(p; s)

)
with W =diag(

√
wij), �=diag

(
&ij(xi; qi)

)
, and the model response function b= (bij(tij; xi(tij); p; qi))

as introduced in (5).
For the derivative of row ij of the Jacobian J1 with respect to the control variables q we obtain

dJ1ij
dq

�q=−W
(
@
@x

(
1
&ij

@bij
@x

)
@x

@(p; s)
@x
@q
�q+

@
@q

(
1
&ij

@bij
@x

)
@x

@(p; s)
�q

+
@
@x

(
1
&ij

@bij
@(p; s)

)
@x
@q
�q+

@
@q

(
1
&ij

@bij
@(p; s)

)
�q

+
1
&ij

@bij
@x

@2x
@q@(p; s)

�q

)
:
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To compute the terms (@=@x) ((1=&ij)(@bij=@x)), etc. we generate subroutines evaluating ((1=&ij)(@bij=
@x)); etc. which we then di�erentiate by automatic di�erentiation.
The derivative w.r.t. the variables s is established analogously.
Finally, we have to provide the derivative of J T1 J1 with respect to the weights w. Let �wr := er .

Then

d
dw
(J T1 J1)�wr =

(
eTr �

−1
(
@b
@x

@x
@(p; s)

+
@b

@(p; s)

))T (
eTr �

−1
(
@b
@x

@x
@(p; s)

+
@b

@(p; s)

))
;

where er is the rth unit vector.
The derivatives of the constraints

d= (dT1 ; : : : ; d
T
Nex )

T; di = di(xi(ti;0); : : : ; xi(ti;fi); p; si; qi))

of the underlying parameter estimation problem with respect to the control variables q (and analo-
gously the variables s) can be computed as

dJ2
dq

=
d
dq

(
dd

d(p; s)

)
=
d
dq

(
@d
@x

@x
@(p; s)

+
@d

@(p; s)

)

=
@2d
@x2

@x
@(p; s)

@x
@q
+
@2d
@q@x

@x
@(p; s)

+
@2d

@x@(p; s)
@x
@q
+

@2d
@q@(p; s)

+
@d
@x

@2x
@q@(p; s)

:

The Jacobian J2 does not depend on the weights w.

5.4. Derivative of the solution of the initial value problem of the DAE system

It remains to derive techniques to calculate the following expressions e�ciently:

xi(t);
@

@(si; p)
xi(t);

@
@qi
xi(t); and

@2

@qi@(si; p)
xi(t):

This requires the numerical solution of an initial value problem for the DAE system and the �rst and
second derivatives of the solution trajectory with respect to initial values, parameters, and controls.
This is the main computational e�ort in the evaluation of the quadratic subproblem (22) and therefore
has to be done very e�ciently. In our approach the variables si, introduced for the parametrization of
the solution of the DAE system, are the initial values. For an extended approach, where the variables
si consist of initial values and interior points, the calculation of the derivatives with respect to si
reduces to the calculation of the derivatives with respect to initial values starting at the points ti; j
and can therefore be implemented in nearly the same way as in the approach presented here.
In case of multiple experiments the solution of the DAE system xi(t) is computed separately for

each experiment. In the following, we will omit the index i specifying the particular experiment for
the sake of readability.
The state variables x(t) are computed by the integrator DAESOL, a multistep-method with variable

step size and order based on Backward Di�erentiation Formulae (BDF) which has proven to be very
successful for sti� systems. Error control and step size selection take into account the true nonuniform
grid (for the special techniques implemented see for example Eich [14], Bauer [3], Bauer et al. [5,6]).
For derivative generation see also Bauer et al. [4].
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The basic idea in the BDF-discretization is to approximate the unknown ẏ n+1 in step n + 1 by
a polynomial �yn+1 = −(1=h)∑k

i=0 �iyn+1−i of degree k through the last (already computed) values
yn; : : : ; yn+1−k

k∑
i=0

�iyn+1−i + hf(tn+1; xn+1; p; q) = 0;

g(tn+1; xn+1; p; q)− #(t)g(t0; x(t0); p; q) = 0:
(25)

The unknowns xn+1 = (yn+1; zn+1) are iteratively determined by a modi�ed Newton method.
In order to compute the derivatives of the state variables x with respect to initial values, parameters,

and controls, we apply the techniques of Internal Numerical Di�erentiation (IND) which have been
introduced by Bock 1981 [10]. The idea is to calculate the exact derivative of the approximation
of the solution of the initial value problem. Here we approximate the solution of the initial value
problem by the BDF-discretization scheme (25). We consider the discretization as a mapping of
the initial values, parameters, and controls to the discretized solution trajectory and di�erentiate this
mapping by applying the chain rule. This mapping is continuous and di�erentiable with respect to
the initial values, parameters, and controls, if we freeze the adaptive grid and all other adaptive
decisions made by the integrator.
In one step (here step n + 1) the derivative of the discretized DAE system (25) with respect to

the parameters p is of the form

k∑
i=0

�i
@yn+1−i
@p

+ h ·
(
@f
@x
(tn+1; xn+1; p; q) · @xn+1@p

+
@f
@p
(tn+1; xn+1; p; q)

)
= 0;

@g
@x
(tn+1; xn+1; p; q) · @xn+1@p

+
@g
@p
(tn+1; xn+1; p; q)− #(t) @g@p (t0; x(t0); p; q) = 0:

(26)

On the other hand if we discretize the variational DAE

Ẇ
y
p = fx Wp + fp;

0 = gx Wp + gp − #(t) gp(t0)
(27)

for the Wronskian matrix Wp = (Wy
p
T; W z

p
T)T = ((@y=@p)T; (@z=@p)T)T we obtain the same system of

equations as (26). This means that the solution of the variational DAE (27) is the derivative of the
solution of the DAE system calculated by the BDF discretization – presupposed that we use the
same discretization scheme for both.
In an analogous way we set up variational DAEs for the Wronskian matrices Wx0 = (@x=@x0) and

Wq = (@x=@q) for the calculation of the derivatives with respect to initial values and controls.
For the calculation of second derivatives we again di�erentiate the discretized system (26) with

respect to the controls q. If we use the same discretization scheme as for the nominal solution (25)
and the variational DAEs of �rst order (27) then discretizing the variational DAE of second order

Ẇ
y
p;q = (fxxWq + fxq)Wp + fxWp;q + fpxWq + fpq;

0 = (gxxWq + gxq)Wp + gxWp;q + gpxWq + gpq − #(t) gpq(t0)
(28)
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for the expression Wp;q=@2x=(@q @(s; p)) is the second derivative of the discretized nominal solution
with respect to parameters and controls. Similar schemes hold for the calculation of the second
derivatives Wx0 ; q with respect to initial values and controls.
The required �rst and second derivatives of the model functions f and g of the DAE system are

calculated by automatic di�erentiation (for more details see the ADIFOR User’s Guide of Bischof
et al. [9]) which allows us to evaluate the derivatives with high accuracy. Moreover the user does
not need to specify any derivatives of the model functions. We evaluate the complete expressions,
e.g., fxxWqWp, by directional derivatives.
In every step of the BDF discretization, we have to solve a nonlinear system of Eqs. (25) for the

unknown xn+1 and linear systems of equations for the derivatives Wn+1. In our implementation we
only need one evaluation and decomposition of the Jacobian of (25) to compute all �rst and second
derivatives Wn+1. For the calculation of xn+2 by a modi�ed Newton method we reuse the Jacobian
again in the next step.

Remark. Note that the BDF polynomials represent a global error controlled approximation of
the solution of the initial value problem (see [13]). Therefore, the grid of the BDF-discretization
scheme may be decoupled from the grid for the evaluation of the model response and interior point
constraints – and their derivatives. The computation of these quantities requires only the cheap eval-
uation of the BDF polynomials and no additional function calls of the (often costly) right-hand side
of the DAE.

6. Sequential proceeding for optimum experimental design

As the experimental design optimization problem (11)–(14) depends on the values of the para-
meters which are �xed within the optimization we have to apply a strategy which both determines
the parameters and designs the experiments.
In K�orkel et al. [17] we suggest a sequential approach which consists of the alternate solution of

experimental design problems (with �xed parameters p) and parameter estimation problems (where
the experimental settings (q; u; w) are �xed). Experimental data are evaluated by carrying out the
optimized experiments in laboratory according to the ones suggested by the previous optimum exper-
imental design. Further, we need an initial guess for the parameters which can be taken, e.g., from
prior experiments, similar processes, or literature. We stop the sequential procedure if the quality
for the parameter estimates satis�es the user’s requirements.

Algorithm. Sequential parameter estimation and experimental design
(1) Choose an initial guess p(1) for the parameters. Set k := 1.
(2) Determine Nexk (new) experiments by solving the experimental design problem (11)–(14) with

p= p(k). If k ¿ 1 use the information from the old Nex1 + · · ·+ Nexk−1 experiments.
(3) Carry out the optimal experiments to obtain experimental data.
(4) Compute a new parameter estimate p(k+1) by solving a constrained least-squares parameter es-

timation problem using the experimental data from all Nex1 + · · ·+ Nexk experiments. Calculate
the variance–covariance matrix C(p(k+1); s; q; u; w).

(5) If a user speci�c criterion based on the variance–covariance matrix C is ful�lled then stop.
Otherwise set k := k + 1 and go to step 2.
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6.1. Use of a priori information in experimental design

When we optimize the experimental design in step 2 of the algorithm above we want to obtain
new experiments which complement the information already present in the old experiments.
The rows of the Jacobian of the underlying parameter estimation problem consist of two parts – one

for the old experiments and one for the new experiments. The variance–covariance matrix ensuing
from this Jacobian describes the estimation error of a parameter estimate out of the experimental
data from both the old experiments and the new ones. But of course, only the control variables and
weights on the measurements belonging to the new experiments are variables for the experimental
design optimization, whereas the old experiments are kept �xed.

6.2. Solution of the parameter estimation problem

For the optimum experimental design approach the underlying parameter estimation problem is
parametrized by only a few variables as described in Section 2.2. In the following, we present a
slightly di�erent approach for the numerical solution of the in�nite-dimensional constrained least-
squares problem (1)–(4). To reduce the in�nite-dimensional optimization problem to a �nite-
dimensional one we again use a direct approach and apply the method of multiple shooting (in-
troduced for parameter estimation by [10], see also [11] or [24]). We de�ne an appropriate multiple
shooting grid

ti;0 = �i;0¡ · · ·¡�i;n�i = ti;fi ;

which needs not to be the same as the grid for the parametrization of the control functions for the
optimum experimental design problem. At the grid points �i; j; j = 1; : : : ; n�i , we introduce additional
variables �i; j to parametrize the solution of the DAE system. On each interval [�i; j; �i; j+1], we solve
an initial value problem for the DAE system with relaxed formulation of the algebraic equations (cf.
Section 3.2)

ẏi = fi(t; xi; p; qi; ui);

0 = gi(t; xi; p; qi; ui)− #i(t) gi(�i; j; �i; j; p; qi; ui)
with initial values x(�i; j) = �i; j = ((�

y
i; j)T; (�zi; j)

T)T.
Now, we can formulate a nonlinear �nite-dimensional least-squares problem in the unknowns

(p; �)

min
p;�

‖W �−1 (�− b(p; �))‖22 (29)

s:t: d(p; �) = 0: (30)

We add the consistency conditions

gij(�i; j; p) := gi(�i; j; �i; j; p; qi; ui) = 0; i = 1; : : : ; Nex; j = 0; : : : ; n�i ; (31)

to the constraints of the least-squares problem to ensure consistent intial values at the solution point.
Additional continuity conditions for the di�erential state variables

hij(�i; j; �i; j+1; p) :=y(�i; j+1; �i; j; p)− �yi; j+1 = 0; i = 1; : : : ; Nex; j = 0; : : : ; n�i − 1; (32)
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guarantee continuity of the �nal solution also at the multiple shooting grid points. Here the control
functions ui may be represented by additional control variables qi like in the optimum experimental
design problem or by some other functions. In any case they are �xed within the parameter estimation
problem.
Advantages of this approach are the free choice of the multiple shooting grid and of the initial

guesses �i; j of the state variables xi(�j) which enables the user to make use of information on the
values of the states that, e.g., is given by the measurements. Moreover, the in
uence of bad initial
guesses for the parameter estimates is reduced.
We solve the constrained parameter estimation problem (7)–(8) by a modi�ed Gauss–Newton

method: we linearize the problem (29)–(32) at a given point (�; p) and obtain a linear constrained
least-squares problem in the iterates (��;�p). If we order the parts of the objective and the con-
straints experiment-wise we yield a linearized least-squares problem with a Jacobian of the following
structure:

JLS =


M�
1 0 Mp

1

. . .
...

0 M�
Nex Mp

Nex


with

M�
i =



R�i; 0i · · · R
�i; n�i
i

D�i; 0i · · · D
�i; n�i
i

G�i; 0i;0 0

. . .

0 G
�i; n�i
i; n�i

H �i; 0
i;0 H

�i; 1
i;0 0

. . . . . .

0 H
�i; n�i−1

i; n�i−1 H
�i; n�i
i; n�i−1



; Mp
i =



Rpi
Dpi
Gpi;0
...

Gpi;n�i
Hp
i;0
...

Hp
i;n�i−1



and right-hand side

rhs =

 rhs1
...

rhsNex

 ; rhsi =−



ri
di
gi;0
...
gi;n�i
hi;0
...

hi;n�i−1


:
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Here we use the following notations:

R�i =
@ri
@�
; D�i =

@di
@�
; G�i; j =

@gi; j
@�
; H�

i; j =
@hi; j
@�
; �∈{�i; j; p};

i = 1; : : : ; Nex; j = 0; : : : ; n�i resp: j = 0; : : : ; n�i − 1;
and

H�i; j+1
i; j = (−Inyi ; 0nzi ); i = 1; : : : ; Nex; j = 0; : : : ; n�i − 1:

For the calculation of H�
i; j we solve initial value problems for the DAE system and the �rst derivatives

of the solution trajectory with respect to �∈{�i; j; p} on each interval [�i; j; �i; j+1]. These are computed
experiment-wise by DAESOL using the techniques of internal numerical di�erentiation as described
in Section 5.4.
Solving the structured linearized constrained least-squares problem with Jacobian JLS and right-hand

side rhs we exploit both the structure of the multiple experiments and of the multiple shooting ap-
proach in each experiment (see [24,25]). First, we eliminate the local variables �i;1; : : : ; �i; n�i in each
experiment and solve the structured condensed least-squares problem in the reduced set of variables
(�i;0; p) with reduced Jacobian

JRLS =


E�1 0 Ep1

. . .
...

0 E�Nex EpNex


with

E�i =


R̃
�i; 0
i

D̃
�i; 0
i

G̃
�i; 0
i;0

 ; Epi =


R̃
p
i

D̃
p
i

G̃
p
i;0

 ; i = 1; : : : ; Nex

and new right-hand side

rhsR =


r̃hs1
...

r̃hsNex

 ; r̃hsi =−
 r̃i
d̃i
g̃i;0

 ; i = 1; : : : ; Nex:

In each experiment we use a LU decomposition for the matrices corresponding to the local variables
�i;0. The submatrices corresponding to the parameters p are also transformed as well as the right-hand
side. The remaining system is summarized and ordered by equality and least-squares conditions and
solved by a generalized QR decomposition. We obtain a new iterate for the parameters p and then
calculate successively the iterates for the local variables �i;0; �i;1; : : : ; �i; n�i in a backward recursion.

7. Application of the methods to the reaction of urethane

We applied our methods and software tools to the reaction of urethane, provided by Kud from the
BASF AG. Even though this example involves only few reactions, it already shows typical properties
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and di�culties of nonlinear experimental design, but it also demonstrates the enormous potential of
this method.
Further applications are presented in [8].

7.1. The reaction of urethane

The reaction of urethane is a simultaneous and consecutive reaction including a reversible reaction:

A+ B→ C;

A+ C 
 D;

3A→ E

with A we denote phenylisocyanate, B is butanol, C is urethane, D is allophanate, and E is isocya-
nurate. Solvent is dimethylsulfoxide.
The experiments for this reaction are carried out in a semi-batch reactor with two feed vessels,

one for phenylisocyanate and one for butanol. In the beginning, the reactor contains phenylisocyanate
and butanol. The temperature inside the reactor can be controlled.
We describe this process by a nonlinear DAE model:

ṅ3 = V · (r1 − r2 + r3);
ṅ4 = V · (r2 − r3);
ṅ5 = V · r4;
0 = n1 + n3 + 2n4 + 3n5 − na1 − n1ea;
0 = n2 + n3 + n4 − na2 − n2eb;
0 = n6 − na6 − n6ea − n6eb;

n3(t0) = n4(t0) = n5(t0) = 0 mol; t0 = 0 h; tf = 80 h

with

V =
6∑
i=1

ni
Mi

�i
; ki = ki = kref i exp

(
−Eai
R

(
1
T

− 1
Tref i

))
;

r1 = k1 · n1V · n2
V
; i = 1; 2; 4;

r2 = k2 · n1V · n3
V
; k3 =

k2
kc
;

r3 = k3 · n4V ; kc = kc2 exp
(
− dh2
R

·
(
1
T

− 1
Tg2

))

r4 = k4 ·
(
n1
V

)2
:
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The molar numbers n1; : : : ; n5 of the species A to E and n6 of the solvent are the state variables of
the DAE system.
In this model eight parameters are unknown: the steric factors kref i ; i=1; 2; 4, the activation energies

Eai; i = 1; 2; 4, as well as the equilibrium constant kc2 (for the reference temperature Tg2) and the
reaction enthalpy dh2 of the reversible reaction.
The two feeds are modelled by two monotonously increasing control functions

feeda; feedb : [t0; tf ]→ [0; 1]

describing the pro�les of the accumulated feeds. Multiplied with the initial molar numbers within
the feed vessels, we get the feed molar numbers:

n1ea = na1ea · feeda; n2eb = na2eb · feedb;
n6ea = na6ea · feeda; n6eb = na6eb · feedb:

The third control function is the temperature pro�le

T : [t0; tf ]→ [293:16K; 473:16K]:

Each experiment lasts 80 h. The beginning is Monday, 8 pm, the end Thursday, 4 pm. During the
nights, the feed rates and the heating=cooling rate have to be zero due to safety rules.
Further control variables for experimental design are the mole ratios MV1 ∈ [0:1; 10], MV2 ∈ [0; 1000],

and MV3 ∈ [0; 10], the parts of active ingredients ga ∈ [0; 0:8], gaea ∈ [0; 0:9], and gaeb ∈ [0; 1], and the
initial volume Va ∈ [0m3; 0:00075m3] of the species in the reactor.
These quantities are connected to the initial molar numbers as follows:

MV1 =
na2 + na2eb
na1 + na1ea

; ga =
na1 ·M1 + na2 ·M2

na1 ·M1 + na2 ·M2 + na6 ·M6
;

MV2 =
na1ea
na1

; gaea =
na1ea ·M1

na1ea ·M1 + na6ea ·M6
;

MV3 =
na2eb
na1

; gaeb =
na2eb ·M2

na2eb ·M2 + na6eb ·M6
;

Va =
na1
�1

·M1 +
na2
�2

·M2 +
na6
�6

·M6:

All other quantities in the model are constants: the molar masses Mi, the densities �i, the reference
temperatures Tref i and Tg2, and the gas constant R, see Table 1.
Three measurement methods are available:

• titration, measuring mass percent of phenylisocyanate with a standard deviation of the measure-
ment error of 0.5,

• HPLC1, giving mass percent of urethane and allophanate with standard deviations 0.5 resp. 0.005,
and

• HPLC2, for mass percent of isocyanurate with standard deviation 0.0005.
In each experiment, 16 measurements can be selected out of 30 possible ones. We parametrize
the time depending control functions using piecewise linear and continuous polynomials. Altogether
we have 90 experimental design variables for each experiment: 7 control variables, 7 initial molar
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Table 1
Constants in the model for the reaction of urethane

Molar masses Densities Reference temperatures

M1 = 0:11911 kg=mol �1 = 1095:0 kg=m3 Tref 1 = 363:16 K
M2 = 0:07412 kg=mol �2 = 809:0 kg=m3 Tref 2 = 363:16 K
M3 = 0:19323 kg=mol �3 = 1415:0 kg=m3 Tref 4 = 363:16 K
M4 = 0:31234 kg=mol �4 = 1528:0 kg=m3 Tg2 = 363:16 K
M5 = 0:35733 kg=mol �5 = 1451:0 kg=m3 Gas constant
M6 = 0:07806 kg=mol �6 = 1101:0 kg=m3 R= 8:314 J=(K mol)

Table 2
Sequential parameter estimation for the reaction of urethane. The table shows the initial guesses for the parameters, the
estimates after one and two optimized experiments, and the parameter estimate from the intuitive experimental design
after 15 experiments. The estimated parameters are shown with the corresponding standard deviations. The parameters are
scaled such that all initial guesses are equal to 1

Parameter Initial First Second Intuitive
guess estimate estimate result

kref 1 1 2:51± 3 · 10−2 2:504± 6 · 10−3 2:50± 2 · 10−2
Ea1 1 0:835± 4 · 10−3 0:836± 1 · 10−3 0:835± 7 · 10−3
kref 2 1 91:2± 1 · 10−1 91:25± 2 · 10−2 91:3± 7 · 10−1
Ea2 1 0:8355± 2 · 10−4 0:83537± 8 · 10−5 0:834± 2 · 10−3
kref 4 1 58:0± 1 · 10−1 58:004± 6 · 10−3 57:990± 9 · 10−3
Ea4 1 0:658± 1 · 10−3 0:6574± 2 · 10−4 0:65725± 7 · 10−5
dh2 1 1:09± 2 · 10−2 1:082± 6 · 10−3 0:9± 3 · 10−1
kc2 1 1:30± 3 · 10−2 1:29± 1 · 10−2 1:1± 3 · 10−1

A-criterion 3:8 · 10−3 5:5 · 10−5 7:2 · 10−2

numbers, 30 weights on the measurements, and 46 variables due to the parametrization of the control
functions.

7.2. Computational results

As initial guesses for the parameters values from literature were chosen. In the �rst iteration,
one experiment was computed by minimizing the A-criterion. The parameter estimation from the
corresponding experimental data resulted in parameters with standard deviations of at most 2.5%
(see Table 2). We decided to design a second A-optimal experiment taking into account the a
priori information from the �rst experiment to improve this estimation. After the second parameter
estimation, the standard deviations were smaller than 0.8%.
The experimental data were generated by simulations. A set of parameters was assigned to be the

true one. The simulation results of the measurements were perturbed by normally distributed errors
with the variances of the measurement methods.
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7.3. Initial values for the optimization

We started the optimization with the following initial values for the experimental design variables:
MV1 = 1:0; MV2 = 0:3; MV3 = 0:3; ga = 0:75; gaea = 0:5; gaeb = 0:4; Va = 2:75 · 10−5 m3.
For the control functions we used the following initial pro�les:

7.4. Experimental set-up of the two computed experiments

First experiment
Control variables:

MV1 MV2 MV3 ga gaea gaeb Va

0:637635 15:9264 10 0:8 0:9 1 2:09045 · 10−5 m3

Measurement points for the di�erent methods:

• titration: 0.5, 1,
• HPLC 1: 0.5, 1, 4, 8, 24, 32, 48, 56, 72, 80,
• HPLC 2: 4, 8, 32, 48.
Control functions:
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Second experiment:
Control variables:

MV1 MV2 MV3 ga gaea gaeb Va

0:370994 25:9546 10 0:8 0:9 1 9:00762 · 10−6 m3,

Measurement points for the di�erent methods:

• titration: none,
• HPLC 1: 4, 8, 24, 32, 48, 56, 72, 80,
• HPLC 2: 4, 8, 24, 32, 48, 56, 72, 80.
Control functions:

7.5. Trajectories

The following plots show the trajectories of the �ve species, evaluated for the second and �nal
estimate of the parameters:
First experiment:
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Second experiment:

We used an SGI O2 workstation with one mips R5000 processor and the IRIX 6.3 operation sys-
tem. The code was compiled by the SGI C++ and FORTRAN compiler using the -O2 optimization
level. The SQP library SNOPT of Gill et al. [15] was applied. The optimization runs took up to
250 SQP iterations and lasted up to 1 h and 15 min.

7.6. For comparison: intuitive experimental design by an experienced experimentor

W�orz, a chemist from BASF, was asked to design experiments and to estimate the parameters
under the same conditions as for optimum experimental design, see [7]. Using his experience from
chemical laboratory’s everyday life he planned his experiments according to the following principles:

• separation of the several reactions,
• isothermal experiments,
• batch reactor.
He designed

• four experiments for the formation of urethane at three di�erent temperatures using the titration
measurement method,

• six experiments for the formation of allophanate at �ve di�erent temperatures using the HPLC1
measurement method,

• and �ve experiments for the formation of isocyanurate at three di�erent temperatures using the
HPLC2 measurement method.

Altogether he employed 15 experiments with 90 measurements. After 15 experiments he obtained
the parameter estimate shown in Table 2. The standard deviations still are up to 30% of the values
of the parameters.
The comparison between intuitive and optimum experimental design shows the enormous potential

arising from the application of numerical methods regarding the savings of experimental costs and
experimental e�ort.



24 I. Bauer et al. / Journal of Computational and Applied Mathematics 120 (2000) 1–25

Acknowledgements

This work was �nancially supported by the German Ministry for Research and Technology
(BMBF) within the project “Optimum Experimental Design for Nonlinear Processes” (FKZ 03
D 0043). The authors want to thank the project partners Aventis, BASF and FH Frankfurt am
Main for the fruitful cooperation with the IWR. Special thanks are dedicated to Dr. A. Kud and
Dr. O. W�orz from BASF for their contribution concerning the reaction of urethane.

References

[1] A.C. Atkinson, A.N. Donev, Optimum Experimental Designs. Oxford Statistical Science Series, Oxford University
Press, Oxford, 1992.

[2] M. Baltes, R. Schneider, C. Sturm, M. Reuss, Optimal experimental design for parameter estimation in unstructured
growth models, Biotechnol. Prog. 10 (1994) 480–488.

[3] I. Bauer, Numerische Behandlung di�erentiell-algebraischer Gleichungen mit Anwendungen in der Chemie, Diploma
Thesis, Universit�at Augsburg, 1994.

[4] I. Bauer, H.G. Bock, S. K�orkel, J.P. Schl�oder, Numerical methods for initial value problems and derivative generation
for DAE models with application to optimum experimental design of chemical processes, in: F. Keil, W. Mackens,
H. Voss, J. Werther (Eds.), Scienti�c Computing in Chemical Engineering II, Vol. 2: Simulation, Image Processing,
Optimization, and Control, Springer, Berlin, 1999, pp. 282–289.

[5] I. Bauer, H.G. Bock, J.P. Schl�oder, DAESOL – a BDF-code for the numerical solution of di�erential algebraic
equations, Technical Report, IWR, SFB 359, Universit�at Heidelberg, 1999.

[6] I. Bauer, F. Finocchi, W.J. Duschl, H.-P. Gail, J.P. Schl�oder, Simulation of chemical reactions and dust destruction
in protoplanetary accretion disks, Astronomy and Astrophys. 317 (1997) 273–289.

[7] I. Bauer, M. Heilig, S.K�orkel, A. Kud, A. Mayer, O. W�orz, Versuchsplanung am Beispiel einer Phosphin- und
Urethanreaktion, in: Optimale Versuchsplanung f�ur nichtlineare Prozesse, DECHEMA e.V., Frankfurt, 1998.

[8] I. Bauer, S. K�orkel, H.G. Bock, J.P. Schl�oder, Optimale Versuchsplanung f�ur dynamische Systeme aus der chemischen
Reaktionskinetik, in: Optimale Versuchsplanung f�ur nichtlineare Prozesse, DECHEMA e.V., Frankfurt, 1998.

[9] Ch.H. Bischof, A. Carle, P.M. Khademi, A. Mauer, P. Hovland, ADIFOR 2.0 User’s Guide, Technical memorandum
No. 192, Mathematics and Computer Science Division, 1998.

[10] H.G. Bock, Numerical treatment of inverse problems in chemical reaction kinetics, in: K.H. Ebert, P. Deu
hard,
W. J�ager (Eds.), Modelling of Chemical Reaction Systems, Springer Series in Chemical Physics, Vol. 18, Springer,
Heidelberg, 1981, pp. 102–125.

[11] H.G. Bock, Randwertproblemmethoden zur Parameteridenti�zierung in Systemen nichtlinearer Di�erential-
gleichungen, Bonner Math. Schriften 183 (1987).

[12] H.G. Bock, E. Eich, J.P. Schl�oder, Numerical solution of constrained least squares boundary value problems in
di�erential-algebraic equations, in: K. Strehmel (Ed.), Numerical Treatment of Di�erential and Integral Equations,
BG Teubner, Leipzig, 1988.

[13] H.G. Bock, J.P. Schl�oder, Numerical solution of retarded di�erential equations with state dependent time lags, Z.
Angew. Math. Mech. 61 (1981) T269–T271.

[14] E. Eich, Numerische Behandlung semi-expliziter di�erentiell-algebraischer Gleichungssysteme vom Index 1 mit
BDF-verfahren, Diploma Thesis, Universit�at Bonn, 1987.

[15] Ph.E. Gill, W. Murray, M.A. Saunders, User’s guide for SNOPT 5.3: a fortran package for large-scale nonlinear
programming, Technical Report, NA 97-5, Department of Mathematics, University of California, San Diego, 1998.

[16] K.-D. Hilf, Optimale Versuchsplanung zur Dynamischen Roboterkalbibrierung, Fortschrittberichte, Vol. 8, VDI,
D�usseldorf, 1996.

[17] S. K�orkel, I. Bauer, H.G. Bock, J.P. Schl�oder, A sequential approach for nonlinear optimum eperimental design in
DAE systems, in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds.), Scienti�c Computing in Chemical Engineering
II, Simulation, Image Processing, Optimization, and Control, Vol. 2, Springer, Berlin, 1999, pp. 338–345.



I. Bauer et al. / Journal of Computational and Applied Mathematics 120 (2000) 1–25 25

[18] Th.W. Lohmann, Ein numerisches Verfahren zur Berechnung optimaler Versuchspl�ane f�ur beschr�ankte
Parameteridenti�zierungsprobleme, Reihe Informatik, Verlag Shaker, Aachen, 1993.

[19] Th.W. Lohmann, H.G. Bock, J.P. Schl�oder, Numerical methods for parameter estimation and optimal experiment
design in chemical reaction systems, Ind. Eng. Chem. Res. 31 (1992) 54–57.

[20] J.A. Nelder, R.A. Mead, A simplex method for function minimisation, Comput. J. 7 (1964) 308–313.
[21] A. P�azman, Foundations of Optimum Experimental Design, Reidel, Dordrecht, 1986.
[22] F. Pukelsheim, Optimal Design of Experiments, Wiley Series in Probability and Mathematical Statistics, Wiley, New

York, 1993.
[23] P.E. Rudolph, G. Herrend�orfer, Optimal experimental design and accuracy of parameter estimation for nonlinear

regression models used in long-term selection, Biometrical J. 37 (2) (1995) 183–190.
[24] J.P. Schl�oder, Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridenti�zierung,

Bonner Math. Schriften 187 (1988).
[25] M. von Schwerin, Numerische Methoden zur Sch�atzung von Reaktionsgeschwindigkeiten bei der katalytischen

Methankonversion und Optimierung von Essigs�aure- und Methanprozessen, Ph.D. Thesis, Universit�at Heidelberg,
1998.


