Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Roman domination in regular graphs*

Fu Xueliang^{a,b}, Yang Yuansheng^{a,*}, Jiang Baoqi^a

^a Department of Computer Science, Dalian University of Technology, Dalian, 116024, PR China ^b College of Computer and Information Engineering, Inner Mongolia, Agriculture University, Huhehote, 010018, PR China

ARTICLE INFO

Article history: Received 26 October 2006 Received in revised form 11 March 2008 Accepted 11 March 2008 Available online 24 April 2008

Keywords: Regular graph Roman domination number Roman graph

ABSTRACT

A Roman domination function on a graph G = (V(G), E(G)) is a function $f : V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The minimum weight of a Roman dominating function on a graph G is called the *Roman domination number* of G. Cockayne et al. [E.]. Cockayne et al. Roman domination in graphs, Discrete Mathematics 278 (2004) 11-22] showed that $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$ and defined a graph *G* to be *Roman* if $\gamma_R(G) = 2\gamma(G)$. In this article, the authors gave several classes of Roman graphs: P_{3k} , P_{3k+2} , C_{3k} , C_{3k+2} for $k \ge 1$, $K_{m,n}$ for $\min\{m, n\} \neq 2$, and any graph G with $\gamma(G) = 1$; In this paper, we research on regular Roman graphs and prove that: (1) the *circulant graphs* $C(n; \{1, 3\})(n > 7, n \neq 4 \pmod{5})$ and $C(n; \{1, 2, ..., k\})$ $(k \le \lfloor \frac{n}{2} \rfloor)$, $n \ne 1 \pmod{(2k+1)}$, $(n \ne 2k)$ are Roman graphs, (2) the generalized Petersen graphs P(n, 2k + 1) $(n \neq 4k + 2, n \equiv 0 \pmod{4})$ and $0 \leq k \leq \lfloor \frac{n}{2} \rfloor$ P(n, 1) ($n \neq 2 \pmod{4}$), P(n, 3) ($n \geq 7$, $n \neq 3 \pmod{4}$) and P(11, 3) are Roman graphs, and (3) the Cartesian product graphs $C_{5m} \square C_{5n} (m \ge 1, n \ge 1)$ are Roman graphs.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

For notation and graph theory terminology in general we follow [4,5]. Throughout this paper, we only consider finite, simple undirected graphs without isolated vertices. A graph G = (V(G), E(G)) is a set V(G) of vertices and a subset E(G) of the unordered pairs of vertices, called edges. The open neighborhood and the closed neighborhood of a vertex $v \in V$ are denoted by $N(v) = \{u \in V(G) : vu \in E(G)\}$ and $N[v] = N(v) \cup \{v\}$, respectively. For a set $S \subseteq V(G)$, $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = \bigcup_{v \in S} N[v]$. The maximum degree of any vertex in V(G) is denoted by $\Delta(G)$. When $H \subseteq V(G)$, the induced subgraph G[H] consists of H and all edges whose endpoints are contained in H.

A set $S \subseteq V(G)$ is a dominating set if for each $v \in V(G)$ either $v \in S$ or v is adjacent to some $w \in S$. That is, S is a dominating set if and only if N[S] = V(G). The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G, and a dominating set S of minimum cardinality is called a γ -set of G.

For a graph G, let $f: V \rightarrow \{0, 1, 2\}$, and let $(V_0; V_1; V_2)$ be the ordered partition of V induced by f, where $V_i =$ $\{v \in V(G)|f(v) = i\}$ and $|V_i| = n_i$, for i = 0, 1, 2. Note that there exists a 1-1 correspondence between the functions $f: V(G) \rightarrow \{0, 1, 2\}$ and the ordered partitions $(V_0; V_1; V_2)$ of V(G). So we will write $f = (V_0; V_1; V_2)$.

A function $f: V(G) \rightarrow \{0, 1, 2\}$ is a Roman dominating function (RDF) if V_2 dominates V_0 , i.e. $V_0 \subseteq N[V_2]$. The weight of f is $f(V(G)) = \sum_{v \in V(G)} f(v) = 2n_2 + n_1$. The minimum weight of an RDF of G is called the Roman domination number of G, denoted

Corresponding author.

[🌣] The research is supported by Chinese Natural Science Foundations (60373096, 60573022) and by Specialized Research Fund for the Doctoral Program of Higher Education (20030141003).

E-mail address: yangys@dlut.edu.cn (Y. Yang).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.03.006

by $\gamma_R(G)$. And we say that a function $f = (V_0; V_1; V_2)$ is a γ_R -function if it is an RDF and $f(V) = \gamma_R(G)$. A graph G is a Roman graph (or Roman) if $\gamma_R(G) = 2\gamma(G)$.

In 2004, Cockayne et al. [2] studied the graph theoretic properties of this variant of the domination number of a graph and proved:

Proposition 1.1 ([2]). For any graph G of order n, $\frac{2n}{\Delta(G)+1} \leq \gamma_R(G)$.

Proposition 1.2 ([2]). For any graph G, $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.

Proposition 1.3 ([2]). For any graph *G* of order *n*, $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$.

Proposition 1.4 ([2]). A graph G is Roman if and only if it has a γ_R -function $f = (V_0; V_1; V_2)$ with $n_1 = 0$.

Proposition 1.5 ([2]). Let $f = (V_0; V_1; V_2)$ be any γ_R -function. Then

- (a) $G[V_1]$, the subgraph induced by V_1 , has maximum degree 1.
- (b) No edge of G joins V_1 and V_2 .
- (c) Each vertex of V_0 is adjacent to at most two vertices of V_1 .
- (d) V_2 is a γ -set of $G[V_0 \cup V_2]$.
- (e) Let $H = G[V_0 \cup V_2]$. Then each vertex $v \in V_2$ has at least two H-pn's (i.e. private neighbours relative to V_2 in the graph H).
- (f) If v is isolated in $G[V_2]$ and has precisely one external H-pn, say $w \in V_0$, then $N(w) \cap V_1 = \emptyset$.
- (g) Let k_1 equal to the number of non-isolated vertices in $G[V_2]$, let $C = \{v \cap V_0 : |N(v) \cap V_2| \ge 2\}$, and let |C| = c. Then $n_0 \ge n_2 + k_1 + c$.

In [2], the following classes of graphs were found to be Roman graphs: P_{3k} , P_{3k+2} , C_{3k} , C_{3k+2} for $k \ge 1$, $K_{m,n}$ for min $\{m, n\} \ne 2$, and any graph *G* with $\Delta(G) = n - 1$ (that is any graph with $\gamma(G) = 1$). In [6], a characterization of Roman trees was given. For more references and other Roman dominating problems, we can refer to [1,6–9].

The generalized *Petersen* graph P(n, k) is defined to be a graph on 2n vertices with $V(P(n, k)) = \{v_i, u_i : 0 \le i \le n-1\}$ and $E(P(n, k)) = \{v_i, u_i, u_i, u_{i+k} : 0 \le i \le n-1\}$, where subscripts are taken modulo $n\}$.

In 2007, Yang, Fu and Jiang [3] studied the generalized Petersen graph P(n, 3) and proved

Theorem 1.1 ([3]). $\gamma(P(n, 3)) = n - 2\lfloor \frac{n}{4} \rfloor \ (n \neq 11).$

The circulant graph $C(n; S_c)$ is the graph with the vertex set $V(C(n; S_c)) = \{v_i | 0 \le i \le n - 1\}$ and the edge set $E(C(n; S_c)) = \{v_i v_j | 0 \le i, j \le n - 1, (i - j) \mod n \in S_c\}, S_c \subseteq \{1, 2, \dots, \lfloor n/2 \rfloor$, where subscripts are taken modulo $n\}$.

The *Cartesian product* $G \Box H$ of two graphs *G* and *H* is the graph with vertex set $V(G) \times V(H)$, in which the vertex (a, b) is adjacent to the vertex (c, d) whenever a = c and b is adjacent to d, or b = d and a is adjacent to c.

In this paper, we study Roman domination in regular graphs and give the following new classes of Roman graphs: (1) the circulant graphs $C(n; \{1, 3\})$ $(n \ge 7, n \ne 4 \pmod{5})$ and $C(n; \{1, 2, ..., k\})$ $(k \le \lfloor \frac{n}{2} \rfloor, n \ne 1 \pmod{(2k+1)}, n \ne 2k), (2)$ the generalized Petersen graphs P(n, 2k+1) $(n \ne 4k+2, n \equiv 0 \pmod{4})$ and $0 \le k \le \lfloor \frac{n}{2} \rfloor$, P(n, 1) $(n \ne 2 \pmod{4})$, P(n, 3) $(n \ge 7, n \ne 3 \mod 4)$ and P(11, 3), and (3) the Cartesian product graphs $C_{5m} \square C_{5n}$ $(m \ge 1, n \ge 1)$.

2. Basic properties

Let *G* be an *r*-regular graph with order $n \ (r \ge 1)$, $m = \lfloor \frac{n}{r+1} \rfloor$, $t = n \mod (r+1)$, then n = (r+1)m + t, $0 \le t \le r$. Let *S* be an arbitrary dominating set of *G*, then for each vertex $v \in V(G)$, $N[v] \cap S \neq \emptyset$, and *v* is being dominated $|N[v] \cap S| \ge 1$ times. We define a function *rd* counting the times *v* is re-dominated as follows:

 $rd(v) = |N[v] \cap S| - 1.$

For a vertex set $V' \subseteq V(G)$, let $rd(V') = \sum_{v \in V'} rd(v)$. Then, by Proposition 1.5(d), V_2 is a γ -set of $G[V_0 \cup V_2]$, and this gives us

Lemma 2.1. $rd(V(G[V_0 \cup V_2])) = (r+1)n_2 - (n-n_1).$

Lemma 2.2. If $f = (V_0; V_1; V_2)$ is any γ_R -function of G, then

(1) $n_2 \ge \lceil \frac{n-n_1}{r+1} \rceil$. (2) $f(V(G)) \ge 2m + \lceil \frac{2t+(r-1)n_1}{r+1} \rceil \ge \frac{2n+(r-1)n_1}{r+1}$. (3) $f(V(G)) \ge 2m$ for t = 0. (4) $f(V(G)) \ge 2m + 2$ for $t \ge 1$ and $(t, n_1) \ne (1, 1)$. **Proof.** (1) By Proposition 1.5(d), V_2 is a γ -set of $G[V_0 \cup V_2]$, hence $(r + 1)n_2 \ge n - n_1$. So $n_2 \ge \lceil \frac{n-n_1}{r+1} \rceil$. (2) Since $f(V(G)) = 2n_2 + n_1$, we have

$$(r+1)f(V(G)) = 2(r+1)n_2 + (r+1)n_1,$$

$$\geq 2n - 2n_1 + (r+1)n_1,$$

$$= 2(r+1)m + 2t + (r-1)n_1$$

Hence $f(V(G)) \ge 2m + \lceil \frac{2t+(r-1)n_1}{r+1} \rceil \ge 2m + \frac{2t+(r-1)n_1}{r+1} = \frac{2n+(r-1)n_1}{r+1}$. (3) Suppose t = 0, then by (2), $f(V(G)) \ge 2m + \lceil \frac{2t+(r-1)n_1}{r+1} \rceil \ge 2m$. (4) Suppose t > 1.

Case 1. Suppose
$$n_1 = 0$$
, then by (1), $n_2 \ge \lceil \frac{n-n_1}{r+1} \rceil = \lceil \frac{(r+1)m+t}{r+1} \rceil = m+1$. Hence $f(V(G)) = 2n_2 + n_1 = 2n_2 \ge 2m+2$.

Case 2. Suppose $n_1 = 1$ and $t \ge 2$, then by (2), $f(V(G)) \ge 2m + \lceil \frac{2t + (r-1)n_1}{r+1} \rceil \ge 2m + \lceil \frac{4+r-1}{r+1} \rceil = 2m + 2$.

Case 3. Suppose $n_1 \ge 2$, then by (2), $f(V(G)) \ge 2m + \lceil \frac{2t+(r-1)n_1}{r+1} \rceil \ge 2m + \lceil \frac{2+2(r-1)}{r+1} \rceil = 2m + 1 + \lceil \frac{r-1}{r+1} \rceil = 2m + 2$. \Box

In this paper, we will denote the vertices of *G* as follows: black circles denote vertices in V_2 , grey circles denote vertices in V_1 and white circles denote vertices in V_0 .

3. Roman domination in circulant graphs

Lemma 3.1. For 4-regular graph $C(n; \{1, 3\})$ $(n \ge 7)$,

$$\gamma_{R}(C(n; \{1, 3\})) = \begin{cases} 2m, & \text{if } t = 0; \\ 2m + 2, & \text{if } t = 1, 2, 3 \\ 2m + 3, & \text{if } t = 4. \end{cases}$$

Proof. Let

$$S_{1,2} = \begin{cases} \{v_{5i+2} : 0 \le i \le m-1\}, & \text{if } t = 0; \\ \{v_{5i+2} : 0 \le i \le m\}, & \text{if } t \ne 0. \end{cases}$$

$$S_{1,1} = \begin{cases} \{v_0\}, & \text{if } t = 4; \\ \emptyset, & \text{if } t \ne 4. \end{cases}$$

$$S_{1,0} = N(S_{1,2}).$$

Then $N[S_{1,2}] \cup S_{1,1} = V(C(n; (1, 3)))$, and $f = (V_0; V_1; V_2) = (S_{1,0}; S_{1,1}; S_{1,2})$ is a Roman dominating function of $C(n; \{1, 3\})$ with

$$f(V(C(n; (1, 3)))) = \begin{cases} 2m, & \text{if } t = 0; \\ 2m + 2, & \text{if } t = 1, 2, 3; \\ 2m + 3, & \text{if } t = 4. \end{cases}$$

Hence we have

$$\gamma_{R}(C(n; \{1, 3\})) \leq \begin{cases} 2m, & \text{if } t = 0; \\ 2m+2, & \text{if } t = 1, 2, 3; \\ 2m+3, & \text{if } t = 4. \end{cases}$$

In the following part of this proof, we will prove that

$$\gamma_{R}(C(n; \{1, 3\})) \geq \begin{cases} 2m, & \text{if } t = 0; \\ 2m+2, & \text{if } t = 1, 2, 3; \\ 2m+3, & \text{if } t = 4. \end{cases}$$

Case 1. t = 0. By Lemma 2.2(3), $\gamma_R(C(n; \{1, 3\})) \ge 2m$.

Case 2. t = 1, 2, 3 and $(t, n_1) \neq (1, 1)$. By Lemma 2.2(4), $\gamma_R(C(n; \{1, 3\})) \geq 2m + 2$.

Case 3. $(t, n_1) = (1, 1)$. By Lemma 2.2(1), $n_2 \ge \lceil \frac{n-n_1}{5} \rceil = \lceil \frac{5m+1-1}{5} \rceil = m$. Hence $\gamma_R(C(n; \{1, 3\})) = 2n_2 + n_1 \ge 2m + 1$. Assume that $\gamma_R(C(n; \{1, 3\})) = 2m + 1$. Then by Lemma 2.1, $rd(V(G[V_0 \cup V_2])) = (r + 1)n_2 - (n - n_1) \ge 5m - (5m + 1 - 1) = 0$. Without loss of generality, let $v_{5m} \in V_1$. By Proposition 1.5(b), we have $v_0 \in V_0$. By the definition of Roman dominating function, $N(v_0) \cap V_2 \ne \emptyset$, we have $\{v_1, v_3, v_{5m-2}\} \cap V_2 \ne \emptyset$.

Case 3.1. Suppose $v_1 \in V_2$. Let $v_i \in V_2$ be the vertex dominating v_{5m-2} , then since $rd(V(G[V_0 \cup V_2])) = 0$, we have $v_i \notin \{v_{5m-2}, v_{5m-1}, v_0\}$. By Proposition 1.5(b), we have $v_i \neq v_{5m-3}$. Hence $v_i = v_{5m-5}$. Let $v_j \in V_2$ be the vertex dominating v_{5m-3} , then $v_j \in \{v_{5m-6}, v_{5m-4}, v_{5m-3}, v_{5m-2}\}$, it follows that $rd(V(G[V_0 \cup V_2])) > 0$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 0$ (see Fig. 3.1(1)).

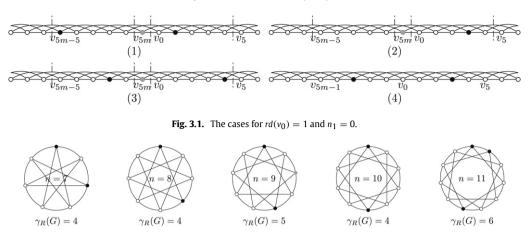


Fig. 3.2. A Roman dominating function on $G = C(n; \{1, 3\})$ for $7 \le n \le 11$.

Case 3.2. Suppose $v_3 \in V_2$. Let $v_i \in V_2$ be the vertex dominating v_1 . By Proposition 1.5(b), we have $v_i \neq v_{5m-1}$. So $v_i \in \{v_0, v_1, v_2, v_4\}$, it follows that $rd(V(G[V_0 \cup V_2])) > 0$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 0$ (see Fig. 3.1(2)).

Case 3.3. Suppose $v_{5m-2} \in V_2$. Let $v_i \in V_2$ be the vertex dominating v_1 , then since $rd(V(G[V_0 \cup V_2])) = 0$, we have $v_i \notin \{v_{5m-1}, v_0, v_1\}$. By Proposition 1.5(b), we have $v_i \neq v_2$. Hence $v_i = v_4$. Let $v_j \in V_2$ be the vertex dominating v_2 , then $v_j \in \{v_2, v_3, v_4, v_5\}$, it follows that $rd(V(G[V_0 \cup V_2])) > 0$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 0$ (see Fig. 3.1(3)). From cases 3.1–3.3, we have $\gamma_R(C(n; \{1, 3\})) \neq 2m + 1$ for $(t, n_1) = (1, 1)$, i.e. $\gamma_R(C(n; \{1, 3\})) \geq 2m + 2$.

Case 4. t = 4. By Lemma 2.2(2), $\gamma_R(C(n; \{1, 3\})) \ge \frac{2n + (r-1)n_1}{r+1} = \frac{2 \times (5m+4) + (4-1)n_1}{4+1} = 2m + 1 + \frac{3n_1 + 3}{5}$. Hence $\gamma_R(C(n; \{1, 3\})) \ge 2m + 1 + \lceil \frac{3n_1 + 3}{5} \rceil$.

Case 4.1. Suppose $n_1 \neq 0$. Then $\gamma_R(C(n; \{1, 3\})) \ge 2m + 1 + \lceil \frac{3n_1 + 3}{5} \rceil \ge 2m + 3$.

Case 4.2. Suppose $n_1 = 0$. By Lemma 2.2(1), $n_2 \ge \lceil \frac{n-n_1}{5} \rceil = \lceil \frac{5m+4}{5} \rceil = m + 1$. Assume that $n_2 = m + 1$. Then by Lemma 2.1, $rd(V(G[V_0 \cup V_2])) = (r+1)n_2 - (n-n_1) = 5(m+1) - (5m+4) = 1$. Without loss of generality, we may assume that $rd(v_0) = 1$. Then we have $N[v_0] \cap V_2 = \{v_3, v_{5m+1}\}$. Let $v_i \in V_2$ be the vertex dominating v_1 , we have $v_i \in \{v_{5m+2}, v_0, v_1, v_2, v_4\}$, it follows that $rd(V(G[V_0 \cup V_2])) > 1$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 3.1(4)). Hence $n_2 \neq m + 1$. i.e. $n_2 \ge m + 2$, $\gamma_R(C(n; \{1, 3\})) = 2n_2 + n_1 \ge 2m + 4$.

From above discussion, we have

 $\gamma_{\mathbb{R}}(C(n; \{1, 3\})) = \begin{cases} 2m, & \text{if } t = 0; \\ 2m + 2, & \text{if } t = 1, 2, 3; \\ 2m + 3, & \text{if } t = 4. \ \Box \end{cases}$

Theorem 3.2. The circulant graphs $C(n; \{1, 3\})$ are Roman for $n \ge 7$ and $n \ne 4 \pmod{5}$.

Proof. According to the proof of Lemma 3.1, we have $f = (V_0; V_1; V_2) = (S_{1,0}; S_{1,1}; S_{1,2})$ is a γ_R -function with $|V_1| = 0$. By Proposition 1.4, the circulant graphs $C(n; \{1, 3\})$ are Roman for $n \ge 7$ and $n \ne 4 \mod 5$. \Box

In Fig. 3.2, we show a Roman dominating function on $C(n; \{1, 3\})$ for $7 \le n \le 11$. Let $C_{n,k} = C(n; \{1, 2, ..., k\})$, then the graphs C(n, k) are 2*k*-regular.

Lemma 3.3. For $n \ge 5, 2 \le k \le \lfloor \frac{n}{2} \rfloor$, $n \ne 2k$.

$$\gamma_{R}(C_{n,k}) = \begin{cases} 2m, & \text{if } t = 0; \\ 2m+1, & \text{if } t = 1; \\ 2m+2, & \text{if } t = 2, 3, \dots, 2k \end{cases}$$

Proof. Let

$$S_{2,2} = \begin{cases} \{v_{(2k+1)i+k} : 0 \le i \le m-1\}, & \text{if } t = 0, 1; \\ \{v_{(2k+1)i+k} : 0 \le i \le m\}, & \text{if } t = 2, 3, \dots, 2k. \end{cases}$$

$$S_{2,1} = \begin{cases} \{v_{5m}\}, & \text{if } t = 1; \\ \emptyset, & \text{if } t \ne 1. \end{cases}$$

$$S_{2,0} = N(S_{2,2}).$$

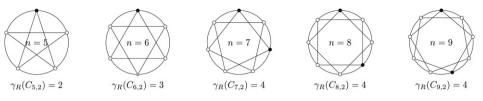


Fig. 3.3. A Roman dominating function on $C_{n,2} = C(n; \{1, 2\})$ for $5 \le n \le 9$.

Then $N[S_{2,2}] \cup S_{2,1} = V(C_{n,k})$, and $f = (V_0; V_1; V_2) = (S_{2,0}; S_{2,1}; S_{2,2})$ is a Roman dominating function of $C_{n,k}$ with

$$f(V(C_{n,k})) = \begin{cases} 2m, & \text{if } t = 0; \\ 2m+1, & \text{if } t = 1; \\ 2m+2, & \text{if } t = 2, 3, \dots, 2k. \end{cases}$$

Hence

$$\gamma_{R}(C_{n,k}) \leq \begin{cases} 2m, & \text{if } t = 0; \\ 2m+1, & \text{if } t = 1; \\ 2m+2, & \text{if } t = 2, 3, \dots, 2k \end{cases}$$

By Lemma 2.2(2), we have $\gamma_R(C_{n,k}) \ge 2m + \lceil \frac{2t+(r-1)n_1}{2k+1} \rceil = 2m + \lceil \frac{(2k-1)n_1+2t}{2k+1} \rceil$. Hence

$$\gamma_R(C_{n,k}) \ge \begin{cases} 2m, & \text{if } t = 0; \\ 2m+1, & \text{if } t = 1. \end{cases}$$

If $t \ge 2$ and $n_1 \ne 0$, then we have $\gamma_R(C_{n,k}) \ge 2m + \lceil \frac{(2k-1)n_1+2t}{2k+1} \rceil \ge 2m + \lceil \frac{(2k-1)+2\times 2}{2k+1} \rceil = 2m + 2$. If $t \ge 2$ and $n_1 = 0$, by Lemma 2.2(1), we have $n_2 \ge \lceil \frac{n-n_1}{r+1} \rceil = \lceil \frac{(2k+1)m+t}{2k+1} \rceil = m + 1$, $\gamma_R(C_{n,k}) = 2n_2 \ge 2m + 2$. From the above discussion, we have

$$\gamma_{\mathcal{R}}(C_{n,k}) = \begin{cases} 2m, & \text{if } t = 0; \\ 2m+1, & \text{if } t = 1; \\ 2m+2, & \text{if } t = 2, 3, \dots, 2k. \end{cases}$$

In Fig. 3.3, we show a Roman dominating function on $C(n; \{1, 2\})$ for $5 \le n \le 9$.

Theorem 3.4. The circulant graphs $C(n; \{1, 2, ..., k\})$ are Roman for $n \ge 4$ $(n \ne 2k)$, $2 \le k \le \lfloor \frac{n}{2} \rfloor$ and $n \ne 1 \pmod{(2k+1)}$.

Proof. According to the proof of Lemma 3.3, we have $f = (V_0; V_1; V_2) = (S_{20}; S_{21}; S_{22})$ is a γ_R -function with $|V_1| = 0$. By Proposition 1.4, the circulant graphs $C(n; \{1, 2, ..., k\})$ are Roman for $n \ge 4$ ($n \ne 2k$) and $n \ne 1$ (mod(2k + 1)). \Box

4. Roman domination in generalized Petersen graphs

In this section, we let $m^* = \lfloor \frac{n}{4} \rfloor$, $t^* = n \mod 4$, then $n = 4m^* + t^*$, $0 \le t^* \le 3$. The graphs of this section are 3-regular, and the subscripts should be taken modulo n.

Theorem 4.1. For $n \equiv 0 \pmod{4}$, $0 \le k \le \frac{\lfloor \frac{n-1}{2} \rfloor - 1}{2}$, the generalized Petersen graphs P(n, 2k + 1) are Roman.

Proof. Suppose $n \equiv 0 \pmod{4}$, let

 $S_{3,2} = \{v_{4i}, u_{4i+2} : 0 \le i \le m^* - 1\},$ $S_{3,1} = \emptyset,$ $S_{3,0} = N(S_{3,2}),$

then $N[S_{3,2}] \cup S_{3,1} = V(P(n, 2k+1))$, and $f = (V_0; V_1; V_2) = (S_{3,0}; S_{3,1}; S_{3,2})$ is a Roman dominating function of P(n, 2k+1) with $f(V(P(n, 2k+1))) = 2 \times (2m^*) = 4m^*$. So we have $\gamma_R(P(n, 2k+1)) \le 4m^*$. By Lemma 2.2, $\gamma_R(P(n, 2k+1)) \ge \frac{2 \times 2n + (3-1)n_1}{3+1} = \frac{4 \times 4m^* + 2n_1}{4} = 4m^* + \frac{n_1}{2} \ge 4m^*$. Hence $\gamma_R(P(n, 2k+1)) = 4m^*$ for $n \equiv 0 \pmod{4}$.

Thus, $f = (V_0; V_1; V_2) = (S_{3,0}; S_{3,1}; S_{3,2})$ is a γ_R -function with $|V_1| = 0$. By Proposition 1.4, the generalized Petersen graphs P(n, 2k + 1) are Roman for $n \equiv 0 \pmod{4}$ and $0 \le k \le \frac{\lfloor \frac{n-1}{2} \rfloor - 1}{2}$. \Box

Lemma 4.2. For $n \ge 3$, $\gamma_R(P(n, 1)) = 4m^* + t^* + 1$ for $t^* = 1, 2, 3$.

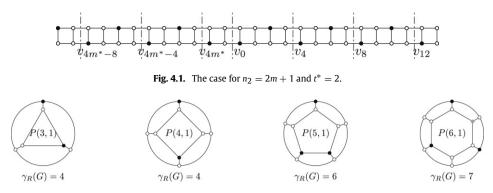


Fig. 4.2. A Roman dominating function on G = P(n, 1) for $3 \le n \le 7$.

Proof. Let

$$\begin{split} S_{4,2} &= \begin{cases} \{v_{4i}, u_{4i+2} : 0 \leq i \leq m^* - 1\} \cup \{v_{4m^*}\}, & \text{if } t^* = 1, 2; \\ \{v_{4i}, u_{4i+2} : 0 \leq i \leq m^*\}, & \text{if } t^* = 3. \end{cases} \\ S_{4,1} &= \begin{cases} \{u_{4m+1}\}, & \text{if } t^* = 2; \\ \emptyset, & \text{if } t^* = 1, 3. \end{cases} \\ S_{4,0} &= N(S_{4,2}). \end{cases} \end{split}$$

Then $N[S_{4,2}] \cup S_{4,1} = V(P(n, 1))$, and $f = (V_0; V_1; V_2) = (S_{4,0}; S_{4,1}; S_{4,2})$ is a Roman dominating function of P(n, 1) with $f(V(P(n, 1))) = 4m^* + t^* + 1$ for $t^* = 1, 2, 3$. Hence we have $\gamma_R(P(n, 1)) \le 4m^* + t^* + 1$ for $t^* = 1, 2, 3$. By Lemma 2.2(2), $f(V(P(n, 1))) \ge \frac{2 \times 2n + (r-1)n_1}{r+1} = \frac{2 \times 2 \times (4m^* + t^*) + (3-1)n_1}{3+1} = 4m^* + t^* + \frac{n_1}{2}$. Hence $\gamma_R(P(n, 1)) \ge 4m^* + t^* + \lceil \frac{n_1}{2} \rceil$. If $n_1 \ne 0$, then $\gamma_R(P(n, 1)) \ge 4m^* + t^* + 1$.

If $n_1 = 0$, then by Lemma 2.2(1), $n_2 \ge \lceil \frac{2n}{4} \rceil = \lceil \frac{2(4m^* + t^*)}{4} \rceil = 2m^* + \lceil \frac{t^*}{2} \rceil$. Hence $\gamma_R(P(n, 1)) = 2n_2 + n_1 \ge 4m^* + 2\lceil \frac{t^*}{2} \rceil$. There are two cases :

Case 1. $t^* = 1, 3$. Then $\gamma_R(P(n, 1)) \ge 4m^* + 2\lceil \frac{t^*}{2} \rceil = 4m^* + t^* + 1$.

Case 2. $t^* = 2$. Then $n_2 \ge 2m^* + \lceil \frac{t^*}{2} \rceil = 2m^* + 1$. Assume that $n_2 = 2m^* + 1$. Then by Lemma 2.1, $rd(V(P(n, 1))) = rd(V(G[V_0 \cup V_2])) = (r + 1)n_2 - (n - n_1) = 4(2m^* + 1) - (8m^* + 4) = 0$. If $v_i \in V_0$ for every $0 \le i \le n - 1$, then $V_2 = \{u_0, u_1, \dots, u_{n-1}\}$, $n_2 = 4m^* + 2$, a contradiction with $n_2 = 2m^* + 1$. Without loss of generality, we may assume that $v_0 \in V_2$. Let $x_i \in V_2$ be the vertex dominating u_1 , then since rd(V(P(n, 1))) = 0, we have $x_i = u_2$. Let $x_j \in V_2$ be the vertex dominating v_3 , then since rd(V(P(n, 1))) = 0, we have $x_j = v_4$. Continuing in this way, we have $\{v_{4i}, u_{4i+2}\} \subset V_2(0 \le i \le m^*)$, i.e. $v_{4m^*} \in V_2$, $rd(v_{4m^*+1}) \ge 1$, a contradiction with rd(V(P(n, 1))) = 0. Hence $n_2 \ne 2m^* + 1$, i.e. $n_2 \ge 2m^* + 2$, $\gamma_R(P(n, 1)) = 2n_2 \ge 4m^* + 4 > 4m^* + t^* + 1$ (see Fig. 4.1).

From the above discussion, we have $\gamma_R(P(n, 1)) = 4m^* + t^* + 1$ for $t^* = 1, 2, 3$.

Theorem 4.3. *The generalized Petersen graphs* P(n, 1) *are Roman for* $n \ge 3$ *and* $n \ne 2 \pmod{4}$.

Proof. According to the proof of Lemma 4.2, we have $f = (V_0; V_1; V_2) = (S_{4,0}; S_{4,1}; S_{4,2})$ is a γ_R -function with $|V_1| = 0$ for t = 1, 3. By Proposition 1.4 and Theorem 4.1, we have that the generalized Petersen graphs P(n, 1) are Roman for $n \ge 3$ and $n \ne 2 \pmod{4}$. \Box

In Fig. 4.2, we show a Roman dominating function on P(n, 1) for $3 \le n \le 7$.

Lemma 4.4. For the generalized Petersen graph P(n, 3) ($n \ge 7$), if $n \equiv 2 \pmod{4}$ and $n_1 = 1$, then $n_2 \ge 2m^* + 2$.

Proof. By Lemma 2.2(1), $n_2 \ge \lceil \frac{2n-n_1}{4} \rceil = \lceil \frac{2 \times (4m^*+2)-1}{4} \rceil = 2m^* + 1$. Assume that $n_2 = 2m^* + 1$. Then by Lemma 2.1, $rd(V(G[V_0 \cup V_2])) = (r+1)n_2 - (n-n_1) = 4(2m^*+1) - (8m^*+4-1) = 1$, hence there exists an unique vertex *x* with rd(x) = 1. If $x \in V_2$, then since rd(x) = 1, *x* has to be dominated by another vertex, say $y \in V_2$. Thus, $rd(\{x, y\}) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$. Without loss of generality, we may assume that $x \in \{v_6, u_6\}$.

Case 1. $rd(v_6) = 1$. Then $N(v_6) \cap V_2 = \{\{v_5, v_7\}, \{v_5, u_6\}, \{u_6, v_7\}\}$. By symmetry, we only need to consider the cases for $N(v_6) \cap V_2 = \{\{v_5, v_7\}, \{v_5, u_6\}\}$.

Case 1.1. $N(v_6) \cap V_2 = \{v_5, v_7\}$. Consider the vertex u_8 , we have:

Case 1.1.1. Suppose $u_8 \in V_1$. Let $x_i \in V_2$ be the vertex dominating u_4 , since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_i = u_1$. Let $x_j \in V_2$ be the vertex dominating v_2 , then $x_j \in \{v_1, v_2, u_2, v_3\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(1)).

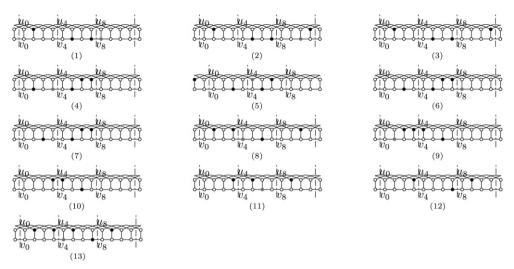


Fig. 4.3. The cases of rd(x) = 1 for $x \in \{v_6, u_6\}$.

Case 1.1.2. Suppose $u_8 \notin V_1$. Let $x_i \in V_2$ be the vertex dominating u_8 , since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_i = u_{11}$. Consider the vertex v_{10} , we have:

Case 1.1.2.1. Suppose $v_{10} \in V_1$. Let $x_j \in V_2$ be the vertex dominating u_4 , since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_j = u_1$. Let $x_h \in V_2$ be the vertex dominating v_2 , then $x_h \in \{v_1, v_2, u_2, v_3\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(2)).

Case 1.1.2.2. Suppose $v_{10} \notin V_1$. Let $x_j \in V_2$ be the vertex dominating v_{10} , then $x_j \in \{v_9, v_{10}, u_{10}, v_{11}\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(3)).

Case 1.2. $N(v_6) \cap V_2 = \{\{v_5, u_6\}\}$. Consider the vertex v_3 , we have:

Case 1.2.1 Suppose $v_3 \in V_1$. Let $x_i \in V_2$ be the vertex dominating v_2 , then $x_i \in \{v_1, v_2, u_2\}$. By Proposition 1.5(b), $x_i \neq v_2$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_i \neq u_2$, it follows that $x_i = v_1$. Let $x_j \in V_2$ be the vertex dominating u_4 , since $rd(V(G[V_0 \cup V_2])) = 1$, $x_j = u_7$. Let $x_h \in V_2$ be the vertex dominating v_8 , then $x_h \in \{v_7, v_8, u_8, v_9\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(4)).

Case 1.2.2 Suppose $v_3 \notin V_1$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $v_2 \in V_2$. Consider the vertex u_4 , we have:

Case 1.2.2.1 Suppose $u_4 \in V_1$. Let $x_i \in V_2$ be the vertex dominating u_1 , then $x_i \in \{u_{4m^*}, v_1, u_1\}$. By Proposition 1.5(b), $x_i \neq u_1$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_i \neq v_1$, it follows that $x_i = u_{4m^*}$. Let $x_j \in V_2$ be the vertex dominating v_{4m^*+1} , then $x_j \in \{v_{4m^*}, v_{4m^*+1}, u_{4m^*+1}, v_0\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(5)). *Case* 1.2.2.2 Suppose $u_4 \notin V_1$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $u_7 \in V_2$. Consider the vertex v_8 , Suppose $v_8 \in V_1$, Let $x_i \in V_2$ be the vertex dominating v_9 , then $x_i \in \{v_9, u_9, v_{10}\}$. By Proposition 1.5(b), we have $x_i \neq v_9$, hence $x_i \in \{u_9, v_{10}\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) \ge 1$ (see Fig. 4.3(6)). Suppose $v_8 \notin V_1$, Let $x_j \in V_2$ be the vertex dominating v_8 , then $x_j \in \{v_7, v_8, u_8, v_9\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(7)).

Case 2. $rd(u_6) = 1$. Then $N(u_6) \cap V_2 \in \{\{u_3, v_6\}, \{u_3, u_7\}, \{v_6, u_7\}\}$. By symmetry, we only need to consider the cases for $N(v_6) \cap V_2 \in \{\{u_3, v_6\}, \{u_3, u_7\}\}$.

Case 2.1. $N(u_6) \cap V_2 = \{u_3, v_6\}$. Consider the vertex v_4 , we have:

Case 2.1.1. $v_4 \in V_1$. Let $x_i \in V_2$ be the vertex dominating u_4 , then $x_i \in \{u_1, u_4, u_7\}$. By Proposition 1.5(b), $x_i \neq u_4$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_i \neq u_7$, it follows that $x_i = u_1$. Let $x_j \in V_2$ be the vertex dominating u_7 , since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_j = u_{10}$. Let $x_h \in V_2$ be the vertex dominating v_9 , then $x_h \in \{v_8, v_9, u_9, v_{10}\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(8)).

Case 2.1.2. $v_4 \notin V_1$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $u_4 \in V_2$. Consider the vertex v_1 , we have:

Case 2.1.2.1. Suppose $v_1 \in V_1$. Let $x_i \in V_2$ be the vertex dominating v_2 , then $x_i \in \{v_2, v_3, u_2\}$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_i = u_2$. Let $x_j \in V_2$ be the vertex dominating v_0 , then $x_j \in \{v_{4m^*+1}, v_0, u_0\}$. By Proposition 1.5(b), we have $x_j \neq v_0$, hence $x_j \in \{v_{4m^*+1}, u_0\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(9)).

Case 2.1.2.2. Suppose $v_1 \notin V_1$. Let $x_i \in V_2$ be the vertex dominating v_1 , we have $x_i \in \{v_0, v_1, u_1, v_2\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(10)).

Case 2.2. $N(u_6) \cap V_2 = \{u_3, u_9\}$. Consider the vertex v_6 , we have:

Case 2.2.1. $v_6 \in V_1$. Let $x_i \in V_2$ be the vertex dominating v_5 , then $x_i = \{v_4, v_5, u_5\}$. By Proposition 1.5(b), $x_i \neq v_5$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_i \neq v_4$, it follows that $x_i = u_5$. Let $x_i \in V_2$ be the vertex dominating v_8 , then

 $x_j \in \{v_7, v_8, u_8, v_9\}$. By Proposition 1.5(b), $x_j \neq v_7$, hence $x_j \in \{v_8, u_8, v_9\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(11)).

Case 2.2.2. $v_6 \notin V_1$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $v_6 \in V_0, V_2 \cap \{v_5, v_7\} \neq \emptyset$. By symmetry, we only need to consider $v_7 \in V_2$. Consider the vertex v_4 and observe the following cases:

Case 2.2.2.1. Suppose $v_4 \notin V_1$. Let $x_i \in V_2$ be the vertex dominating v_4 , then $x_j \in \{v_3, v_4, u_4, v_5\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(12)).

Case 2.2.2.2. Suppose $v_4 \in V_1$. Let $x_i \in V_2$ be the vertex dominating v_5 , then $x_i = \{v_5, u_5, v_6\}$. By Proposition 1.5(b), $x_i \neq v_5$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_i \neq v_6$, it follows that $x_i = u_5$. Let $x_j \in V_2$ be the vertex dominating u_4 , then $x_j \in \{u_3, u_4, u_7\}$. By Proposition 1.5(b), we have $x_j \neq u_4$. Since $rd(V(G[V_0 \cup V_2])) = 1$, we have $x_j \neq u_7$, it follows that $x_j = u_1$. Let $x_h \in V_2$ be the vertex dominating v_2 , then $x_h \in \{v_1, v_2, u_2, v_3\}$, it follows that $rd(V(G[V_0 \cup V_2])) \ge 2$, a contradiction with $rd(V(G[V_0 \cup V_2])) = 1$ (see Fig. 4.3(13)).

From cases 1–2, we have $n_2 \neq 2m^* + 1$, i.e. $n_2 \ge 2m^* + 2$. \Box

Lemma 4.5. *For*
$$n \ge 7$$
,

$$\gamma_{R}(P(n,3)) = \begin{cases} 4m^{*}+2, & \text{if } t^{*}=1; \\ 4m^{*}+4, & \text{if } t^{*}=2; \\ 4m^{*}+4, & \text{if } t^{*}=3. \end{cases}$$

Proof. Let

$$S_{5,2} = \begin{cases} \{v_{4i}, u_{4i+2} : 0 \le i \le m^* - 1\} \cup \{u_{4m^*-1}\}, & \text{if } t^* = 1; \\ \{v_{4i}, u_{4i+2} : 0 \le i \le m^* - 1\} \cup \{v_{4m^*-1}, u_{4m^*}\}, & \text{if } t^* = 2; \\ \{v_{4i}, u_{4i+2} : 0 \le i \le m^* - 1\} \cup \{v_{4m^*}\}, & \text{if } t^* = 3. \end{cases}$$
$$S_{5,1} = \begin{cases} \emptyset, & \text{if } t^* = 1, 2; \\ \{u_1, u_{4m-1}\}, & \text{if } t^* = 3. \end{cases}$$
$$S_{5,0} = N(S_{5,2}).$$

Then $N[S_{5,2}] \cup S_{5,1} = V(P(n, 3))$, and $f = (V_0; V_1; V_2) = (S_{5,0}; S_{5,1}; S_{5,2})$ is a Roman dominating function of P(n, 3) with

$$f(P(n, 3)) = \begin{cases} 4m^* + 2, & \text{if } t^* = 1; \\ 4m^* + 4, & \text{if } t^* = 2; \\ 4m^* + 4, & \text{if } t^* = 3. \end{cases}$$

Hence we have

$$\gamma_{R}(P(n,3)) \leq \begin{cases} 4m^{*}+2, & \text{if } t^{*}=1; \\ 4m^{*}+4, & \text{if } t^{*}=2; \\ 4m^{*}+4, & \text{if } t^{*}=3. \end{cases}$$

In the following part of this proof, we will prove that

$$\gamma_{R}(P(n; \{1, 3\})) \geq \begin{cases} 4m^{*} + 2, & \text{if } t^{*} = 1; \\ 4m^{*} + 4, & \text{if } t^{*} = 2; \\ 4m^{*} + 4, & \text{if } t^{*} = 3. \end{cases}$$

By Lemma 2.2(2), $\gamma_R(P(n, 3)) \ge \frac{2 \times 2n + (r-1)n_1}{r+1} = \frac{2 \times 2 \times (4m^* + t^*) + (3-1)n_1}{3+1} = 4m^* + t^* + \frac{n_1}{2}$.

Case 1. $t^* = 1$. If $n_1 \neq 0$, then $f(V(P(n, 2))) \geq 4m^* + t^* + \lceil \frac{n_1}{2} \rceil \geq 4m^* + 2$. If $n_1 = 0$, then by Lemma 2.2(1), $n_2 \geq \lceil \frac{2n-n_1}{3+1} \rceil = \lceil \frac{4m^*+1}{2} \rceil = 2m^* + 1$, $f(V(P(n, 2))) = 2n_2 + n_1 \geq 2 \times (2m^* + 1) = 4m^* + 2$. Hence $\gamma_R(P(n, 2)) \geq 4m^* + 2$ for $t^* = 1$.

Case 2. $t^* = 2$. If $n_1 \ge 3$, then $f(V(P(n, 2))) \ge 4m^* + t^* + \lceil \frac{n_1}{2} \rceil \ge 4m^* + 4$. So we only need to consider the cases for $n_1 = 0, 1, 2$. *Case* 2.1. $n_1 = 0$, then $G[V_0 \cup V_2] = P(n, 3)$. By Proposition 1.5(d), V_2 is a dominating set of P(n, 3). So $n_2 \ge \gamma(G)$. By Theorem 1.1, $n_2 \ge n - 2\lfloor \frac{n}{4} \rfloor = 4m^* + 2 - 2\lfloor \frac{4m^* + 2}{4} \rfloor = 2m^* + 2$. So $f(V(P(n, 3))) = 2n_2 \ge 4m^* + 4$.

Case 2.2. $n_1 = 1$. By Lemma 4.4, $n_2 \ge 2m^* + 2$. So $f(V(P(n, 3))) = 2n_2 + n_1 \ge 2(2m^* + 2) + 1 = 2m + 5$.

Case 2.3. $n_1 = 2$. Then by Lemma 2.2(1), $n_2 \ge \lceil \frac{2n-2}{4} \rceil = \lceil \frac{4m^*+2-1}{2} \rceil = 2m^* + 1$, $f(V(P(n, 3))) = 2n_2 + n_1 \ge 2 \times (2m^* + 1) + 2 = 4m^* + 4$.

Hence $\gamma_R(P(n, 2)) \ge 4m^* + 4$ for $t^* = 2$.

Case 3. $t^* = 3$. If $n_1 \neq 0$, then $f(V(P(n, 3))) \geq 4m^* + t^* + \lceil \frac{n_1}{2} \rceil \geq 4m^* + 4$. If $n_1 = 0$, then by Lemma 2.2(1), $n_2 \geq \lceil \frac{2n-n_1}{3+1} \rceil = \lceil \frac{4m^*+3}{2} \rceil = 2m^* + 2$, $f(V(P(n, 2))) = 2n_2 + n_1 \geq 2(2m^* + 2) = 4m^* + 4$. Hence $\gamma_R(P(n, 2)) \geq 4m^* + 4$ for $t^* = 3$.

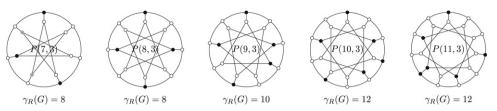


Fig. 4.4. A Roman dominating function on G = P(n, 3) for $7 \le n \le 11$.

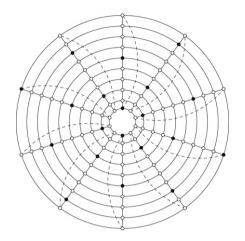


Fig. 5.1. A Roman dominating function on $C_{10} \Box C_{10}$.

Hence,

$$\gamma_{R}(P(n, 3)) = \begin{cases} 4m^{*} + 2, & \text{if } t^{*} = 1; \\ 4m^{*} + 4, & \text{if } t^{*} = 2; \\ 4m^{*} + 4, & \text{if } t^{*} = 3. \\ \end{cases}$$

Theorem 4.6. The generalized Petersen graphs P(n, 3) are Roman for n = 11 or $n \ge 7$ and $n \ne 3 \pmod{4}$.

Proof. For n = 11, let $S_{6,2} = \{v_0, u_2, v_4, u_4, u_6, v_8\}$, $S_{6,1} = \emptyset$, $S_{6,0} = N(S_{6,2})$, by Lemma 4.5, $f = (V_0; V_1; V_2) = (S_{6,0}; S_{6,1}; S_{6,2})$ is a γ_R -function with $|V_1| = 0$. By Proposition 1.4, we have that the generalized Petersen graph P(11, 3) is Roman.

For $n \ge 7$ and $n \ne 3 \pmod{4}$, by the proof of Lemma 4.5, we have $f = (V_0; V_1; V_2) = (S_{5,0}; S_{5,1}; S_{5,2})$ is a γ_R -function with $|V_1| = 0$ for t = 1, 2. By Proposition 1.4 and Theorem 4.1, we have that the Petersen graphs P(n, 3) are Roman for $n \ge 7$ and $n \ne 3 \pmod{4}$. \Box

In Fig. 4.4, we show a Roman dominating function on P(n, 3) for $7 \le n \le 11$.

5. Roman domination in Cartesian product graphs $C_{5m} \Box C_{5n}$

Theorem 5.1. For $n \ge 1$, $m \ge 1$, the Cartesian product graphs $C_{5m} \Box C_{5n}$ are Roman.

Proof. Let $V(C_{5m} \Box C_{5n}) = \{v_{ij}: 0 \le i \le 5m - 1, 0 \le j \le 5n - 1\},\$

$$\begin{split} S_{7,2} &= \{v_{(5i)(5j)}, v_{(5i+1)(5j+3)}, v_{(5i+2)(5j+1)}, v_{(5i+3)(5j+4)}, v_{(5i+4)(5j+2)} : 0 \leq i \leq m-1, 0 \leq j \leq n-1 \}, \\ S_{7,1} &= \emptyset, \\ S_{7,0} &= N(S_{7,2}), \end{split}$$

then $N[S_{7,2}] = V(C_{5m} \Box C_{5n})$, $f = (V_0; V_1; V_2) = (S_{7,0}; S_{7,1}; S_{7,2})$ is a Roman dominating function of $C_{5m} \Box C_{5n}$ with $f(V(C_{5m} \Box C_{5n})) = 2 \times (5mn) = 10mn$. So we have $\gamma_R(C_{5m} \Box C_{5n}) \le 10mn$. By Proposition 1.1, we have $\gamma_R(C_{5m} \Box C_{5n}) \ge \frac{2 \times (5m \times 5n)}{4+1} = 10mn$, hence $\gamma_R(C_{5m} \Box C_{5n}) = 10mn$. Thus, $f = (V_0; V_1; V_2) = (S_{7,0}; S_{7,1}; S_{7,2})$ is a γ_R -function with $|V_1| = 0$. By Proposition 1.4, the Cartesian product graphs $C_{5m} \Box C_{5n}$ are Roman. \Box

In Fig. 5.1, we show a Roman dominating function on $C_{10} \Box C_{10}$.

Acknowledgements

We are very grateful to the referees for their careful reading with corrections and useful comments.

References

- [1] D.W. Bange, A.E. Barkauskas, P.J. Slater, Efficient dominating sets of graphs, in: R.D. Ringeisen, F.S. Roberts (Eds.), Applications of Discrete Mathematics, SIAM, Philadelphia, PA, 1988, pp. 189–199.
- E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in graphs, Discrete Mathematics 278 (2004) 11–22. [2]
- X.L. Fu, Y.S. Yang, B.Q Jiang, On the domination number of generalized petersen graph *P*(*n*, 3), Ars Combinatoria 84 (2007) 373–383.
 T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [5] Haynes, in: T.W. Hedetniemi, S.T. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
- [6] M.A. Henning, A characterization of Roman trees, Discussiones Mathematicae Graph Theory 22 (2) (2002) 325-334.
- [7] C.S. ReVelle, Can you protect the Roman Empire? John Hopkins Magazine 49 (2) (1997) 40.
- [8] C.S. ReVelle, K.E. Rosing, Defendens Imperium Romanum: A classical problem in military strategy, American Mathematical Monthly 107 (7) (2000) 585-594.
- [9] I. Stewart, Defend the Roman Empire!, American Mathematical Monthly 107 (7) (2000) 585-594.