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ABSTRACT 

Generalizing the concept of ~¢~0-pair of Willson, we introduce the notions of 
column (row) ~0- and column (row) ~-properties for a set of k + 1 square matrices 
{M 0, M 1 . . . . .  M k} (of the same dimension), where k >/1. When k = 1 and M 0 = I, 
these reduce to the familiar P0" and P-properties of a square matrix. We show that 
these notions are related to the extended vertical and horizontal LCPs. Specifically, 
we show that these notions appear in certain feasible/infeasible interior point 
algorithms and that the column (row) ~-property is characterized by the unique 
solvability in extended horizontal (vertical) LCPs. As a by-product of our analysis, we 
show that a monotone horizontal LCP is equivalent to a (standard) LCP and that for a 
monotone horizontal LCP, feasibility implies solvability. 

1. INTRODUCTION 

A matrix M ~ R" × n is called a P0- (P-) matrix if every principal minor of  
M is nonnegative (respectively, positive). These notions, introduced by Fiedler 
and Pt/tk [8, 9], have numerous applications in diverse fields; see [1] for 
details. 
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In order to see how these concepts can be generalized, we introduce 
some notation. Let 

= { M0, M1 . . . . .  Mk} 

be a set of k + 1 matrices in R "×n with k >~ 1. For any matrix A ~ R "×' ,  
let A.j (Aj.) denote the j th  column (row) of A. 

Given .K as in (1), a matrix R ~ R "×" is called a column representative 
of / if 

R. 2 ~ { (Mo) . j , (M1) .  j . . . .  , (Mk).j} ( j  = 1 . . . . .  n) ,  

and a row representative of ~r  if 

Rj .E  {(Mo)j . , (M1) j . . . . . .  (Mk)j.  } ( j  = 1 . . . . .  n) .  

It is clear that any principal minor of a matrix M is the determinant of a 
suitable column/row representative matrix of {I, M} where I is the n × n 
identity matrix. This means that a matrix is a P0- (P-) matrix if and only if the 
determinants of all column/row representative matrices of {I, M} are non- 
negative (positive). This leads to the notions of the column (row) 7f0-property 
and the column (row) llYZ-property. 

DEFINITION 1. Consider .a v given by (1). We say that .d' has the 

(a) column (row) ~0-property if one of the following holds: 

(i) determinants of all column (row) representative matrices of ~ are 
nonnegative and there is at least one such determinant which is positive; 

(ii) all column (row) representative matrices of .~v are nonpositive and 
there is at least one such determinant which is negative; 

(b) column (row) ~-property if one of the following holds: 

(i) determinants of all column (row) representative matrices of ~ are 
positive; 

(ii) determinants of all column (row) representative matrices of .d' are 
negative. 

For k = 1, the definition of column ~0-property reduces to that of 
~0-pair introduced by Willson [29], who used this concept to study certain 
equations arising in nonlinear networks; see [30] for more details. 



GENERALIZATIONS OF Po- AND P-PROPERTIES 697 

Our motivation for introducing the above concepts comes from the 
extended vertical and horizontal linear complementarity problems, which are 
generalizations of the (standard) linear complementarity problem [3]. 

Given a block matrix 

B = [ B o,  B~ . . . . .  Bk]  (2) 

and a block vector b = [b 0, b 1 . . . . .  b k ] where each B 2 e R n×'~ and bj ~ R', 
the extended vertical LCP(B, b) is to find a vector x ~ R" such that 

(Box + bo) A ( BlX + bl) A "" A ( Bkx + bk) = 0 (3) 

where " A "  denotes the componentwise minimum. 
If B 0 = I and b 0 = 0, the above problem is called a vertical LCP (for 

short, VLCP) [3]. This problem, first studied by Cot-tle and Dantzig [2], arises 
in control theory [24, 25], hydrodynamic lubrication [20], nonlinear networks 
[10, 11], etc. The article [13] by Gowda and Sznajder contains a comprehen- 
sive analysis of this problem as well as other pertinent references. In that 
paper it is shown that the extended vertical LCP(B, b) has a unique solution 
for all b if and only if {B 0, B 1 . . . . .  B k} has the row 7f--property. We shall say 
more about this in Section 3. 

To define an extended horizontal LCP, we consider a block matrix 

C = [ t o , e l  . . . . .  Ck] (4) 

where Cj ~ R "× ' .  Let e be a block vector defined as q for k = 1 and as 
[ q , d  1 . . . . .  dk_ 1] for k >1 2, where q ~ R "  and 0 < d j ~ R  ~ for j =  
1, 2 . . . . .  k - 1. Then the extended horizontal LCP(C, c) is to find vectors 
x 0, x 1 . . . . .  x k in R" such that 

k 

CoXo -- q + Y'. Cjxj ,  
j = l  

• o ^ ~ = o ,  (dj -xj )  Axj+ ,=o  ( j = l  . . . . .  k - l )  (5) 

(where, of course, only the first complementarity condition is considered 
when k = 1). In [15], Kaneko considers the above problem by assuming 
C O = I and cites applications to mathematical programming and to structural 
mechanics. (See [22] for applications to mechanics, inventory theory, and 
statistics.) By slightly modifying a result of Kaneko [15], we show in Section 3 
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that the extended horizontal LCP has a unique solution for all q ~ R n and all 
dj > 0 if and only if {C 0, C 1 . . . . .  C k} has the column ~-property. 

Concerning the extended horizontal LCP, the case k = 1 seems to have 
become important in the study of feasible/infeasible interior point algorithms 
for linear and convex quadratic programming problems. In this case, we shall 
drop the word "extended" and call the problem a horizontal LCP (for short, 
HLCP), a term coined in [3] and used by Zhang [31]. Thus, given a block 
matrix [A, B] where A, B ~ R n×n and a vector q ~ R ~, HLCP([A, B], q) is 
to find vectors x and y in R ~ such that 

A x - B y  = q ,  

x A y  = 0  
(6) 

This problem, which reduces to the standard LCP when B = I, covers 
convex quadratic programming problems and plays an important role in 
electrical networks [28]. For an equivalence of HLCP and piecewise linear 
systems, see Eaves and Lemke [4]. As pointed out by Zhang [31] and Giiler 
[14], the HLCP formulation of a convex quadratic programming problem is 
better suited for computational aspects than the LCP formulation. Under the 
condition 

Ax - By = 0 ~ xr  y >i 0, (7) 

which we shall call column monotonicity, Zhang [31] describes an infeasible 
interior point algorithm to solve HLCP([A, B], q). The algorithm depends 
crucially on the nonsingularity of the matrix 

where X and Y are positive diagonal matrices. As Zhang shows, the nonsingu- 
larity of the above matrix follows from the column monotonicity of { A, B}. 

We show in Section 4 that for an arbitrary [ A, B] the matrix (8) is 
nonsingular for all positive diagonal matrices X and Y if and only if { A, B} 
has the column ~0-property. Genernlizing this, we show that the nonsingular- 
ity of certain Jacobians in feasible/infeasible interior point algorithms for 
solving extended horizontal (vertical) LCPs naturally lead to the column (row) 
~0-property. 

We show in Section 6 that when {A, B} is column monotone, 
HLCP([A, B], q) is equivalent to a monotone LCP. As a by-product, we 
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deduce that when { A, B} is column monotone, the feasibility of the problem 
HLCP({A, B], q) implies its solvability, a result first noted by Giiler using 
maximal monotone operator theory. 

We also show that when { A, B} has the row monotonicity property, the 
feasibility of the vertical LCP([ A, B], [a, b]) implies its solvability. 

2. PRELIMINARIES 

Given two vectors x and y in R ", xTy denotes the usual inner product 
between x and y. 

We list below few matrix-theoretic results needed in this paper. 

1. For A, B, X, Y ~ R n x n, X, Y commuting, the following formula holds 
[21]: 

det[ A X - B ] = det(  A Y  + BX )" (9) 

2. We have the Schur determinantal formula [21]: 

A B ]  = d e t A d e t ( D _ C A _ l B )  (10) det [ C 

where A and D are square and A is invertible. 
3. For M0, M 1 . . . . .  Mk, X0, X 1 , . . .  , X k E R nxn where each Xj is diago- 

nal, the following holds: 

det( M o X o + ... + M k X k) = ~ det Z det K 

= ~_,(ZxZ 2 ... z.)  detK,  (11) 

where K is a column representative of {M 0 . . . . .  Mk}, Z is a column repre- 
sentative of {X 0, ~.., Xk}, and the same indexed columns are selected to form 
K and Z. Here z l, z 2 . . . . .  z n are the diagonal entries of Z, and the 
summation is over all column representatives of {M0, M 1 . . . . .  Mk}. This 
follows directly from multilinearity of the determinant function. 
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4. For D, M E R n×n where D is diagonal, we have 

det( D + M) = ~ det M ~  det D ~ ,  
Ot 

(19.) 

where a ___ {1 . . . . .  n}, ~ is the complement of o~ in {1 , . . . ,  n}, and M ~  is 
the principal submatrix corresponding to the index pair (~,  a) .  This formula 
follows from (11). 

3. THE COLUMN AND ROW ~U--PROPERTIES 

THEOREM 2. For .¢{ given by (1), the foUowing are equivalent: 

(a) .¢t" has the column 71Z-property. 
(b) For arbitrary nonnegative diagonal matrices X 0, X 1 . . . . .  X k ~ R n×n 

with diag(X 0 + X 1 + ... +X k) > 0, 

det( M 0 X 0 + M 1 X 1 q- " ' "  + M k X k) :~ 0. 

(c) M o is invertible, and ~ =  {I, M o l M 1  . . . . .  M o l M k }  has the column 
7~-property. 

(d) For all q and dj > 0 in R n, the extended horizontal LCP(C, e) has a 
unique solution where C = [ M  0 . . . . .  M k ] and e is q when k = 1, and 
e = [q, d 1 . . . . .  dk_ 1] when k >~ 2. 

Proof. (a) ~ (b): Suppose (a) holds, and assume without loss of general- 
ity that the determinant of every column representative K of .~v is positive. 
Let  X o, X 1 . . . . .  X k be nonnegative diagonal matrices with diag(X 0 + X 1 
+ -.. +X k) > 0. Then in (11), every term in the summation is nonnegative. 
Moreover, for appropriate Z, the product ZlZ 2 "" z ,  is positive. It follows 
that the left side of (11) is positive and hence nonzero. 

(b) ~ (a): Suppose that (b) holds. By continuity, we can assume that 
sgn deft M 0 X 0 + M 1 X 1 + "-- + M k X k) is the same, say + 1, for all nonnega- 
tive diagonal matrices X 0, X 1 . . . . .  Xk with diag(X 0 + X 1 + "" +X~) > 0. 
Since every column representative of ~ is of the form (M 0 X 0 + M x X 1 
+ ... + M k Xk), we have (a). 

(a) ~ (c): Suppose (a) holds, so that det M 0 # 0. Now any column 
representative matrix of ~¢7 is of the form M o l R  where R is some column 
representative matrix of ~¢'. Thus, from (a), all column representative matri- 
ces of ~ have the same (positive) determinantal sign, i.e., .~v has the column 
~-property. The implication ( c ) ~  (a) follows from reversing the above 
argument. Finally, the equivalence (c) ~ (d) follows from a result of Kaneko 
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[15, Theorem A.1] and the observation that if Mou = 0 for some nonzero u, 
then with q '-= Mo u÷ = Mou- ,  and dj > 0 arbitrary, the extended horizontal 

LCP in (d) has two distinct solutions, namely, ( Xo, x 1 . . . . .  x k) = ( u +, 0 . . . . .  O) 
and (x 0, x 1 . . . . .  x k) = (u - ,  0 . . . . .  0). • 

A few remarks are in order. First, we consider the equivalence of (a) and 
(d) for k = 1. It says that when A and B are in a n×n, the set {A, B} has 
the column ~-property if and only if HLCP([ A, B], q) has a unique solution 
for all q ~ R n. This result has been noted by Kuhn and L/Jwen [18] in 
connection with piecewise affine bijections of R ". However, a simple proof of 
this result can be given using the linear complementarity theory based on the 
observations that (i) if Au = 0, u ~ 0, then (x, y) = (u+,0) and (x, y) = 
(u ,0 )  are two distinct solutions of HLCP([A, B], Au+), and (ii) 
HLCP([ A, B], q)  has a unique solution for all q if and only if A is invertible 
and A-  t B is a P-matrix. 

THEOREM 3. For ~t" given by (1), the following are equivalent: 

(a) ~" has the row ~-property .  
(b) For arbitrary nonnegative diagonal matrices Xo, X 1 . . . . .  X k ~ R '~×" 

with diag(X 0 + X 1 + ... + X  k) > O, 

det(XoM 0 + --" + X k M k )  # O. 

(c) M o is invertible, and ~ = {I, M1Mo I . . . . .  M k Mo 1} has the row 
7f-property, 

(d) For all b ~ R n×¢k+l~, the extended vertical LCP(M, b) has a unique 

solution where M = [M0, M 1 . . . . .  M k ] and b = [b 0, b 1 . . . . .  b k ] with bj 
Rn, j = 0 , 1  . . . . .  n. 

The proof of this theorem is very similar to that of Theorem 2 except that 
for proving the equivalence of (a) and (d), we quote a result of Gowda and 
Sznajder [13, Theorem 17]. 

At this particular stage, one might wonder whether the row and the 
column ~-properties are different. To exhibit the difference, we give the 
following example. 

EXAMPLE 4. Consider 

[ 1] 11 A = - 1  - 1  ' 0 ' 

BA-1  = 1 " - 4  - 1  " 
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Then BA -~ is a P-matrix, while A-1B is not a P-matrix. In view of 
Theorems 2 and 3, {A, B} has the row 7f:-property but not the column 
7f-property. 

It is easy to construct examples of ¢ge with the column (row) 7f:-property. 
Suppose every M i in ~ [as given by (1)] is a strictly column (row) diagonally 
dominant Z-matrix with positive diagonal. Then every column (row) represen- 
tative of .~" is a P-matrix [3], and A has the column (row) 7f--property. 

We end this section by noting that conditions weaker than the row 
7f'-property have been considered in the works of Fujisawa and Kuh; Fuji- 
sawa, Kuh, and Ohtsuki; Rheinboldt and Vandergraft; Kojima and Saigal; 
Schramm; and Kuhn and LSwen. There the bijectivity of a piecewise linear 
function on R" is described in terms of the signs of determinants of certain 
matrices induced by the function. See Ralph [23] for detailed references. 

4. THE COLUMN AND ROW ~0-PROPERTIES 

Referring to the definition of column (row) ~0-property, we note the 
existence of at least one representative whose determinant is nonzero. We 
shall see below that this nonzero condition, while obvious when ~¢" = {I, M}, 
also holds in the (important) monotone case. It is also crucial in certain 
feasible/infeasible interior point algorithms. First we present a result that is 
similar to Theorem 2. 

THEOREM 5. For ~" given by (1), the foUowing are equivalent: 

(i) Jr" has the column 7fo-property. 
(ii) For arbitrary positive diagonal matrices X o, X 1 . . . . .  X k E R n×n, 

det(M oXo + M1X1 + "'" + M k X k )  # O. 

Proof. The proof that (i) ~ (ii) is similar to that of (a) =~ (b) in Theo- 
rem 2. Now suppose that (ii) holds, so that deft M 0 X 0 + M 1X 1 + "'" + M k X k) 
is either positive for all X 0, X 1 . . . . .  X k or negative for all X 0, X 1 . . . . .  Xk, 
where each X~ is a positive diagonal matrix. By continuity, det(MoY 0 + M1Y 1 
+ ... +MkY  j is either nonnegative for all nonnegative diagonal matrices 
Y0, Y1 . . . . .  Yk or nonpositive for all nonnegative diagonal matrices 
Y0, Y1 . . . . .  Yk- Since each column representative matrix of ~" can be written 
as MoY o + M1Y l + "" +MkY  k for appropriate Y0, Y1 . . . . .  Yk, we see that all 
column representative matrices of .,¢" have determinants which are simulta- 
neously nonpositive or nonnegative. Now, to show that there is a column 
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representative matrix of ~ whose determinant is nonzero, we use the 
formula (11) and note that since the left hand side is nonzero, one of the 
terms must be nonzero, which means that the determinant of some column 
representative matrix of .~g is nonzero. Thus (i) holds. [] 

The following result is now obvious. 

THEOREM 6. For ~t" given by (1), the following are equivalent: 

(1) Jr" has the row ~o-property.  
(2) For arbitrary positive diagonal matrices X o . . . . .  X k ~ R", 

det(X 0M 0 + ' - -  +X kM k) # 0 .  

REMAnK 7. When k = 1, (9) and condition (ii) in Theorem 5 imply that 
{A, B} has the column ~0-property if and only if for arbitrary positive 
diagonal matrices X and Y, 

A - B ]  ~ 0 .  (13) det [ X 

The special case of this equivalence, for A = I, was proved by Kojima et al. 
[17], who were interested in developing a unified interior point algorithm for 
P0-matrices. 

As in Theorems 2 and 3, when M 0 is invertible, .~" has the column (row) 
~¥'0-property if and only if {I, M o l M i  . . . . .  M o l M k }  ({I, M i M o  1, 
. . . .  Mk Mo 1}) has the column (row) 7f0-property. 

4.1. The Monotone Case 
For A and B in R nxn, we shall say that {A, B} is column monotone if 

Ax - By = 0 ~ xTy >1 0, 

(or equivalently, if As + Bt = 0 ~ sZt <<, 0), and row monotone i f{A r, B T} 
is column monotone. 

We shall say that {C, D} is a column rearrangement of { A, B} if for each 
index i, either C~ = A i and D i --- B i or else C i = B i and D~ = A s. With this 
definition, we easily verify the following statements. 

(i) If { A, B} is column monotone, then so is any column rearrangement 
of{A, B}. 



704 ROMAN SZNAJDER AND M. SEETHARAMA GOWDA 

(ii) If  { A, B} is column monotone and {C, -  D} is a column rearrange- 
ment of {A , -B} ,  then {C, D} is column monotone. 

The next theorem and its corollary for the column case have been noted 
earlier by Sandberg and Willson [30, p. 84] and Willson [29, Theorem 2], who 
use the term "passive pair" to describe the column monotonicity property. 
For the sake of completeness, we have included the proofs. 

THEOREM 8. Assume that {A, B} is column (row) monotone. Then 
{ A, B} has the column (row)~o-property. 

Proof. We deal only with the column property. (The row property is 
deduced by working with the transposes.) Let X, Y be arbitrary diagonal 
positive matrices. In view of Theorem 5, we need to show that AX + BY is 
nonsingular. Assume that (AX + BY)u = 0. By the column monotonicity of 
{A, B}, (Xu)rYu <<, O. Since X r Y  is a positive definite diagonal matrix, we 
must have u = 0. • 

As a consequence of Theorems 5, 6, and 8, we have the following 

COROLLARY 9. I f {A ,  B} is column (row) monotone, then there exists a 
column (row) representative matrix of { A, B} which is nonsingular. 

The two concepts, namely, the column and row 7f0-properties for .J¢" = 
{M o, M 1, Mk}, coincide when M 0 = I or when each M: is svmmetric. 

• ' ' ,  j J 

The case M 0 = I was considered by Ebiefung and Kostreva [7], who refer to 
the above property simply as the P0-property. The following example demon- 
strates that the column and row ~0-properties are indeed different and that 
the column monotone property need not imply the row ~0-property. 

EXAMPLE 10. Let 

- 0 . 5  
C =  [015 - 0 . 5 ]  and D =  [2 ~].  

Then 

[ 11] and oc1=[3 
C-ID  = - 1  1 1 - 1  " 

Since C-1D is a positive semidefinite matrix, {C, D} is column monotone and 
hence {C, D} has the column ~0-property. However, DC -1 is not a P0- 
matrix, that is, {C, D} does not have the row ~0-property. 
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We end this subsection by noting an equivalent formulation of the column 
(row) monotonicity property. This observation is due to Peiyi Liu and 
(implicitly) Giiler [14]. 

THEOREM 11. The pair { A, B} is column (row) monotone if  and only if  
A + B is nonsingular and AB T (ATB) is positive semidefinite. 

Proof. We deal only with the column monotonicity property. Assume 
that {A, B} is column monotone. Let ( A + B)u = 0. By the monotonicity we 
get - I lu l l  2 1> 0, which gives u = 0, so the matrix A + B is nonsingular. Let 
{C, D} be a column rearrangement of { A, B}, so that C is nonsingular and 
C-  ~ D is positive semidefinite. Straightforward verification shows that for any 
fixed x ~ R", xTABTx = xTCDrx. Fix x and let y = C~x. Then 

x T ( c D T ) x  = (CTx)T Drx = y T ( c - 1 D ) T y  >~ O. 

Hence, xTABTx >i 0, i.e., AB T is positive semidefinite. In the other direction, 
we first note that when A + B is nonsingular, there is a column rearrange- 
ment {C, D} of {A, B} where C is nonsingular. (This can be seen by 
expanding the determinant of A + B.) Reversing our argument above, we 
prove the remaining part of the theorem. • 

REMARK 12. When A + B = I, it turns out that the column monotonic- 
ity property is the same as the row monotonicity property for { A, B}. This can 
be seen as follows. If A + B = I then there exists a column rearrangement 
{C, D} of { A, B} such that C + D = I with C invertible. Assume { A, B} is 
column monotone, so that {C, D} is also column monotone. But then the 
matrix C-1D = DC -1 is positive semidefinite. Then {C T, D T} is column 
monotone, whence {A T, B ~} is column monotone. This means that {A, B} is 
row monotone. 

4.2. Feasible / Infeasible Interior Point Algorithms 
In this subsection, we show how the column and row 7f0-properties arise 

in the feasible/infeasible interior point algorithms for solving extended 
horizontal LCPs and extended vertical LCPs. However, we shall not be 
concerned with the actual convergence of these algorithms. 

First consider an extended horizontal LCP. For ease of notation and 
exposition, we consider the following problem; the general case can be dealt 
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with similarly. Given matrices A, B, and C in R n×n and vectors q and d > 0 
in R", the problem is to find (x, y, z) such that 

A x = q  + B y  + Cz ,  

x A y = 0 ,  

( d - y )  Az =0.  

We define the feasible  set and the nonnegat ive  set corresponding to the 
above problem by 

9-= {(x, y,z):Ax =q  + By + Cz, x A y  >i 0 , ( a - y )  ^ z/> 0} 

and 

e =  { (x ,y ,z ) :x  ^y  > ~ 0 , ( a - y )  Az >t0}. 

Note that x A y /> 0 simply means that both x and y are nonnegative. By a 
feasible  [infeasible] interior po in t  a lgori thm for the above problem, we mean 
an algorithm where the initial point (x 0, y 0 z 0) and all the subsequent points 
( x  k, yk,  z k) generated by the algorithm are in int(~)(~ 3-[int(~')]. Here 
"int" refers to the topological interior. 

Now define the function F : R  n × R" × R n --~ R ~ × R" × R ~ by 

F i y = x * y  , 

( d - y ) . z  

where x * y denotes the Hadamard product of vectors x and y defined by 
( x  * Y)i = xiYi  (i = 1,2 . . . . .  n). The algorithm consists in starting with a 
point (x °, y0, z 0) in the interior of @ and generating a sequence (x k, yk, z k) 
in the following way. 

At any stage, given (x k, y k, z k ) and a vector  ( u k, v k , w k) ~ R n × n n × R ~ 
[which depends on ( x k, y k, z k)], define (x k + 1, y k + 1, z k + 1) by 

(x~+,, yk+i z~+,) = (x~, y~, zk) + ~ ( a x ,  ay, az) 

where a k is a step size and (Ax, Ay, Az) is a solution of 

F~ ZXy = v k , 

I A z l  w k 



GENERALIZATIONS OF P0- AND P-PROPERTIES 707 

F~ being the derivative of F at (x k, y k, z k). The choice of the initial point 
(x o, yO, z o) and (uk, vk, w I') determines the nature of the algorithm-- 
whether it is a feasible interior point or an infeasible interior point algorithm. 
Now, in order to solve for (Ax, Ay, Az) uniquely, we demand that F[ be 
nonsingnlar. Clearly, 

= 
A - B  - C  ] 
yk X k 0 , 

0 - Z  k D - yk 

where X k is a diagonal matrix whose diagonal is x k etc. Writing L k = D - Y k 
and using the Schur determinantal formula, we see that 

det F~ = det( AXkL k + BYkL k + CZkYJ').  

So in order to make F[ nonsingular, we demand that det(AXL + BYL + 
CZY)  be nonzero for all positive diagonal matrices X, Y, and Z with 
L + Y = D. But this amounts to saying that for all positive diagonal matrices 
X, Y, and Z of small norm, deft AX + BY + CZ) is nonzero, i.e., { A, B, C} 
has the column ~0-property. The gist of the above discussion is that the 
nonsingularity of the Jacobian in the "Newton step" of the above algorithm is 
tied to the column ~f0-property of{A, B, C}. In other words, while designing 
algorithms of above type, one cannot have arbitrary matrices A, B, and C. 

REMARK 13. In the analysis above, the difference d - y appears in the 
set ~' as well as in the definition of F. This results in expressions of the form 
D - Y k in F~. Such expressions can be avoided by letting u = d - y and 
defining 

~r___ {(x, y , z , u ) : a x  = q + By + Cz, y + u = d , x  A y >~ O,u A z ~ 0}, 

e = { ( x ,  y ,  z , u ) : x  A y >. O,u A z >. 0 } ,  

and 

F = u * z  
u + y - d  

A x - B y - C z - q  
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This setup also leads to the column gr0-property of { A, B, C}. We omit 
the details. 

Now consider an extended vertical LCP corresponding to [A, B,C]  
and the vector [a, b, c]. The problem is to find an x such that ( Ax + a) A 
(Bx + b )  A (Cx + c )  = 0. Writing y = A x  + a , z  = Bx + b ,  and w = 
Cx + c, we can write the above problem as a system of equations 

y A z A w = O ,  

y - A x - a  = 0 ,  

z - B x - b  = 0 ,  

w - C x - c = O .  

For this problem, the feasible and nonnegative sets are given by 

9 " =  { ( x , y , z , w ) : y - A x - a  = O, z - Bx - b = 0 ,  

w - - C x - - c = O ,  y A z A w > O }  

and 

e = { ( x ,  y ,  z , w ) : y  A z A w >~ 0}. 

The feasible/infeasible interior point algorithm for solving this problem is 
as in the extended horizontal LCP case, except that instead of the function F, 
we use the function G defined by 

i ] G = y - A x - a  . 
z - Bx - b  

W - -  C x  - - c  

As before, the algorithm depends, at any stage, on the invertibility of the 
derivative of G. The derivative of G at (x,  y, z , w )  is given by 

G, = 

YZ 
- A  I 0 
- B  0 I 
- C  0 0 
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and (by the Schur formula) 
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det G'  = det( ZWA + YWB + YZC ). 

As before, we demand that this determinant be nonzero for all positive 
diagonal matrices Y, Z, and W. This leads to the row ~0-property of 
{A, S,C}. 

5. A PERTURBATION RESULT 

In this section we extend a classical result of Fiedler and Pt~tk [9] that M 
is a P0-matrix if and only if Ve > 0, M + e I  is a P-matrix. The extension 
given below should (undoubtedly) be useful--as in [13]--in the stability 
aspects of extended vertical and horizontal LCPs. 

THEOREM 14. Jr" given by (1) has the column gO/o-property i f  and only 
if there exists ~4F = {No, N1, . . .  ' Nk} such that for  every e > 0, ~ + e,'F := 
{M 0 + eN o, M 1 + eN  1 . . . . .  M k + eN  k} has the column ~-property. 

Proof. Assume that .d' has the column gCr0-property and (i) of Definition 
1 holds. [For (ii) the proof is the same.] Let M 0 be a given nonsingular 

column representative matrix of ~¢. Create new matrices M 1 . . . . .  M k in the 
following way. For l = 1 . . . . .  k, let 

(M1) .j if ( M l) . j  

( ~ ) ' J  = (Mo). j  i f (Ml ) . j  

is not a column of M 0 , 

is a column of M 0 . 

This is a rearrangement of columns of matrices in ¢Jt r. According to this 

construction, . ~  = {M-- 0 . . . . .  M-'- k} has the column gcF0-property with M0 non- 
singular. As in the proof  of Theorem 2, we see that ~' := 

{I, MolM1 . . . .  , MolMk} has the column 7f0-property. If  C is any column 
representative matrix of ~', then C is a P0-matrix. By the result of Fiedler 
and Pfftk quoted above, C + eI  is a P-matrix for every e > 0. It then follows 

that {I, Mol__M1 + el__, . . . .  M~IMk +__fiI} has the column ggZ-property, or 
again, {M0, M l + 6M 0 . . . . .  M k + vM 0} has the column gC/-property for ev- 
e r y e >  0. 
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Hence, ~"  + e./F has the column ~-property, whereJl  r = {N 0, N1, . . . ,  N k} 
is defined, for j = 1 , . . . ,  n and l = 1 . . . . .  k, by 

( N o ) . j  = 

( N z ) . j  = 

0 if (M0) .j is a column in M0, 

if ( M 0) .j is not a column in M 0 , 

( "Mo)7 if ( M l).j is a column in M-- l , 

0 if ( M t) .j is not a column in M l . 

Now, assume that for some X,  ~*" + e./F has the column ~-property for 
every e > 0. We verify condition (ii) in Theorem 5. L e t  X o . . . . .  X k be 
positive diagonal matrices. By Theorem 2 and (11), for any e > 0, 

0 :/: d ( e )  := de t [ (M 0 + e N o ) X  o + "" + ( M  k + e N k ) X k ]  

-~- E Z l  "'" Z n d e t [ C f . . . c ~ l ,  

where z l , . . . ,  z n > O, C f  ~ {(M 0 + e N o ) . j , . . . , ( M  k + eNk) . j} .  Again, ap- 
plying (11) to det[C~ .. .J C~], we see that d ( e )  is a polynomial in e whose 
coefficients are linear combinations of determinants of column representative 
matrices of -J¢'. Since d is nontrivial, at least one representative matrix of 
should be nonsingular. 

On the other hand, the intermediate-value theorem enables us to claim 
that if ¢d" + e,/Y has the column ~-property, then all column representative 
matrices [C~ . . .  Cn ~] have the same nonzero determinantal sign. By letting 
e ---) 0 +, we see that determinants of various column representative matrices 
of ~ are either all nonnegative or all nonpositive. Since we have shown that 
at least one of the above is nonzero, ~ has the column 7f0-property. • 

REMARK 15. For M 0 -- I, the above result was noted by Ebiefung and 
Kostreva in [7]. In their paper, each Nj is the identity matrix. A result similar 
to Theorem 14 can be stated for the row ~0-property. 

6. COMPLEMENTARITY RESULTS 

In this section, we prove complementarity results for { A, B} assuming 
column/row monotone properties. 



GENERALIZATIONS OF P0- AND P-PROPERTIES 711 

THEOaEM 16. Suppose that { A, B} is column monotone. Then for any 
p ~ R", HLCP([ A, B], p) is equivalent to a (standard) monotone LCP. 

Proof. Consider HLCP([A, B], p) which is to solve the system 

Ax - By = p ,  

x / x y = 0 .  

By Corollary 9, there exists a nonsingular column representative of { A, B}. 
Hence { A, -B} will have a nonsingular column representative, say, C. By 
rearranging the columns of { A, -B} to form {C, -D} and correspondingly 
the components of x and y, we can rewrite the above system as 

Cu - Dv =p ,  

u A v = 0 .  

We observe that {C, D} is column monotone and hence C-1D is a monotone 
(that is, positive semidefinite) matrix. Clearly, HLCP([C, D], p) is equivalent 
to the monotone LCP(C-ID, C-lp).  • 

REMAnK 17. In view of the above result, we can say that the study of a 
horizontal LCP corresponding to a column monotone pair { A, B} is similar to 
that of a monotone LCP. This might explain why the infeasible interior point 
algorithm as described in Zhang [31] works so well for horizontal LCPs 
corresponding to a column monotone pair. Certainly this explains, as we 
illustrate below, why the "feasibility implies solvability" result is valid for 
horizontal LCPs associated with a column monotone pair. 

In the corollary below, the feasibility of HLCP([ A, B], p) refers to the 
existence of x >~ 0 and y/> 0 such that Ax - By = p. 

COROLLARY 18. Suppose that { A, B} is column monotone. Then for each 
p ~ R", the feasibility of HLCP([ A, B], p) implies its solvability. 

I 

Proof. If HLCP([A, B], p) is feasible, then LCP(C-XD, C-lp)  is feasi- 
ble where {C,- D} is a rearrangement of {A,-B} (as in Theorem 16) 
with C invertible. Since C-ID is a monotone matrix, the feasibility of 
LCP(C-1D, C- lp)  implies its solvability, see [3]. • 
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Motivated by Theorem 16, we ask whether we can rewrite an HLCP 
equivalently as an LCP in other situations. The result given below answers 
this question. 

THEOREM 19. Suppose that { A, B} is a pair such that for  some open 
set f~ c R n and for  all p ~ f~, HLCP([A,  B], p) has a solution. Then there 
is a column representative of {A, B} which is nonsingular, and every 
HLCP([A, B ], r) is equivalent to an LCP. 

Proof. In view of the argument used in the proof of Theorem 16, it is 
enough to show that { A, B} has a nonsingular column representative. Let us 
say that a vector q is degenerate for the HLCP if for some solution (x, y) 
satisfying (6) we have x + y ;~ 0, i.e., for some index i, x i = Yi = O. Clearly, 
the set of degenerate vectors is contained in a finite union of subspaces of R n 
of dimension less than n. Since an open set cannot be covered by these 
subspaces, we see that there is at least one nondegenerate vector, say p in 1~. 
Let (x, y) be a solution of HLCP([A, B], p)  so that x + y > 0. Let ~ := 
{i:x i > 0} and /3 := {i:y~ > 0}. Then /3 is the complement of ~ in 
{1, 2 . . . . .  n}. Let C be the matrix formed by the vectors A.j and B. t as j 
varies over the set a and l varies over the set /3. Clearly, C is a column 
representative of {A, B}. We claim that C is nonsingular. Assume the 
contrary, so that for some nonzero vector z, Cz = 0. Define, for each A, the 
vectors u and v by 

u = 0 and v = y 0 -  Az# • 

When A is small, (u ,v )  is a solution of HLCP([A, B], p). Also, for an 
appropriate choice of A, we can make u + v ~- 0. But this means that p is 
degenerate! Hence C is nonsingular, and the proof is complete. • 

The following result is obvious. 

COROLLARY 20. The conclusion of  the above theorem is valid for  ( A, B} 
when one of  the following holds: 

(a) The matrix [ A, B ] has fuU row rank and for  every q, the feasibility of  
HLCP([A, B ], q) implies its solvability. 

(b) HLCP([A, B], q) is solvable for all q ~ R n. 
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We now state, without proof, the counterparts of the above results for a 
pair { A, B} satisfying the row monotonicity property. Recall that the extended 
vertical LCP([A, B], [a, b]) is to solve the system 

(ax + a) A (Bx + b) =0 ,  

and that if {A, B} is row monotone then so is any row rearrangement of 
{A, B}. 

THEOREM 21. Suppose that { A, B} is row monotone. Then: 

(i) There is a row representative o f {A ,  B} which is nonsingular. 
(ii) For any [ a, b ], the extended vertical LCP([A, B], [ a, b]) is equiva- 

lent to a monotone LCP. 
(iii) For the extended vertical LCP([A, B], [a, b]), feasibility implies 

solvability. 

We thank Mr. Peiyi Liu for  allowing us to include his result (Theorem 11) 
in this paper. 
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