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1. Introduction

For notation and graph theory terminology in general we follow [4,5]. Throughout this paper, we only consider finite,
simple undirected graphs without isolated vertices. A graph G = (V(G), E(G)) is a set V(G) of vertices and a subset E(G) of
the unordered pairs of vertices, called edges. The open neighborhood and the closed neighborhood of a vertex v € V are
denoted by N(v) = {u € V(G) : vu € E(G)} and N[v] = N(v) U {v}, respectively. For a set S C V(G), N(S) = U,s N(v) and
N[S] = U,es N[v]. The maximum degree of any vertex in V(G) is denoted by A(G). When H C V(G), the induced subgraph
G[H] consists of H and all edges whose endpoints are contained in H.

AsetS C V(G) is a dominating set if for each v € V(G) either v € Sor vis adjacent to some w € S. That is, S is a dominating
set if and only if N[S] = V(G). The domination number y(G) is the minimum cardinality of a dominating set of G, and a
dominating set S of minimum cardinality is called a y-set of G.

For a graph G, let f : Vv — {0, 1,2}, and let (Vp; Vy; V») be the ordered partition of V induced by f, where V; =
{v € V(G)If(v) = i} and |V;| = n;, fori = 0, 1, 2. Note that there exists a 1-1 correspondence between the functions
f:V(G) — {0, 1, 2} and the ordered partitions (Vp; V1; V2) of V(G). So we will write f = (Vp; V1; Vo).

A function f : V(G) — {0, 1, 2} is a Roman dominating function (RDF) if V, dominates Vy, i.e. Vo € N[V,]. The weight of f is
FV(G) = Xievie) f(v) = 2n3 4 ny. The minimum weight of an RDF of G is called the Roman domination number of G, denoted
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by v&(G). And we say that a function f = (Vy; V1; V) is a yg-function if it is an RDF and f(V) = y&(G). A graph G is a Roman
graph (or Roman) if y(G) = 2y(G).

In 2004, Cockayne et al. [2] studied the graph theoretic properties of this variant of the domination number of a graph
and proved:

Proposition 1.1 (/2]). For any graph G of order n, ﬁ < w(G).

Proposition 1.2 ([2]). For any graph G, y(G) = y&(G) ifand only if G =

Proposition 1.3 ([2]). For any graph G of order n, y(G) < y&(G) < 2y(G).

Proposition 1.4 ([2]). A graph G is Roman if and only if it has a yg-function f = (Vo; Vq; Vo) withny = 0.

Proposition 1.5 ([2]). Let f = (Vy; V1; V2) be any yr-function. Then

(a) G[V1], the subgraph induced by V1, has maximum degree 1.

(b) No edge of G joins V; and V5.

(c) Each vertex of Vy is adjacent to at most two vertices of V1.

(d) vy is a y-set of G[Vo U V;].

(e) Let H = G[Vp U V,]. Then each vertex v € V5 has at least two H-pn's (i.e. private neighbours relative to V, in the graph H).

(f) If visisolated in G[V,] and has precisely one external H-pn, say w € Vo, then N(w) N V; = (.

(g) Let ky equal to the number of non-isolated vertices in G[V,], let C = {v N Vy : IN(v) N Va| > 2}, and let |C| = c. Then
ng > ny + ki +c

In [2], the following classes of graphs were found to be Roman graphs: Py, Psii2, Csk, Caki2 for k > 1, Ky, for min{m, n} #
2, and any graph G with A(G) = n— 1 (that is any graph with y(G) = 1).In [6], a characterization of Roman trees was given.

For more references and other Roman dominating problems, we can refer to [1,6-9].

The generalized Petersen graph P(n, k) is defined to be a graph on 2n vertices with V(P(n, k)) = {v;,u; : 0 <i <n-—1}and
E(P(n, k)) = {vivir1, vitli, uiuiy : 0 < i < n — 1, where subscripts are taken modulo n}.

In 2007, Yang, Fu and Jiang [3] studied the generalized Petersen graph P(n, 3) and proved

Theorem 1.1 ([3]). y(P(n, 3)) =n — 27| (n # 11).

The circulant graph C(n; S.) is the graph with the vertex set V(C(n;S.)) = {v|0 < i < n — 1} and the edge set
E(C(n;S)) ={vvjl0 <i,j<n—1,(i—j)modneS}, S C{1,2,...,|n/2], where subscripts are taken modulo n}.

The Cartesian product GOH of two graphs G and H is the graph with vertex set V(G) x V(H), in which the vertex (a, b) is
adjacent to the vertex (c, d) whenever a = c and b is adjacent to d, or b = d and a is adjacent to c.

In this paper, we study Roman domination in regular graphs and give the following new classes of Roman graphs: (1)
the circulant graphs C(n; {1, 3}) (n > 7, n # 4(mod5)) and C(n; {1, 2, ..., k}) (k < [5],n # 1(mod (Zk + 1)), n # 2k), (2)
the generalized Petersen graphs P(n, 2k + 1)(n # 4k +2, n = 0(mod 4)and 0 < k < | 5]), P(n, 1) (n # 2 (mod 4)), P(n, 3)
(n>7, n# 3mod 4)and P(11, 3), and (3) the Cartesian product graphs Cs,,0Cs, (m > 1, n > 1).

2. Basic properties

Let G be an r-regular graph withordern (r > 1), m = [ 75], t =nmod (r + 1), thenn = (r+ )m+,0 <t <r.
Let S be an arbitrary dominating set of G, then for each vertex v € V(G), N[v]NS # @, and v is being dominated |[N[v]NS| > 1
times. We define a function rd counting the times v is re-dominated as follows:

rd(v) = [IN[v]NS| — 1.
For a vertex set V' € V(G), let rd(V') = 3, rd(v). Then, by Proposition 1.5(d), V5 is a y-set of G[Vp U V5], and this gives us

Lemma 2.1. rd(V(G[Vo U V,])) = (r + 1)ny — (n — nq).

Lemma 2.2. If f = (Vy; Vq; Vo) is any yg-function of G, then

ny > [

) r+1

) F(V(G)) = 2m + [HHE] > 2utin,

) fF(V(G)) = 2m for t = 0.

4) f(V(G)) = 2m+ 2 fort > 1and (t,ny) # (1, 1).

(
(
(
(
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Proof. (1) By Proposition 1.5(d), V; is a y-set of G[Vo U V,], hence (r + 1)np > n —ny.Sony > [777
(2) Since f(V(G)) = 2ny + ny, we have

r+ DfV(G) = 2(r+ Dny + (r + Dny,
2n—2n; + (r+ Dny,
2r+1)m+2t+ (r — 1)ny.

Hencef(v(c)) > 2m + |—2t+(r 1)n1-| > 2m + 2t+£r 11)n1 — 2n+(r 1)'1]
(3) Suppose t = 0, then by (2), f(V(G)) > 2m + fz“’(r ”"11 > 2m.

(4) Suppose t > 1.

Case 1. Suppose n; = 0, then by (1), n, > [51] = f(r“)’““T =m+ 1.Hence f(V(G)) = 2n; +ny = 2ny > 2m + 2.

Case 2. Suppose n; = 1and t > 2, then by (2), f(V(G)) > 2m + fMW >2m+ [4::11] =2m+ 2.

Case 3. Suppose n; > 2, then by (2), f(V(G)) > 2m + [2H0=DM] > om 4 [H20D) —om 4 14+ [ =2m+2. O

v

In this paper, we will denote the vertices of G as follows: black circles denote vertices in V,, grey circles denote vertices
in V; and white circles denote vertices in Vj.

3. Roman domination in circulant graphs

Lemma 3.1. For 4-regular graph C(n; {1, 3}) (n > 7),

2m, ift=0
r(C(n; {1,3}) = 12m+2, ift=1,2,3;
2m+3, ift=4

Proof. Let
S = {vsizp:0<i<m-—1}, ift=0
L27= vsiz : 0 <i<m}, ift # 0.
S _ {Vo}, ift=4
1= g, if t # 4.
S1,0 = N(51,2).

Then N[S12] U S1.1 = V(C(n; (1, 3))), and f = (Vp; V1; Va) = (S1,0; S1.1; S1.2) is @ Roman dominating function of C(n; {1, 3})
with
2m, ift=0
f(v(C(n; (1,3)) ={2m+2, ift=1,2,3;
2m+3, ift=4

Hence we have

2m, ift=0
w(C(n; {1,3)) < {12m+2, ift=1,2,3;
2m+3, ift=4

In the following part of this proof, we will prove that

2m, ift=0
vr(C(n; {1,3})) = {2m+2, ift=1,2,3;
2m+3, ift=4

Case 1.t = 0. By Lemma 2.2(3), yx(C(n; {1, 3})) > 2m.

Case2.t=1,2,3 and (t, ny) # (1, 1). By Lemma 2.2(4), yx(C(n; {1, 3})) > 2m + 2.

Case 3. (t,ny) = (1, 1). By Lemma 2.2(1), n; > ["5"] = [22£1=17 = m. Hence y&(C(n; {1, 3})) = 2ny +ny > 2m+ 1. Assume
that yz(C(n; {1, 3})) = 2m + 1. Then by Lemma 2.1, rd(V(G[Vo U V,])) = r+ )ny — (n—ny) > 5m— 5m+1-1) = 0.
Without loss of generality, let vs,, € V7. By Proposition 1.5(b), we have vy € Vy. By the definition of Roman dominating
function, N(Vo) NV, 7é ?, we have {V], V3, VSm—Z} NV, 5& ?.

Case 3.1. Suppose v; € V. Let v; € V, be the vertex dominating vs,,_», then since rd(V(G[Vo U V,])) = 0, we have
Vi & {Vsm—2, Vsm—1, Vo}. By Proposition 1.5(b), we have v; # vs,_3. Hence v; = vsp,_s. Let v; € V, be the vertex dominating
Vsm_3, then v; € {Vsm_g, Vsm_4, Vsm—3, Vsm—2}, it follows that rd(V(G[Vo U V1)) > 0, a contradiction with rd(V(G[Vo U V2])) =0
(see Fig. 3.1(1)).
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Fig. 3.2. A Roman dominating function on G = C(n; {1,3}) for7 <n < 11.

Case 3.2. Suppose v3 € V,. Let v; € V, be the vertex dominating v;. By Proposition 1.5(b), we have v; # vs,_1. So
v; € {vo, V1, V2, v4}, it follows that rd(V(G[Vo U V»])) > 0, a contradiction with rd(V(G[Vp U V»])) = 0 (see Fig. 3.1(2)).
Case 3.3. Suppose vs;,_, € V5. Let v; € V, be the vertex dominating vq, then since rd(V(G[Vy U V2])) = 0, we have
Vi & {Vsm_1, Vo, v1}. By Proposition 1.5(b), we have v; # v,. Hence v; = v4. Let v; € V, be the vertex dominating v,, then
vj € {v2, v3, v4, v5}, it follows that rd(V(G[Vp U V1)) > 0, a contradiction with rd(V(G[Vp U V,])) = 0 (see Fig. 3.1(3)).

From cases 3.1-3.3, we have y(C(n; {1, 3})) # 2m + 1for (t,n1) = (1, 1), i.e. yr (C(n; {1, 3})) > 2m + 2.

Case 4.t = 4. By Lemma 2.2(2), yx(C(n; {1, 3})) > 2"*5:11)”1 = 2X(5m+ﬂﬁ(4’l)“’ =2m+ 1+ 3‘”15—*3 Hence yx(C(n; {1, 3})) >
2m+ 1+ 122,
Case 4.1. Suppose ny # 0. Then yz(C(n; {1, 3})) = 2m + 1+ [212] > 2m + 3.

Case 4.2. Suppose n; = 0. By Lemma 2.2(1), n; > f%} = fs"‘s—“ﬁ = m + 1. Assume that n, = m + 1. Then by Lemma 2.1,
rd(V(G[VoUV;3])) = (r+1)n; — (n—ny) = 5(m+1) — (5m+4) = 1. Without loss of generality, we may assume that rd(vg) = 1.
Then we have N[vg] N Vo = {v3, vsp.1}. Let v; € V; be the vertex dominating v;, we have v; € {vsu12, Vo, V1, V2, v4}, it follows
that rd(V(G[Vp U V;])) > 1, a contradiction with rd(V(G[Vy U V;])) = 1 (see Fig. 3.1(4)). Hence n, # m + 1.i.e.n, > m + 2,
yr(C(n; {1,3}))) =2np +ny > 2m+ 4.

From above discussion, we have

2m, ift=0;
w(C; {1,3})) ={2m+2, ift=1,2,3;
2m+3, ift=4. 0O

Theorem 3.2. The circulant graphs C(n; {1, 3}) are Roman for n > 7 and n # 4 (mod 5).

Proof. According to the proof of Lemma 3.1, we have f = (Vp; V4; V2) = (S1,0; S1,1; S1.2) is a yg-function with |V;| = 0. By
Proposition 1.4, the circulant graphs C(n; {1, 3}) are Roman forn > 7andn# 4mod 5. 0O

In Fig. 3.2, we show a Roman dominating function on C(n; {1, 3}) for7 <n < 11.
Let C,x = C(m; {1, 2, ..., k}), then the graphs C(n, k) are 2k-regular.
Lemma3.3. Forn > 5,2 <k < |[5], n# 2k

2m, ift=0;

Yr(Cox) = 12m+1, ift=1,;
2m+2, ift=2,3,...,2k.

Proof. Let
S, — Vaksnigk :0<i<m—1}, ift=0,1;
227 Wvarnisr : 0 < i < m}, ift=2,3,...,2k
o [tvsm}, ife=1;
2179, ifr 1.

S2,0 = N(S2.2).
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Tr(Ce2) =3 Yr(Cs2) =4

Fig. 3.3. A Roman dominating function on C, = C(n; {1,2}) for5 <n <9.

Then N[S;2] U S2,1 = V(Cok), and f = (Vo; V15 Va) = (52,05 S2.1; S2.2) is @ Roman dominating function of C, , with

2m, if t = 0;
f(V(Cn,k)) =12m+1, ift = 1;
2m+2, ift=2,3,...,2k.

Hence

2m, ift=0;
w(Cri) < {2m+1, ift=1;
2m+2, ift=2,3,...,2k.

By ;emma 2.2(2), we have yg(Cyi) > 2m + [25IDM ] = o [Pty
ence

2m, ift=0;

Va(Cui) = {Zm—{-l, ife=1.

If t > 2and ny # 0, then we have yg(Cyy) > 2m + [ESPUE] > o 4 [EEDE22) — o 4 2 If ¢t > 2 and ny = 0, by

2k+1
Lemma 2.2(1), we have ny > [111] = [ @D — m 4 1, 34(Coi) = 2n, > 2m + 2. From the above discussion, we have

2m, ift =0;

w(G) =12m+1, ift=1;
2m+2, ift=2,3,...,2k. O

In Fig. 3.3, we show a Roman dominating function on C(n; {1, 2}) for5 <n < 9.

Theorem 3.4. The circulant graphs C(n; {1, 2, ..., k}) are Roman forn > 4 (n # 2k), 2 <k < [5] andn # 1 (mod(2k + 1)).

Proof. According to the proof of Lemma 3.3, we have f = (Vo; V1; Vo) = (S0; S21; S22) is @ yg-function with |V4| = 0. By
Proposition 1.4, the circulant graphs C(n; {1, 2, ..., k}) are Roman forn > 4 (n # 2k) and n # 1 (mod(2k + 1)). O

4. Roman domination in generalized Petersen graphs

In this section, we let m* = | 7], t* = nmod 4, thenn = 4m* + t*,0 < t* < 3. The graphs of this section are 3-regular,
and the subscripts should be taken modulo n.

n-1_
Theorem 4.1. Forn =0(mod4),0 <k < g 22J ], the generalized Petersen graphs P(n, 2k + 1) are Roman.

Proof. Suppose n = 0 (mod 4), let

S32 = {Vai, Ugip2 : 0 <i<m* —1},

S31 =14,

53,0 = N(S3.2),
then N[S32]US31 = V(P(n, 2k+1)),and f = (Vo; V1; V2) = (S3,0; S3.1; S3,2) is a Roman dominating function of P(n, 2k+1) with
F(V(P(n, 2k + 1))) = 2 x (2m*) = 4m*. So we have yx(P(n, 2k + 1)) < 4m*. By Lemma 2.2, yz(P(n, 2k 4 1)) > 22nG=bm _

311
DAMEIN — gm* 4 " > 4m*. Hence yx(P(n, 2k + 1)) = 4m* for n = 0 (mod 4).
Thus, f = (Vo; V1; V2) = (S3,0; S3,1; S3,2) is a yg-function with |V4| = 0. By Proposition 1.4, the generalized Petersen graphs

n=1_
P(n, 2k + 1) are Roman forn = 0 (mod 4)and 0 < k < % O

Lemma4.2. Forn > 3, yz(P(n, 1)) = 4m* + ¢ + 1 fort* = 1,2, 3.
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P(ﬁ‘l)\

Tr(G) =6 r(G) =

Fig.4.2. A Roman dominating functionon G = P(n, 1) for3 <n <7.

Proof. Let
S, — {Vai, Ugip2 : 0 i <=m™ — 1} U {vgpe}, ift"=1,2;
427 | {vai, ugir2 1 0 < i < m*), ift* =3.
S, — {ugmer}, ift* =25
41719, ife* =1,3.
S4,0 = N(S4.2).

Then N[S4,] U S41 = V(P(n, 1)), and f = (Vp; Vq; V2) = (Sa.0; Sa.1; Sa2) is @ Roman dominating function of P(n, 1) with
f(V(P(n, 1))) = 4m* + t* + 1 for t* = 1, 2, 3. Hence we have yz(P(n, 1)) < 4m* + t* 4+ 1 for t* = 1, 2, 3. By Lemma 2.2(2),
FV(P(n, 1)) > Z2mHDm 2><2><(4m*;:‘1)+(3—1)n1 = 4m* + t* + L. Hence yz(P(n, 1)) > 4m* + t* + [%7.1f ny # 0, then
yr(P(n, 1)) > 4m* + t* + 1.

If n; = 0, then by Lemma 2.2(1), n, > [%'] = [24m 407 — 2m* 4 [U]. Hence y&(P(n, 1)) = 2n, +ny > 4m* + 2[5 1.
There are two cases :

Case 1. t* = 1, 3. Then yr(P(n, 1)) > 4m* + 2[%] =4m* +t* 4+ 1.

Case 2. t* = 2. Then n, > 2m* + f%} = 2m* + 1. Assume that n, = 2m* + 1. Then by Lemma 2.1, rd(V(P(n, 1))) =
rd(V(G[Vo U V;])) = (r+ Dny — (n—ny) = 4Q2m* + 1) — 8m* +4) = 0.Ifv; € Vo forevery0 < i < n—1,
then Vo = {ug, uq,...,u,_1}, no = 4m* + 2, a contradiction with n, = 2m* + 1. Without loss of generality, we may
assume that vg € V. Let x; € V, be the vertex dominating uq, then since rd(V(P(n, 1))) = 0, we have x;, = uy. Let
xj € V, be the vertex dominating vs, then since rd(V(P(n, 1))) = 0, we have x; = v4. Continuing in this way, we have
{Vai, Ugin2} C V2(0 < i < m*),i.e. vy € Vo, rd(vam+41) > 1, a contradiction with rd(V(P(n, 1))) = 0. Hence n, # 2m* + 1,
i.e.ny > 2m* 4+ 2, yr(P(n, 1)) = 2n; > 4m* + 4 > 4m* 4 t* + 1 (see Fig. 4.1).
From the above discussion, we have y;(P(n, 1)) =4m* +t* + 1fort* =1,2,3. O

Theorem 4.3. The generalized Petersen graphs P(n, 1) are Roman for n > 3 and n # 2 (mod 4).

Proof. According to the proof of Lemma 4.2, we have f = (Vo; V1; V2) = (S4.0; Sa.1; Sa,2) is a yg-function with |V;| = 0 for
t = 1, 3. By Proposition 1.4 and Theorem 4.1, we have that the generalized Petersen graphs P(n, 1) are Roman for n > 3 and
n#%2(mod4). 0O

In Fig. 4.2, we show a Roman dominating function on P(n, 1) for3 <n < 7.

Lemma 4.4. For the generalized Petersen graph P(n, 3)(n > 7), if n = 2 (mod 4) and n; = 1, then n, > 2m* + 2.

Proof. By Lemma 2.2(1), n, > [¥;™] = [ZXU4m4D=11 — 2 | 1. Assume that n, = 2m* + 1. Then by Lemma 2.1,
rd(V(G[Vo UV2])) = (r+ Dny — (n — ny) = 42m* + 1) — (8m* + 4 — 1) = 1, hence there exists an unique vertex x with
rd(x) = 1.1f x € Vs, then since rd(x) = 1, x has to be dominated by another vertex, say y € V,. Thus, rd({x,y}) > 2, a
contradiction with rd(V(G[Vo U V»])) = 1. Without loss of generality, we may assume that x € {ve, ug}.

Case 1. rd(vg) = 1. Then N(ve) N Vo = {{vs, v7}, {vs, ug}, {us, v7}}. By symmetry, we only need to consider the cases for
N(ve) N Vo = {{vs, vz}, {vs, us}}.
Case 1.1. N(vg) NV, = {vs, v7}. Consider the vertex ug, we have:

Case 1.1.1. Suppose ug € Vj. Let x; € V;, be the vertex dominating uy, since rd(V(G[Vp U V3])) = 1, we have x; = uy. Let
xj € V, be the vertex dominating v,, then x; € {vi, v, u, v3}, it follows that rd(V(G[Vp U V»])) > 2, a contradiction with
rd(V(G[Vp U V,])) = 1 (see Fig. 4.3(1)).
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Fig.4.3. The cases of rd(x) = 1forx € {vg, ug}.

Case 1.1.2. Suppose ug ¢ V;. Let x; € V, be the vertex dominating ug, since rd(V(G[Vp U V»])) = 1, we have x; = uq;. Consider
the vertex vyg, we have:

Case 1.1.2.1. Suppose vig € V. Let x; € V, be the vertex dominating uy, since rd(V(G[Vo U V»])) = 1, we have x; = u;y. Let
X, € V, be the vertex dominating v,, then x, € {v1, v2, uy, v3}, it follows that rd(V(G[Vy U V,])) > 2, a contradiction with
rd(V(G[Vo U V3])) = 1 (see Fig. 4.3(2)).

Case 1.1.2.2. Suppose vy ¢ V. Let x; € V, be the vertex dominating vy, then x; € {vq, V19, U0, v11}, it follows that
rd(V(G[Vp U V3])) > 2, a contradiction with rd(V(G[Vp U V,])) = 1 (see Fig. 4.3(3)).

Case 1.2. N(vg) N Vo = {{vs, ug}}. Consider the vertex v3, we have:

Case 1.2.1 Suppose v3 € Vy. Let x; € V, be the vertex dominating v,, then x; € {vq, v, up}. By Proposition 1.5(b), x; # v-.
Since rd(V(G[Vo U V»])) = 1, we have x; # uj, it follows that x; = v;. Let x; € V, be the vertex dominating uy, since
rd(V(G[Vo U Vu])) = 1,x = uy. Let x, € V, be the vertex dominating vg, then x, € {vy, vs, us, v}, it follows that
rd(V(G[Vp U V3])) > 2, a contradiction with rd(V(G[Vp U V,])) = 1 (see Fig. 4.3(4)).

Case 1.2.2 Suppose v3 ¢ V;. Since rd(V(G[Vp U V»])) = 1, we have v, € V5. Consider the vertex u4, we have:

Case 1.2.2.1 Suppose uy € V;. Let x; € V, be the vertex dominating uy, then x; € {ugm+, v1, u1, }. By Proposition 1.5(b), x; # u;.
Since rd(V(G[Vp U V2])) = 1, we have x; # v, it follows that x; = ugy». Let x; € V, be the vertex dominating v4m+41, then
Xj € {Vams, Vam#41, Uame41, Vo}, it follows that rd(V(G[VoUV,])) > 2, a contradiction with rd(V(G[Vo UV,])) = 1(see Fig. 4.3(5)).
Case 1.2.2.2 Suppose uy4 ¢ V;.Since rd(V(G[VoUV,])) = 1, we have u; € V,. Consider the vertex vg, Suppose vg € Vq, Letx; € V,
be the vertex dominating vo, then x; € {vg, ug, v1o}. By Proposition 1.5(b), we have x; # vo, hence x; € {ug, v10}, it follows that
rd(V(G[Vo U V»])) > 2, a contradiction with rd(V(G[Vp U V»])) = 1 (see Fig. 4.3(6)). Suppose vs & V1, Let x; € V, be the vertex
dominating vs, then x; € {v;, vs, ug, vo}, it follows that rd(V(G[Vo U V,])) > 2, a contradiction with rd(V(G[Vo U V»])) = 1 (see
Fig. 4.3(7)).

Case 2. rd(ug) = 1. Then N(ug) N Vo € {{us, vg}, {us, uz}, {vs, u7}}. By symmetry, we only need to consider the cases for
N(ve) N Vo € {{us, v}, {us, uz}}.

Case 2.1. N(ug) N V5 = {us, vg}. Consider the vertex v4, we have:

Case 2.1.1. v4 € Vy. Let x; € V, be the vertex dominating u4, then x; € {uj, ug, u7}. By Proposition 1.5(b), x; # ua.
Since rd(V(G[Vo U V,])) = 1, we have x; # uy, it follows that x; = u;. Let x; € V, be the vertex dominating uy, since
rd(V(G[Vp U V1)) = 1, we have x; = ujo. Let x, € V;, be the vertex dominating vo, then x, € {vg, vo, ug, vio}, it follows
that rd(V(G[Vp U V,])) > 2, a contradiction with rd(V(G[Vy U V5])) = 1 (see Fig. 4.3(8)).

Case 2.1.2. v4 ¢ V1. Since rd(V(G[Vp U V5])) = 1, we have uy € V5. Consider the vertex v;, we have:

Case 2.1.2.1. Suppose v; € Vy. Let x; € V; be the vertex dominating v,, then x; € {v,, v3, uz}. Since rd(V(G[Vp U V2])) = 1, we
have x; = u,. Let x; € V, be the vertex dominating vo, then x; € {vgm=11, vo, uo}. By Proposition 1.5(b), we have x; # vo, hence
Xj € {Vam=11, Up}, it follows that rd(V(G[V, U V,])) > 2, a contradiction with rd(V(G[Vp U V,])) = 1 (see Fig. 4.3(9)).

Case 2.1.2.2. Suppose v; ¢ Vi. Let x; € V, be the vertex dominating v, we have x; € {vg, vy, Uy, vo}, it follows that
rd(V(G[Vp U V3])) > 2, a contradiction with rd(V(G[Vp U V,])) = 1 (see Fig. 4.3(10)).

Case 2.2. N(ug) NV, = {us, ug}. Consider the vertex vg, we have:

Case 2.2.1. v¢ € Vq. Let x; € V, be the vertex dominating vs, then x; = {v4, vs, us}. By Proposition 1.5(b), x; # vs.
Since rd(V(G[Vo U V2])) = 1, we have x; # vy, it follows that x; = us. Let x; € V, be the vertex dominating vg, then
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xj € {v7, vg, ug, vo}. By Proposition 1.5(b), x; # v;, hence x; € {vs, us, v}, it follows that rd(V(G[Vo U V,])) > 2, a contradiction
with rd(V(G[Vo U V»])) = 1 (see Fig. 4.3(11)).

Case 2.2.2. vg & V1. Since rd(V(G[Vy U V»])) = 1, we have vg € Vg, Vo N {vs, v;} # @. By symmetry, we only need to consider
v; € V,. Consider the vertex v4 and observe the following cases:

Case 2.2.2.1. Suppose v4 ¢ V;. Let x; € V, be the vertex dominating vy, then x; € {vs, v4, ug, vs}, it follows that rd(V(G[Vo U
V>]1)) > 2, a contradiction with rd(V(G[Vp U V,])) = 1 (see Fig. 4.3(12)).

Case 2.2.2.2. Suppose v4 € V1. Let x; € V;, be the vertex dominating vs, then x; = {vs, us, vg}. By Proposition 1.5(b), x; # vs.
Since rd(V(G[Vp U V2])) = 1, we have x; # vs, it follows that x; = us. Let x; € V, be the vertex dominating u4, then
x; € {u3, ug, uz}. By Proposition 1.5(b), we have x; # uy4. Since rd(V(G[Vp U V»])) = 1, we have x; # uy, it follows that x; = u;.
Let x, € V, be the vertex dominating v,, then x; € {vq, v, Uy, v3}, it follows that rd(V(G[Vp U V»])) > 2, a contradiction with
rd(V(G[Vo U V,])) = 1 (see Fig. 4.3(13)).

From cases 1-2, we have n # 2m* + 1,i.e.ny; > 2m* +2. O

Lemma 4.5. Forn > 7,

Ye(P(n, 3)) = {4m* + 4, ift"=2;
am* +4, ift* =3.

Proof. Let
{vai, ugirn 0 0 <i<m* —1}U {ugpme—1}, if e = 1;
Ss2 =4 {vai, Ugiza 1 0 <i<m* — 1} U {vgpe_1, Ugme}, i7" =2;
{Vai, Ugiyz 1 0 <i<m* — 1} U {vgp}, ift* = 3.
. 2 ifer=1,2;
> Huy, ugmer),  if =3
S50 = N(S5,2).

Then N[Ss5 2] U Ss.1 = V(P(n, 3)),and f = (Vp; Vy; V) = (Ss,0; S5,1; Ss,2) is a Roman dominating function of P(n, 3) with
4m* +2, ift*=1;
f(P(n,3)) = 4m* + 4, ift' =2;
4m*+4, if t* = 3.
Hence we have
4m* 42, ift*=1;
v(P(n, 3)) < {4m* +4, ift*=2;
4m*+4, if t* = 3.
In the following part of this proof, we will prove that
4m* +2, ift*=1;
Ye(P(n; {1,3))) > {4m* +4, ift" =2;
4m*+4, if t* = 3.

By Lemma 2.2(2), yx(P(n, 3)) > Z2Hm . 22xECHOLC-UM - g 4 ¢¢ 4 oL

Case 1. t* = 1.If ny # O, then f(V(P(n,2))) > 4m* + t* + [3] > 4m* 4 2. If n; = 0, then by Lemma 2.2(1),
ny > [2] = (404 = 2m* + 1, f(V(P(n, 2))) = 2n +ny > 2 x (2m* + 1) = 4m* + 2. Hence yz(P(n, 2)) > 4m* + 2 for
t*=1.
Case2.t* = 2.1fny > 3,thenf(V(P(n, 2))) > 4m*+t*+ [”711 > 4m* +4. So we only need to consider the cases forn; =0, 1, 2.
Case 2.1. n; = 0, then G[Vy U V5] = P(n, 3). By Proposition 1.5(d), V, is a dominating set of P(n, 3). So n; > y(G). By
Theorem 1.1,n; > n— 2| 4] = 4m* +2 — 2| # 2 | = 2m* + 2. S0 f(V(P(n, 3))) = 2n; > 4m* + 4.
Case 2.2.ny = 1. By Lemma 4.4, n, > 2m* + 2.So f(V(P(n, 3))) =2ny +ny >22m*+2)+1=2m+>5.
Case 2.3.n; = 2.Thenby Lemma 2.2(1), n; > [#2] = [#42=1] = 2m* + 1, f(V(P(n, 3))) = 2my+ny > 2x 2m* + 1) +2 =
4m* + 4.

Hence yz(P(n, 2)) > 4m* + 4 for t* = 2.
Case 3. t* = 3.If ny # O, then f(V(P(n,3))) = 4m* + t* + [3] = 4m* 4 4. If n; = 0, then by Lemma 2.2(1),
ny >[40 = (457 = 2m* + 2, f(V(P(n,2))) = 2ny + my > 2(2m* + 2) = 4m* + 4. Hence y(P(n, 2)) > 4m* + 4

3+1 2
for t* = 3.
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Fig. 44. A Roman dominating function on G = P(n, 3) for7 <n < 11.

Fig. 5.1. A Roman dominating function on C1¢CCqg.

Hence,
am* +2, ift*=1;
vr(P(n, 3)) = {4m* +4, ift"=2;
dm* +4, ift*=3. 0O

Theorem 4.6. The generalized Petersen graphs P(n, 3) are Roman for n = 11 or n > 7 and n # 3 (mod 4).

Proof. Forn = 11, let Sﬁyz = {V(), Uy, v4, U4, Ug, Vg}, 56,1 =0, SG,O = N(SG_;), by Lemma 45,f = (V(]; Vi Vz) = (SG,O; 56,1; 56,2)
is a yg-function with |V;| = 0. By Proposition 1.4, we have that the generalized Petersen graph P(11, 3) is Roman.

Forn > 7 and n = 3 (mod 4), by the proof of Lemma 4.5, we have f = (Vo; V1; V2) = (S5.,0; S5.1; S5,2) is a yg-function with
V1| = 0 for t = 1, 2. By Proposition 1.4 and Theorem 4.1, we have that the Petersen graphs P(n, 3) are Roman for n > 7 and
n#3(mod4) O

In Fig. 4.4, we show a Roman dominating function on P(n, 3) for7 <n < 11.
5. Roman domination in Cartesian product graphs Cs,,(0Cs,
Theorem 5.1. For n > 1, m > 1, the Cartesian product graphs Cs,,(0Cs, are Roman.

Proof. Let V(C5,,0Cs,) ={v: 0<i<5m—1,0<j<5n—1}

572 = Vi) VGit1)(54+3)» VGir2)Git1)s VGit3) i) VeiraGit2) 0 <i<m—1,0<j<n—1},

S7.1=9,

S7.0 = N(57.2),
then N[S72] = V(GsuOGCsyn), f = (Vo; Vi3 Va) = (57.0;57.1; S7.2) is a Roman dominating function of Cs,0Cs, with
F(V(C5n0OC50)) = 2x (5mn) = 10mn. So we have yg(CswCCsy) < 10mn. By Proposition 1.1, we have yg(Com0Csy) > 2Z0m0 =

10mn, hence yz(Cs,0Cs,) = 10mn. Thus, f = (Vo; Vi; V2) = (S7.0; S7.1; S7.2) is a yg-function with |V;| = 0. By Proposition 1.4,
the Cartesian product graphs Cs,,[0Cs, are Roman. 0O

In Fig. 5.1, we show a Roman dominating function on C;o0Cqg.
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