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a b s t r a c t

A Roman domination function on a graph G = (V(G), E(G)) is a function f : V(G)→ {0, 1, 2}
satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least
one vertex v for which f (v) = 2. The weight of a Roman dominating function is the
value f (V(G)) =

∑
u∈V(G) f (u). The minimum weight of a Roman dominating function on

a graph G is called the Roman domination number of G. Cockayne et al. [E. J. Cockayne
et al. Roman domination in graphs, Discrete Mathematics 278 (2004) 11–22] showed that
γ(G) ≤ γR(G) ≤ 2γ(G) and defined a graph G to be Roman if γR(G) = 2γ(G). In this article,
the authors gave several classes of Roman graphs: P3k, P3k+2, C3k, C3k+2 for k ≥ 1, Km,n for
min{m, n} 6= 2, and any graph G with γ(G) = 1; In this paper, we research on regular
Roman graphs and prove that: (1) the circulant graphs C(n; {1, 3})(n ≥ 7, n 6≡ 4 (mod 5))
and C(n; {1, 2, . . . , k}) (k ≤ b n2 c), n 6≡ 1 (mod (2k+ 1)), (n 6= 2k) are Roman graphs, (2) the
generalized Petersen graphs P(n, 2k + 1)(n 6= 4k + 2, n ≡ 0 (mod 4) and 0 ≤ k ≤ b n2 c),
P(n, 1) (n 6≡ 2 (mod 4)), P(n, 3) (n ≥ 7, n 6≡ 3 (mod 4)) and P(11, 3) are Roman graphs, and
(3) the Cartesian product graphs C5m�C5n(m ≥ 1, n ≥ 1) are Roman graphs.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

For notation and graph theory terminology in general we follow [4,5]. Throughout this paper, we only consider finite,
simple undirected graphs without isolated vertices. A graph G = (V(G), E(G)) is a set V(G) of vertices and a subset E(G) of
the unordered pairs of vertices, called edges. The open neighborhood and the closed neighborhood of a vertex v ∈ V are
denoted by N(v) = {u ∈ V(G) : vu ∈ E(G)} and N[v] = N(v) ∪ {v}, respectively. For a set S ⊆ V(G), N(S) = ∪v∈S N(v) and
N[S] = ∪v∈S N[v]. The maximum degree of any vertex in V(G) is denoted by ∆(G). When H ⊆ V(G), the induced subgraph
G[H] consists of H and all edges whose endpoints are contained in H.

A set S ⊆ V(G) is a dominating set if for each v ∈ V(G) either v ∈ S or v is adjacent to some w ∈ S. That is, S is a dominating
set if and only if N[S] = V(G). The domination number γ(G) is the minimum cardinality of a dominating set of G, and a
dominating set S of minimum cardinality is called a γ-set of G.

For a graph G, let f : V → {0, 1, 2}, and let (V0; V1; V2) be the ordered partition of V induced by f , where Vi =

{v ∈ V(G)|f (v) = i} and |Vi| = ni, for i = 0, 1, 2. Note that there exists a 1-1 correspondence between the functions
f : V(G)→ {0, 1, 2} and the ordered partitions (V0; V1; V2) of V(G). So we will write f = (V0; V1; V2).

A function f : V(G)→ {0, 1, 2} is a Roman dominating function (RDF) if V2 dominates V0, i.e. V0 ⊆ N[V2]. The weight of f is
f (V(G)) =

∑
v∈V(G) f (v) = 2n2 + n1. The minimum weight of an RDF of G is called the Roman domination number of G, denoted
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by γR(G). And we say that a function f = (V0; V1; V2) is a γR-f unction if it is an RDF and f (V) = γR(G). A graph G is a Roman
graph (or Roman) if γR(G) = 2γ(G).

In 2004, Cockayne et al. [2] studied the graph theoretic properties of this variant of the domination number of a graph
and proved:

Proposition 1.1 ([2]). For any graph G of order n, 2n
∆(G)+1 ≤ γR(G).

Proposition 1.2 ([2]). For any graph G, γ(G) = γR(G) if and only if G = Kn.

Proposition 1.3 ([2]). For any graph G of order n, γ(G) ≤ γR(G) ≤ 2γ(G).

Proposition 1.4 ([2]). A graph G is Roman if and only if it has a γR-function f = (V0; V1; V2) with n1 = 0.

Proposition 1.5 ([2]). Let f = (V0; V1; V2) be any γR-function. Then

(a) G[V1], the subgraph induced by V1, has maximum degree 1.
(b) No edge of G joins V1 and V2.
(c) Each vertex of V0 is adjacent to at most two vertices of V1.
(d) V2 is a γ-set of G[V0 ∪ V2].
(e) Let H = G[V0 ∪ V2]. Then each vertex v ∈ V2 has at least two H-pn′s (i.e. private neighbours relative to V2 in the graph H).
(f) If v is isolated in G[V2] and has precisely one external H-pn, say w ∈ V0, then N(w) ∩ V1 = ∅.
(g) Let k1 equal to the number of non-isolated vertices in G[V2], let C = {v ∩ V0 : |N(v) ∩ V2| ≥ 2}, and let |C| = c. Then

n0 ≥ n2 + k1 + c.

In [2], the following classes of graphs were found to be Roman graphs: P3k, P3k+2, C3k, C3k+2 for k ≥ 1, Km,n for min{m, n} 6=
2, and any graph G with ∆(G) = n− 1 (that is any graph with γ(G) = 1). In [6], a characterization of Roman trees was given.

For more references and other Roman dominating problems, we can refer to [1,6–9].
The generalized Petersen graph P(n, k) is defined to be a graph on 2n vertices with V(P(n, k)) = {vi, ui : 0 ≤ i ≤ n−1} and

E(P(n, k)) = {vivi+1, viui, uiui+k : 0 ≤ i ≤ n− 1, where subscripts are taken modulo n}.
In 2007, Yang, Fu and Jiang [3] studied the generalized Petersen graph P(n, 3) and proved

Theorem 1.1 ([3]). γ(P(n, 3)) = n− 2b n4 c (n 6= 11).

The circulant graph C(n; Sc) is the graph with the vertex set V(C(n; Sc)) = {vi|0 ≤ i ≤ n − 1} and the edge set
E(C(n; Sc)) = {vivj|0 ≤ i, j ≤ n− 1, (i− j) mod n ∈ Sc}, Sc ⊆ {1, 2, . . . , bn/2c, where subscripts are taken modulo n}.

The Cartesian product G�H of two graphs G and H is the graph with vertex set V(G) × V(H), in which the vertex (a, b) is
adjacent to the vertex (c, d) whenever a = c and b is adjacent to d, or b = d and a is adjacent to c.

In this paper, we study Roman domination in regular graphs and give the following new classes of Roman graphs: (1)
the circulant graphs C(n; {1, 3}) (n ≥ 7, n 6≡ 4 (mod 5)) and C(n; {1, 2, . . . , k}) (k ≤ b n2 c, n 6≡ 1 (mod (2k + 1)), n 6= 2k), (2)
the generalized Petersen graphs P(n, 2k + 1)(n 6= 4k + 2, n ≡ 0 (mod 4) and 0 ≤ k ≤ b n2 c), P(n, 1) (n 6≡ 2 (mod 4)), P(n, 3)
(n ≥ 7, n 6≡ 3 mod 4) and P(11, 3), and (3) the Cartesian product graphs C5m�C5n (m ≥ 1, n ≥ 1).

2. Basic properties

Let G be an r-regular graph with order n (r ≥ 1), m = b n
r+1 c, t = n mod (r + 1), then n = (r + 1)m+ t, 0 ≤ t ≤ r.

Let S be an arbitrary dominating set of G, then for each vertex v ∈ V(G), N[v]∩S 6= ∅, and v is being dominated |N[v]∩S| ≥ 1
times. We define a function rd counting the times v is re-dominated as follows:

rd(v) = |N[v] ∩ S| − 1.

For a vertex set V ′ ⊆ V(G), let rd(V ′) =
∑

v∈V′ rd(v). Then, by Proposition 1.5(d), V2 is a γ-set of G[V0 ∪ V2], and this gives us

Lemma 2.1. rd(V(G[V0 ∪ V2])) = (r + 1)n2 − (n− n1).

Lemma 2.2. If f = (V0; V1; V2) is any γR-function of G, then

(1) n2 ≥ d
n−n1
r+1 e.

(2) f (V(G)) ≥ 2m+ d 2t+(r−1)n1
r+1 e ≥

2n+(r−1)n1
r+1 .

(3) f (V(G)) ≥ 2m for t = 0.
(4) f (V(G)) ≥ 2m+ 2 for t ≥ 1 and (t, n1) 6= (1, 1).
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Proof. (1) By Proposition 1.5(d), V2 is a γ-set of G[V0 ∪ V2], hence (r + 1)n2 ≥ n− n1. So n2 ≥ d
n−n1
r+1 e.

(2) Since f (V(G)) = 2n2 + n1, we have

(r + 1)f (V(G)) = 2(r + 1)n2 + (r + 1)n1,

≥ 2n− 2n1 + (r + 1)n1,

= 2(r + 1)m+ 2t + (r − 1)n1.

Hence f (V(G)) ≥ 2m+ d 2t+(r−1)n1
r+1 e ≥ 2m+ 2t+(r−1)n1

r+1 =
2n+(r−1)n1

r+1 .
(3) Suppose t = 0, then by (2), f (V(G)) ≥ 2m+ d 2t+(r−1)n1

r+1 e ≥ 2m.
(4) Suppose t ≥ 1.

Case 1. Suppose n1 = 0, then by (1), n2 ≥ d
n−n1
r+1 e = d

(r+1)m+t
r+1 e = m+ 1. Hence f (V(G)) = 2n2 + n1 = 2n2 ≥ 2m+ 2.

Case 2. Suppose n1 = 1 and t ≥ 2, then by (2), f (V(G)) ≥ 2m+ d 2t+(r−1)n1
r+1 e ≥ 2m+ d 4+r−1

r+1 e = 2m+ 2.

Case 3. Suppose n1 ≥ 2, then by (2), f (V(G)) ≥ 2m+ d 2t+(r−1)n1
r+1 e ≥ 2m+ d 2+2(r−1)

r+1 e = 2m+ 1+ d r−1
r+1 e = 2m+ 2. �

In this paper, we will denote the vertices of G as follows: black circles denote vertices in V2, grey circles denote vertices
in V1 and white circles denote vertices in V0.

3. Roman domination in circulant graphs

Lemma 3.1. For 4-regular graph C(n; {1, 3}) (n ≥ 7),

γR(C(n; {1, 3})) =


2m, if t = 0;
2m+ 2, if t = 1, 2, 3;
2m+ 3, if t = 4.

Proof. Let

S1,2 =

{
{v5i+2 : 0 ≤ i ≤ m− 1}, if t = 0;
{v5i+2 : 0 ≤ i ≤ m}, if t 6= 0.

S1,1 =

{
{v0}, if t = 4;
∅, if t 6= 4.

S1,0 = N(S1,2).

Then N[S1,2] ∪ S1,1 = V(C(n; (1, 3))), and f = (V0; V1; V2) = (S1,0; S1,1; S1,2) is a Roman dominating function of C(n; {1, 3})
with

f (V(C(n; (1, 3)))) =


2m, if t = 0;
2m+ 2, if t = 1, 2, 3;
2m+ 3, if t = 4.

Hence we have

γR(C(n; {1, 3})) ≤


2m, if t = 0;
2m+ 2, if t = 1, 2, 3;
2m+ 3, if t = 4.

In the following part of this proof, we will prove that

γR(C(n; {1, 3})) ≥


2m, if t = 0;
2m+ 2, if t = 1, 2, 3;
2m+ 3, if t = 4.

Case 1. t = 0. By Lemma 2.2(3), γR(C(n; {1, 3})) ≥ 2m.
Case 2. t = 1, 2, 3 and (t, n1) 6= (1, 1). By Lemma 2.2(4), γR(C(n; {1, 3})) ≥ 2m+ 2.
Case 3. (t, n1) = (1, 1). By Lemma 2.2(1), n2 ≥ d

n−n1
5 e = d

5m+1−1
5 e = m. Hence γR(C(n; {1, 3})) = 2n2+ n1 ≥ 2m+ 1. Assume

that γR(C(n; {1, 3})) = 2m + 1. Then by Lemma 2.1, rd(V(G[V0 ∪ V2])) = (r + 1)n2 − (n − n1) ≥ 5m − (5m + 1 − 1) = 0.
Without loss of generality, let v5m ∈ V1. By Proposition 1.5(b), we have v0 ∈ V0. By the definition of Roman dominating
function, N(v0) ∩ V2 6= ∅, we have {v1, v3, v5m−2} ∩ V2 6= ∅.
Case 3.1. Suppose v1 ∈ V2. Let vi ∈ V2 be the vertex dominating v5m−2, then since rd(V(G[V0 ∪ V2])) = 0, we have
vi 6∈ {v5m−2, v5m−1, v0}. By Proposition 1.5(b), we have vi 6= v5m−3. Hence vi = v5m−5. Let vj ∈ V2 be the vertex dominating
v5m−3, then vj ∈ {v5m−6, v5m−4, v5m−3, v5m−2}, it follows that rd(V(G[V0 ∪ V2])) > 0, a contradiction with rd(V(G[V0 ∪ V2])) = 0
(see Fig. 3.1(1)).
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Fig. 3.1. The cases for rd(v0) = 1 and n1 = 0.

Fig. 3.2. A Roman dominating function on G = C(n; {1, 3}) for 7 ≤ n ≤ 11.

Case 3.2. Suppose v3 ∈ V2. Let vi ∈ V2 be the vertex dominating v1. By Proposition 1.5(b), we have vi 6= v5m−1. So
vi ∈ {v0, v1, v2, v4}, it follows that rd(V(G[V0 ∪ V2])) > 0, a contradiction with rd(V(G[V0 ∪ V2])) = 0 (see Fig. 3.1(2)).
Case 3.3. Suppose v5m−2 ∈ V2. Let vi ∈ V2 be the vertex dominating v1, then since rd(V(G[V0 ∪ V2])) = 0, we have
vi 6∈ {v5m−1, v0, v1}. By Proposition 1.5(b), we have vi 6= v2. Hence vi = v4. Let vj ∈ V2 be the vertex dominating v2, then
vj ∈ {v2, v3, v4, v5}, it follows that rd(V(G[V0 ∪ V2])) > 0, a contradiction with rd(V(G[V0 ∪ V2])) = 0 (see Fig. 3.1(3)).

From cases 3.1–3.3, we have γR(C(n; {1, 3})) 6= 2m+ 1 for (t, n1) = (1, 1), i.e. γR (C(n; {1, 3})) ≥ 2m+ 2.

Case 4. t = 4. By Lemma 2.2(2), γR(C(n; {1, 3})) ≥ 2n+(r−1)n1
r+1 =

2×(5m+4)+(4−1)n1
4+1 = 2m + 1 + 3n1+3

5 . Hence γR(C(n; {1, 3})) ≥
2m+ 1+ d 3n1+3

5 e.

Case 4.1. Suppose n1 6= 0. Then γR(C(n; {1, 3})) ≥ 2m+ 1+ d 3n1+3
5 e ≥ 2m+ 3.

Case 4.2. Suppose n1 = 0. By Lemma 2.2(1), n2 ≥ d
n−n1

5 e = d
5m+4

5 e = m + 1. Assume that n2 = m + 1. Then by Lemma 2.1,
rd(V(G[V0∪V2])) = (r+1)n2−(n−n1) = 5(m+1)−(5m+4) = 1. Without loss of generality, we may assume that rd(v0) = 1.
Then we have N[v0] ∩ V2 = {v3, v5m+1}. Let vi ∈ V2 be the vertex dominating v1, we have vi ∈ {v5m+2, v0, v1, v2, v4}, it follows
that rd(V(G[V0 ∪ V2])) > 1, a contradiction with rd(V(G[V0 ∪ V2])) = 1 (see Fig. 3.1(4)). Hence n2 6= m + 1. i.e. n2 ≥ m + 2,
γR(C(n; {1, 3})) = 2n2 + n1 ≥ 2m+ 4.

From above discussion, we have

γR(C(n; {1, 3})) =


2m, if t = 0;
2m+ 2, if t = 1, 2, 3;
2m+ 3, if t = 4. �

Theorem 3.2. The circulant graphs C(n; {1, 3}) are Roman for n ≥ 7 and n 6≡ 4 (mod 5).

Proof. According to the proof of Lemma 3.1, we have f = (V0; V1; V2) = (S1,0; S1,1; S1,2) is a γR-function with |V1| = 0. By
Proposition 1.4, the circulant graphs C(n; {1, 3}) are Roman for n ≥ 7 and n 6≡ 4 mod 5. �

In Fig. 3.2, we show a Roman dominating function on C(n; {1, 3}) for 7 ≤ n ≤ 11.
Let Cn,k = C(n; {1, 2, . . . , k}), then the graphs C(n, k) are 2k-regular.

Lemma 3.3. For n ≥ 5, 2 ≤ k ≤ b n2 c, n 6= 2k.

γR(Cn,k) =


2m, if t = 0;
2m+ 1, if t = 1;
2m+ 2, if t = 2, 3, . . . , 2k.

Proof. Let

S2,2 =

{
{v(2k+1)i+k : 0 ≤ i ≤ m− 1}, if t = 0, 1;
{v(2k+1)i+k : 0 ≤ i ≤ m}, if t = 2, 3, . . . , 2k.

S2,1 =

{
{v5m}, if t = 1;
∅, if t 6= 1.

S2,0 = N(S2,2).
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Fig. 3.3. A Roman dominating function on Cn,2 = C(n; {1, 2}) for 5 ≤ n ≤ 9.

Then N[S2,2] ∪ S2,1 = V(Cn,k), and f = (V0; V1; V2) = (S2,0; S2,1; S2,2) is a Roman dominating function of Cn,k with

f (V(Cn,k)) =


2m, if t = 0;
2m+ 1, if t = 1;
2m+ 2, if t = 2, 3, . . . , 2k.

Hence

γR(Cn,k) ≤


2m, if t = 0;
2m+ 1, if t = 1;
2m+ 2, if t = 2, 3, . . . , 2k.

By Lemma 2.2(2), we have γR(Cn,k) ≥ 2m+ d 2t+(r−1)n1
2k+1 e = 2m+ d (2k−1)n1+2t

2k+1 e.

Hence

γR(Cn,k) ≥

{
2m, if t = 0;
2m+ 1, if t = 1.

If t ≥ 2 and n1 6= 0, then we have γR(Cn,k) ≥ 2m + d (2k−1)n1+2t
2k+1 e ≥ 2m + d (2k−1)+2×2

2k+1 e = 2m + 2. If t ≥ 2 and n1 = 0, by
Lemma 2.2(1), we have n2 ≥ d

n−n1
r+1 e = d

(2k+1)m+t
2k+1 e = m+ 1, γR(Cn,k) = 2n2 ≥ 2m+ 2. From the above discussion, we have

γR(Cn,k) =


2m, if t = 0;
2m+ 1, if t = 1;
2m+ 2, if t = 2, 3, . . . , 2k. �

In Fig. 3.3, we show a Roman dominating function on C(n; {1, 2}) for 5 ≤ n ≤ 9.

Theorem 3.4. The circulant graphs C(n; {1, 2, . . . , k}) are Roman for n ≥ 4 (n 6= 2k), 2 ≤ k ≤ b n2 c and n 6≡ 1 (mod(2k+ 1)).

Proof. According to the proof of Lemma 3.3, we have f = (V0; V1; V2) = (S20; S21; S22) is a γR-function with |V1| = 0. By
Proposition 1.4, the circulant graphs C(n; {1, 2, . . . , k}) are Roman for n ≥ 4 (n 6= 2k) and n 6≡ 1 (mod(2k+ 1)). �

4. Roman domination in generalized Petersen graphs

In this section, we let m∗ = b n4 c, t
∗
= n mod 4, then n = 4m∗ + t∗, 0 ≤ t∗ ≤ 3. The graphs of this section are 3-regular,

and the subscripts should be taken modulo n.

Theorem 4.1. For n ≡ 0 (mod 4), 0 ≤ k ≤
b
n−1

2 c−1
2 , the generalized Petersen graphs P(n, 2k+ 1) are Roman.

Proof. Suppose n ≡ 0 (mod 4), let

S3,2 = {v4i, u4i+2 : 0 ≤ i ≤ m∗ − 1},
S3,1 = ∅,

S3,0 = N(S3,2),

then N[S3,2]∪S3,1 = V(P(n, 2k+1)), and f = (V0; V1; V2) = (S3,0; S3,1; S3,2) is a Roman dominating function of P(n, 2k+1) with
f (V(P(n, 2k+ 1))) = 2× (2m∗) = 4m∗. So we have γR(P(n, 2k+ 1)) ≤ 4m∗. By Lemma 2.2, γR(P(n, 2k+ 1)) ≥ 2×2n+(3−1)n1

3+1 =

4×4m∗+2n1
4 = 4m∗ + n1

2 ≥ 4m∗. Hence γR(P(n, 2k+ 1)) = 4m∗ for n ≡ 0 (mod 4).
Thus, f = (V0; V1; V2) = (S3,0; S3,1; S3,2) is a γR-function with |V1| = 0. By Proposition 1.4, the generalized Petersen graphs

P(n, 2k+ 1) are Roman for n ≡ 0 (mod 4) and 0 ≤ k ≤
b
n−1

2 c−1
2 . �

Lemma 4.2. For n ≥ 3, γR(P(n, 1)) = 4m∗ + t∗ + 1 for t∗ = 1, 2, 3.
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Fig. 4.1. The case for n2 = 2m+ 1 and t∗ = 2.

Fig. 4.2. A Roman dominating function on G = P(n, 1) for 3 ≤ n ≤ 7.

Proof. Let

S4,2 =

{
{v4i, u4i+2 : 0 ≤ i ≤ m∗ − 1} ∪ {v4m∗ }, if t∗ = 1, 2;
{v4i, u4i+2 : 0 ≤ i ≤ m∗}, if t∗ = 3.

S4,1 =

{
{u4m+1}, if t∗ = 2;
∅, if t∗ = 1, 3.

S4,0 = N(S4,2).

Then N[S4,2] ∪ S4,1 = V(P(n, 1)), and f = (V0; V1; V2) = (S4,0; S4,1; S4,2) is a Roman dominating function of P(n, 1) with
f (V(P(n, 1))) = 4m∗ + t∗ + 1 for t∗ = 1, 2, 3. Hence we have γR(P(n, 1)) ≤ 4m∗ + t∗ + 1 for t∗ = 1, 2, 3. By Lemma 2.2(2),
f (V(P(n, 1))) ≥ 2×2n+(r−1)n1

r+1 =
2×2×(4m∗+t∗)+(3−1)n1

3+1 = 4m∗ + t∗ + n1
2 . Hence γR(P(n, 1)) ≥ 4m∗ + t∗ + d n1

2 e. If n1 6= 0, then
γR(P(n, 1)) ≥ 4m∗ + t∗ + 1.

If n1 = 0, then by Lemma 2.2(1), n2 ≥ d
2n
4 e = d

2(4m∗+t∗)
4 e = 2m∗ + d t

∗

2 e. Hence γR(P(n, 1)) = 2n2 + n1 ≥ 4m∗ + 2d t
∗

2 e.
There are two cases :
Case 1. t∗ = 1, 3. Then γR(P(n, 1)) ≥ 4m∗ + 2d t

∗

2 e = 4m∗ + t∗ + 1.

Case 2. t∗ = 2. Then n2 ≥ 2m∗ + d t
∗

2 e = 2m∗ + 1. Assume that n2 = 2m∗ + 1. Then by Lemma 2.1, rd(V(P(n, 1))) =
rd(V(G[V0 ∪ V2])) = (r + 1)n2 − (n − n1) = 4(2m∗ + 1) − (8m∗ + 4) = 0. If vi ∈ V0 for every 0 ≤ i ≤ n − 1,
then V2 = {u0, u1, . . . , un−1}, n2 = 4m∗ + 2, a contradiction with n2 = 2m∗ + 1. Without loss of generality, we may
assume that v0 ∈ V2. Let xi ∈ V2 be the vertex dominating u1, then since rd(V(P(n, 1))) = 0, we have xi = u2. Let
xj ∈ V2 be the vertex dominating v3, then since rd(V(P(n, 1))) = 0, we have xj = v4. Continuing in this way, we have
{v4i, u4i+2} ⊂ V2(0 ≤ i ≤ m∗), i.e. v4m∗ ∈ V2, rd(v4m∗+1) ≥ 1, a contradiction with rd(V(P(n, 1))) = 0. Hence n2 6= 2m∗ + 1,
i.e. n2 ≥ 2m∗ + 2, γR(P(n, 1)) = 2n2 ≥ 4m∗ + 4 > 4m∗ + t∗ + 1 (see Fig. 4.1).

From the above discussion, we have γR(P(n, 1)) = 4m∗ + t∗ + 1 for t∗ = 1, 2, 3. �

Theorem 4.3. The generalized Petersen graphs P(n, 1) are Roman for n ≥ 3 and n 6≡ 2 (mod 4).

Proof. According to the proof of Lemma 4.2, we have f = (V0; V1; V2) = (S4,0; S4,1; S4,2) is a γR-function with |V1| = 0 for
t = 1, 3. By Proposition 1.4 and Theorem 4.1, we have that the generalized Petersen graphs P(n, 1) are Roman for n ≥ 3 and
n 6≡ 2 (mod 4). �

In Fig. 4.2, we show a Roman dominating function on P(n, 1) for 3 ≤ n ≤ 7.

Lemma 4.4. For the generalized Petersen graph P(n, 3)(n ≥ 7), if n ≡ 2 (mod 4) and n1 = 1, then n2 ≥ 2m∗ + 2.

Proof. By Lemma 2.2(1), n2 ≥ d
2n−n1

4 e = d
2×(4m∗+2)−1

4 e = 2m∗ + 1. Assume that n2 = 2m∗ + 1. Then by Lemma 2.1,
rd(V(G[V0 ∪ V2])) = (r + 1)n2 − (n − n1) = 4(2m∗ + 1) − (8m∗ + 4 − 1) = 1, hence there exists an unique vertex x with
rd(x) = 1. If x ∈ V2, then since rd(x) = 1, x has to be dominated by another vertex, say y ∈ V2. Thus, rd({x, y}) ≥ 2, a
contradiction with rd(V(G[V0 ∪ V2])) = 1. Without loss of generality, we may assume that x ∈ {v6, u6}.
Case 1. rd(v6) = 1. Then N(v6) ∩ V2 = {{v5, v7}, {v5, u6}, {u6, v7}}. By symmetry, we only need to consider the cases for
N(v6) ∩ V2 = {{v5, v7}, {v5, u6}}.
Case 1.1. N(v6) ∩ V2 = {v5, v7}. Consider the vertex u8, we have:
Case 1.1.1. Suppose u8 ∈ V1. Let xi ∈ V2 be the vertex dominating u4, since rd(V(G[V0 ∪ V2])) = 1, we have xi = u1. Let
xj ∈ V2 be the vertex dominating v2, then xj ∈ {v1, v2, u2, v3}, it follows that rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction with
rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(1)).
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Fig. 4.3. The cases of rd(x) = 1 for x ∈ {v6, u6}.

Case 1.1.2. Suppose u8 6∈ V1. Let xi ∈ V2 be the vertex dominating u8, since rd(V(G[V0 ∪ V2])) = 1, we have xi = u11. Consider
the vertex v10, we have:
Case 1.1.2.1. Suppose v10 ∈ V1. Let xj ∈ V2 be the vertex dominating u4, since rd(V(G[V0 ∪ V2])) = 1, we have xj = u1. Let
xh ∈ V2 be the vertex dominating v2, then xh ∈ {v1, v2, u2, v3}, it follows that rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction with
rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(2)).
Case 1.1.2.2. Suppose v10 6∈ V1. Let xj ∈ V2 be the vertex dominating v10, then xj ∈ {v9, v10, u10, v11}, it follows that
rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction with rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(3)).
Case 1.2. N(v6) ∩ V2 = {{v5, u6}}. Consider the vertex v3, we have:
Case 1.2.1 Suppose v3 ∈ V1. Let xi ∈ V2 be the vertex dominating v2, then xi ∈ {v1, v2, u2}. By Proposition 1.5(b), xi 6= v2.
Since rd(V(G[V0 ∪ V2])) = 1, we have xi 6= u2, it follows that xi = v1. Let xj ∈ V2 be the vertex dominating u4, since
rd(V(G[V0 ∪ V2])) = 1, xj = u7. Let xh ∈ V2 be the vertex dominating v8, then xh ∈ {v7, v8, u8, v9}, it follows that
rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction with rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(4)).
Case 1.2.2 Suppose v3 6∈ V1. Since rd(V(G[V0 ∪ V2])) = 1, we have v2 ∈ V2. Consider the vertex u4, we have:
Case 1.2.2.1 Suppose u4 ∈ V1. Let xi ∈ V2 be the vertex dominating u1, then xi ∈ {u4m∗ , v1, u1, }. By Proposition 1.5(b), xi 6= u1.
Since rd(V(G[V0 ∪ V2])) = 1, we have xi 6= v1, it follows that xi = u4m∗ . Let xj ∈ V2 be the vertex dominating v4m∗+1, then
xj ∈ {v4m∗ , v4m∗+1, u4m∗+1, v0}, it follows that rd(V(G[V0∪V2])) ≥ 2, a contradiction with rd(V(G[V0∪V2])) = 1 (see Fig. 4.3(5)).
Case 1.2.2.2 Suppose u4 6∈ V1. Since rd(V(G[V0∪V2])) = 1, we have u7 ∈ V2. Consider the vertex v8, Suppose v8 ∈ V1, Let xi ∈ V2
be the vertex dominating v9, then xi ∈ {v9, u9, v10}. By Proposition 1.5(b), we have xi 6= v9, hence xi ∈ {u9, v10}, it follows that
rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction with rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(6)). Suppose v8 6∈ V1, Let xj ∈ V2 be the vertex
dominating v8, then xj ∈ {v7, v8, u8, v9}, it follows that rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction with rd(V(G[V0 ∪ V2])) = 1 (see
Fig. 4.3(7)).
Case 2. rd(u6) = 1. Then N(u6) ∩ V2 ∈ {{u3, v6}, {u3, u7}, {v6, u7}}. By symmetry, we only need to consider the cases for
N(v6) ∩ V2 ∈ {{u3, v6}, {u3, u7}}.
Case 2.1. N(u6) ∩ V2 = {u3, v6}. Consider the vertex v4, we have:
Case 2.1.1. v4 ∈ V1. Let xi ∈ V2 be the vertex dominating u4, then xi ∈ {u1, u4, u7}. By Proposition 1.5(b), xi 6= u4.
Since rd(V(G[V0 ∪ V2])) = 1, we have xi 6= u7, it follows that xi = u1. Let xj ∈ V2 be the vertex dominating u7, since
rd(V(G[V0 ∪ V2])) = 1, we have xj = u10. Let xh ∈ V2 be the vertex dominating v9, then xh ∈ {v8, v9, u9, v10}, it follows
that rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction with rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(8)).
Case 2.1.2. v4 6∈ V1. Since rd(V(G[V0 ∪ V2])) = 1, we have u4 ∈ V2. Consider the vertex v1, we have:
Case 2.1.2.1. Suppose v1 ∈ V1. Let xi ∈ V2 be the vertex dominating v2, then xi ∈ {v2, v3, u2}. Since rd(V(G[V0 ∪ V2])) = 1, we
have xi = u2. Let xj ∈ V2 be the vertex dominating v0, then xj ∈ {v4m∗+1, v0, u0}. By Proposition 1.5(b), we have xj 6= v0, hence
xj ∈ {v4m∗+1, u0}, it follows that rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction with rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(9)).
Case 2.1.2.2. Suppose v1 6∈ V1. Let xi ∈ V2 be the vertex dominating v1, we have xi ∈ {v0, v1, u1, v2}, it follows that
rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction with rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(10)).
Case 2.2. N(u6) ∩ V2 = {u3, u9}. Consider the vertex v6, we have:
Case 2.2.1. v6 ∈ V1. Let xi ∈ V2 be the vertex dominating v5, then xi = {v4, v5, u5}. By Proposition 1.5(b), xi 6= v5.
Since rd(V(G[V0 ∪ V2])) = 1, we have xi 6= v4, it follows that xi = u5. Let xj ∈ V2 be the vertex dominating v8, then
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xj ∈ {v7, v8, u8, v9}. By Proposition 1.5(b), xj 6= v7, hence xj ∈ {v8, u8, v9}, it follows that rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction
with rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(11)).
Case 2.2.2. v6 6∈ V1. Since rd(V(G[V0 ∪ V2])) = 1, we have v6 ∈ V0, V2 ∩ {v5, v7} 6= ∅. By symmetry, we only need to consider
v7 ∈ V2. Consider the vertex v4 and observe the following cases:
Case 2.2.2.1. Suppose v4 6∈ V1. Let xi ∈ V2 be the vertex dominating v4, then xj ∈ {v3, v4, u4, v5}, it follows that rd(V(G[V0 ∪

V2])) ≥ 2, a contradiction with rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(12)).
Case 2.2.2.2. Suppose v4 ∈ V1. Let xi ∈ V2 be the vertex dominating v5, then xi = {v5, u5, v6}. By Proposition 1.5(b), xi 6= v5.
Since rd(V(G[V0 ∪ V2])) = 1, we have xi 6= v6, it follows that xi = u5. Let xj ∈ V2 be the vertex dominating u4, then
xj ∈ {u3, u4, u7}. By Proposition 1.5(b), we have xj 6= u4. Since rd(V(G[V0 ∪ V2])) = 1, we have xj 6= u7, it follows that xj = u1.
Let xh ∈ V2 be the vertex dominating v2, then xh ∈ {v1, v2, u2, v3}, it follows that rd(V(G[V0 ∪ V2])) ≥ 2, a contradiction with
rd(V(G[V0 ∪ V2])) = 1 (see Fig. 4.3(13)).

From cases 1–2, we have n2 6= 2m∗ + 1, i.e. n2 ≥ 2m∗ + 2. �

Lemma 4.5. For n ≥ 7,

γR(P(n, 3)) =


4m∗ + 2, if t∗ = 1;
4m∗ + 4, if t∗ = 2;
4m∗ + 4, if t∗ = 3.

Proof. Let

S5,2 =


{v4i, u4i+2 : 0 ≤ i ≤ m∗ − 1} ∪ {u4m∗−1}, if t∗ = 1;
{v4i, u4i+2 : 0 ≤ i ≤ m∗ − 1} ∪ {v4m∗−1, u4m∗ }, if t∗ = 2;
{v4i, u4i+2 : 0 ≤ i ≤ m∗ − 1} ∪ {v4m∗ }, if t∗ = 3.

S5,1 =

{
∅, if t∗ = 1, 2;
{u1, u4m−1}, if t∗ = 3.

S5,0 = N(S5,2).

Then N[S5,2] ∪ S5,1 = V(P(n, 3)), and f = (V0; V1; V2) = (S5,0; S5,1; S5,2) is a Roman dominating function of P(n, 3) with

f (P(n, 3)) =


4m∗ + 2, if t∗ = 1;
4m∗ + 4, if t∗ = 2;
4m∗ + 4, if t∗ = 3.

Hence we have

γR(P(n, 3)) ≤


4m∗ + 2, if t∗ = 1;
4m∗ + 4, if t∗ = 2;
4m∗ + 4, if t∗ = 3.

In the following part of this proof, we will prove that

γR(P(n; {1, 3})) ≥


4m∗ + 2, if t∗ = 1;
4m∗ + 4, if t∗ = 2;
4m∗ + 4, if t∗ = 3.

By Lemma 2.2(2), γR(P(n, 3)) ≥ 2×2n+(r−1)n1
r+1 =

2×2×(4m∗+t∗)+(3−1)n1
3+1 = 4m∗ + t∗ + n1

2 .

Case 1. t∗ = 1. If n1 6= 0, then f (V(P(n, 2))) ≥ 4m∗ + t∗ + d n1
2 e ≥ 4m∗ + 2. If n1 = 0, then by Lemma 2.2(1),

n2 ≥ d
2n−n1

3+1 e = d
4m∗+1

2 e = 2m∗ + 1, f (V(P(n, 2))) = 2n2 + n1 ≥ 2× (2m∗ + 1) = 4m∗ + 2. Hence γR(P(n, 2)) ≥ 4m∗ + 2 for
t∗ = 1.
Case 2. t∗ = 2. If n1 ≥ 3, then f (V(P(n, 2))) ≥ 4m∗+t∗+d n1

2 e ≥ 4m∗+4. So we only need to consider the cases for n1 = 0, 1, 2.
Case 2.1. n1 = 0, then G[V0 ∪ V2] = P(n, 3). By Proposition 1.5(d), V2 is a dominating set of P(n, 3). So n2 ≥ γ(G). By
Theorem 1.1, n2 ≥ n− 2b n4 c = 4m∗ + 2− 2b 4m∗+2

4 c = 2m∗ + 2. So f (V(P(n, 3))) = 2n2 ≥ 4m∗ + 4.
Case 2.2. n1 = 1. By Lemma 4.4, n2 ≥ 2m∗ + 2. So f (V(P(n, 3))) = 2n2 + n1 ≥ 2(2m∗ + 2)+ 1 = 2m+ 5.
Case 2.3. n1 = 2. Then by Lemma 2.2(1), n2 ≥ d

2n−2
4 e = d

4m∗+2−1
2 e = 2m∗+1, f (V(P(n, 3))) = 2n2+n1 ≥ 2× (2m∗+1)+2 =

4m∗ + 4.
Hence γR(P(n, 2)) ≥ 4m∗ + 4 for t∗ = 2.

Case 3. t∗ = 3. If n1 6= 0, then f (V(P(n, 3))) ≥ 4m∗ + t∗ + d n1
2 e ≥ 4m∗ + 4. If n1 = 0, then by Lemma 2.2(1),

n2 ≥ d
2n−n1

3+1 e = d
4m∗+3

2 e = 2m∗ + 2, f (V(P(n, 2))) = 2n2 + n1 ≥ 2(2m∗ + 2) = 4m∗ + 4. Hence γR(P(n, 2)) ≥ 4m∗ + 4
for t∗ = 3.
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Fig. 4.4. A Roman dominating function on G = P(n, 3) for 7 ≤ n ≤ 11.

Fig. 5.1. A Roman dominating function on C10�C10 .

Hence,

γR(P(n, 3)) =


4m∗ + 2, if t∗ = 1;
4m∗ + 4, if t∗ = 2;
4m∗ + 4, if t∗ = 3. �

Theorem 4.6. The generalized Petersen graphs P(n, 3) are Roman for n = 11 or n ≥ 7 and n 6≡ 3 (mod 4).

Proof. For n = 11, let S6,2 = {v0, u2, v4, u4, u6, v8}, S6,1 = ∅, S6,0 = N(S6,2), by Lemma 4.5, f = (V0; V1; V2) = (S6,0; S6,1; S6,2)
is a γR-function with |V1| = 0. By Proposition 1.4, we have that the generalized Petersen graph P(11, 3) is Roman.

For n ≥ 7 and n 6≡ 3 (mod 4), by the proof of Lemma 4.5, we have f = (V0; V1; V2) = (S5,0; S5,1; S5,2) is a γR-function with
|V1| = 0 for t = 1, 2. By Proposition 1.4 and Theorem 4.1, we have that the Petersen graphs P(n, 3) are Roman for n ≥ 7 and
n 6≡ 3 (mod 4). �

In Fig. 4.4, we show a Roman dominating function on P(n, 3) for 7 ≤ n ≤ 11.

5. Roman domination in Cartesian product graphs C5m�C5n

Theorem 5.1. For n ≥ 1, m ≥ 1, the Cartesian product graphs C5m�C5n are Roman.

Proof. Let V(C5m�C5n) = {vij : 0 ≤ i ≤ 5m− 1, 0 ≤ j ≤ 5n− 1},

S7,2 = {v(5i)(5j), v(5i+1)(5j+3), v(5i+2)(5j+1), v(5i+3)(5j+4), v(5i+4)(5j+2) : 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1},
S7,1 = ∅,

S7,0 = N(S7,2),

then N[S7,2] = V(C5m�C5n), f = (V0; V1; V2) = (S7,0; S7,1; S7,2) is a Roman dominating function of C5m�C5n with
f (V(C5m�C5n)) = 2×(5mn) = 10mn. So we have γR(C5m�C5n) ≤ 10mn. By Proposition 1.1, we have γR(C5m�C5n) ≥

2×(5m×5n)
4+1 =

10mn, hence γR(C5m�C5n) = 10mn. Thus, f = (V0; V1; V2) = (S7,0; S7,1; S7,2) is a γR-function with |V1| = 0. By Proposition 1.4,
the Cartesian product graphs C5m�C5n are Roman. �

In Fig. 5.1, we show a Roman dominating function on C10�C10.
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