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1. INTR~OUCTION 

Recently, programs with several conflicting objectives have been exten- 
sively studied in the literature. Introducing the concept of proper efficiency 
of solutions, Geoffrion [7] proved an equivalence between a multiobjective 
program with convex functions and a related parametric (scalar) objective 
program. Using this equivalence, Weir [ 133 formulated a dual program 
for a multiobjective program having differentiable convex functions. 
Subsequently, Egudo [6] and Weir [13] proved duality results for a 
differentiable multiobjective program with pseudoconvex/quasiconvex func- 
tions. Mond et al. [9] presented Mond-Weir [12] and Wolfe [14] type 
duals for a class of nondifferentiable multiobjective programs and proved 
weak, strong, and converse duality theorems for Mond-Weir type dual 
problems regarding Geoffrion’s parameter as a variable. 

Motivated by the results related to nonlinear multiobjective program- 
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DUALITY FOR MULTIOBJECTIVE PROBLEMS 215 

ming duality in the above-cited references, in this paper we propose 
studying Wolfe and Mond-Weir duality for multiobjective variational 
problems. In view of the remarks of Mond and Hanson [S], it is also 
shown here that our duality theorems can be considered as dynamic 
generalizations of the corresponding (static) multiobjective programming. 

2. NOTATION AND PRELIMINARIES 

Let I= [a, b] be a real interval and f: Ix R” x R” + R and 
g: Ix R” x R” + R” be continuously differentiable functions. In order to 
consider f( t, x(t), a(t)), where x: I+ R” with dserivative J?‘, denote the 
partial derivative off with respect to t, x, and i, respectively, by f,, fX, and 
fi-, such that 

f, = (wax, 2 wax,, . . . . wax,), f.e = (afiai-,, af/a.t-,, . . . . aflak,). 

Similarly, we write the partial derivatives of the vector function g using 
matrices with m rows instead of one. Let C(Z, R”) denote the space of 
piecewise smooth functions x with norm I/x(1 = llxll,% + ilDxlla:, where the 
differentiation operator D is given by 

f 
u=Dxox(t)=a+ s 4s) ds, 

LI 

where c( is a given boundary value. Therefore, D = dldt except at discon- 
tinuities. 

Consider the following multiobjective variational primal problem as 

(P) Minimize SS:f(t,x(t),.~(t))dt=(S~f1(t,x(t),~(t))dt,...,SS:fP(t,x(t), 
i(t)) dt) subject to 

x(u) = a, x(h) = P, (1) 

s(4 x(t), 4t)) GO, t E I. (2) 

Let K the set of feasible solutions for (P) be given by 

K= {xEC(Z, R”)Ix(a)= a,x(b)=~,g(t,x(t),i(t))<O,tEZ). 

DEFINITION 1. A point x* in K is said to be an efficient solution of (P) 
if for all x in K: 

s 
ub f’(t,x*(t), m*(t))dt>j,b f’(t, x(t),$t))dt, ViE { 1, 2, . ..) p}, 

(I 

a s” fi(t,x*(t),l*(t))dt=jb f’(t,x(t),i(t))dt, Vie { 1, 2, . . . . p}. 
Cl a 
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DEFINITION 2 (Borwein [2]). A point x* in K is said to be a weak 
minimum for (P) if there exists no other x in K for which 

From this it follows that if an x* in K is efficient for (P) then it is also a 
weak minimum for (P). 

DEFINITION 3 (Geoffrion [7]). A point x* in K is said to be properly 
efficient solution of (P) if there exists a scalar M> 0 such that, 
ViE (1,2, . ..) p}, 

~hf’(l.~~*(f),i*(f))df-~b~i(t,x(r),;i(~))dt 
0 a 

GM 
(J 

:’ f(t, x(t), i(t)) dt- j” f’(t, x*(t), i*(t)) dt) 
u 

for some j such that 

i 
Sf’(l,x(r),i(t))dr>j6l/(f.~*(l),i*(f))dt 

u 

whenever x is in K and 

j” f’(t, x(t), i(t)) dt < j”j-+, x*(t), i*r)) dr. 
a 0 

An efficient solution that is not properly efficient is said to be improperly 
efficient. Thus for x* to be improperly efficient means that to every 
sufficiently large M > 0, there is an x in K and an in { 1,2, . . . . p> such that 

and 

S”fi(r,x*(t),~*(f))df-Shfi(l,x(f),~(c))dt 
CI II 

>M fl(t, x(t), i(t)) dt- jb f’(t, x*(t), k*(t)) dz), 
(1 
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Vjj’E { 1, 2, . ..) p}, such that 

ef’(t,x(t),i(f))dt>S”f~(t, x*(t),i*(t))dt. 
0 

Now we consider the following Geoffrion type parametric variational 
problem for predeterminated Geoffrion’s parameter i E A +, where 

A+ = {IERPIE.>O, ATe= l,e=(l, 1, . . . . l)ERP}. 

(PA Minimize CP= 1 I+‘~~ f’(t, x(t), a(t)) dt = jt lTf(t, x(t), i(t)) dt sub- 
ject to ( 1) and (2). 

Problems (P) and (Pi,) are equivalent in the sense of Geoffrion’s [7] 
Theorems 1 and 2, which are valid when R” is replaced by some normed 
space of functions, as the proofs of these theorems do not depend on the 
dimensionality of the space in which the feasible set of (P) lies. For our 
variational problems the feasible set K lies in the normed space (7(Z, R”). 
For completeness we shall merely state these theorems characterizing 
proper vector minima of (P) in terms of solutions of (P,.). 

THEOREM 1. Let 1.~ RP be fixed. Zf x* is optimal for (P,.), then x* is 
properly efficient for (P). 

THEOREM 2. Let f and g be convex in (x, 2) on K. Then x* is properly 
efficient for (P) if and only if x* is optimal for (P,) for some 1 E A +. 

Before presenting two distinct duals to (P) we state the following 
necessary optimality conditions for (PJ and point out that they can 
be easily derived by invoking the results of Valentine [ll] or those of 
Chandra, Craven, and Husain [3]. 

PROPOSITION 1. Zf x is optimalfor (PJ and is normal [3, 81, there exists 
a piecewise smooth y: Z-S R” such that for t E Z 

nTfx(t? x(t), i(t)) + Y(t)Tg.x(tT -4th i(t)) 

= QATfAt, x(t), 2(t)) + Y(t)Tg.d4 x(t), 4t))l (3) 

Y(t)Tdt, 4th i(t)) = 0 (4) 

y(t)>O. (5) 
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3. WOLFE TYPE DUALITY 

A Wolfe type dual to (P,) as suggested in [7] is as follows: 

(WD,) Maximize jt[i’f(t, u(t), C(t))+ y(t)Tg(t, u(t), C(t))] dr subject 
to 

x(a) = cc, x(b) = B, 

~=f,(c 4th 4t)) + #v(t)‘g,(4 4th 4f)) 

= Nn’fe(t, u(t), f4f)) + Y(t)‘gi(4 u(t), 4t))l, t E I, 

y(r) a 0, t E I. 

In view of Theorems 1 and 2 above, we now define the following vector 
maximization variational problem as the Wolfe type dual (WD) of (P): 

(WD) Maximize (ji [f’(t, u(t), C(t)) + y(t)Tg(t, u(t), C(t))] dt, . . . . 
ji C.P(f, u(t), c(t)) + y(c)Tg(t, 4th ~(t))l df) subject to 

x(u) = !I, x(h) = B, (6) 

~‘fr(f, u(t), 4t)) + Y(t)‘g,(t, 4th 4f)) 

= m-~“*f,u, u(t), 4f)) + .l~(t)Tg,(f, u(r), fi(c))l, t E I, (7) 

Y(f) 3 0, t E I, Q-3) 

iEAf. (9) 

In problems (PJ and (WD,) the vector 0 < 2 E RP is predetermined. Note 
that if p = 1 problems (P) and (WD) become the pair of Wolfe type dual 
variational problems studied by Mond and Hanson [S]. 

Let H denote the set of feasible solutions of (WD). 

THEOREM 3. Let x(t)~Kand (u(t), i, y(t))~ H. Letfandg be convex at 
(u, ti) over K. Then the following cannot hold: 

I b f’(t, x(t), i(t)) dt 
a 

d I ab Cf’(t, u(t), 4t)) + y(f)Tg(t, 4th 4f))l dt, ViE (1, 2, . . . . p}, 

s ab f’(t, x(t), 4t)) dt 

< 
J‘ 

’ [f’(t, u(t), C(t)) + y(t)=g(f, u(t), a(t))] dt, for at feast one j. 
0 
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Proof Convexity off and g implies that ATf+ y(t)‘g is convex. This 
yields 

.r bTf (t, x, i)) dt 
a 

b - s Cl=f(t, 4th a(t)) + y(t)=&, 4th ~(t))l dt a 

3 I ; m(t) - u(t))‘C~=fAt~ 4th fi(t)) + Yo)T&(t7 u(t), G))l 

+ (G(t) - 4NTCJ.Tfi-k 4th a(t)) + yW’g.At, 4th 4t))l) dt 

= r” {((x(t)- 4t))Tw~Tf,(t, u(t), 4t)) + y(t)Tg,(t, u(t), a(t))] 

+ (G(t) - W)‘C~=fi(t, u(t), 4t)) + y(O=g,(t, 4th ti(t))l} dt 

Using integration by parts and boundary conditions (6), we obtain 

I b V’f (t, x, i) + yW’g(t, x, a)) dt 
u 

i ’ - Cl’f(t, 4th 4t)) + yW’g(t, u(t), fi(t))l dtbo, 0 

which in view of (2) and (8) yields 

s b @‘f (6 b x, i) dt > [l’f(t, u(t), ti(t)) + y(t)=&, u(t), 4t))Il dt. (10) 0 s a 

Thus, the following cannot hold: 

s ’ f’(t, -4th a(t)) dt u 
< Lb [If’(t, 4th 4t)) + y(QTg(f, u(t), 4t))l & vim { L2, . . . . P>, 

s bf(t, x(t), i(t)) dt 
a 

< i ab Cf’(t, 4th 4t)) + y(dTsk 4th a(t))1 4 for at least one j. 

LEMMA 1. Let u*(t)~Kand(u*(t), y*(t))EH. Letfandgbe conuex. Zf 

Y*(t)Tg(t, u*(t), 4t)) = 0, t E z, 



220 BECTOR AND HUSAIN 

then u*(t) is properly efficient for (P) and (u*(t), A*, y*(t)) is properly 
efficient for (WD). 

Proof (i) From (10) together with y*(t)‘g(t, a*. (t), C*(t)) = 0, t E I, 
it follows that for all x(t) E K, 

s “b %*%(t, u*(t), a*(t)) 
= 

s 
h [l”*=f( t, u*(t), C*(t)) + y*(t)Tg(t> u*(t), u*(t))1 dt u 

d 
i 

’ (lTf(t, x, a)) dt. 
u 

Thus u(t) is an optimal solution of (P,). Hence Theorem 1 implies that 
u*(t) is a properly efficient solution of (P). 

(ii) Assume that (u*(t), 1*, y*(t) is not effkient. This implies that we 
have (ii(t), 1, j(t)) E H such that 

s ub Cf ‘(t, G(t), G(t)) + T(t)Tg(t, ii(t), C(t))1 dt 

2 s ab Cf ‘(6 u*(t), C*(t)) + y*(t)Tg(t, u*(t), C(t))] dt, 

ViE {1,2, . . . . p}, 

and 

s ,” Cf’(t, G(t), E(t)) + Y(t)Tg(t, C(t), ii(t))1 dt 

> s uh Cfj(t, u*(t), a*(t)) + y*(t)=& u*(t), ~*(t))l & 

for at least one Jo { 1, 2, . . . . p 1. 

Using y*(t)Tg(t, u*(t), C*(t)) = 0 in the above we obtain 

i uh Cf’(t, fi(t), ii(t)) + j(t)Tg(f, ii(t), ii(t))1 dt 

3 s ’ f ‘(t, u*(t), C*(t)), dt, ViE (1,2, . . . . p}, 
a 
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and 

s d’ Cf+, ii(t), i(t)) + jWT&, C(t), fi(t))l dt 

> 
s 
,” j-‘(t, u*(t), C*(t)) dt, for at least one j E ( 1, 2, . . . . p}, 

which contradicts Theorem 3. Hence (u*(t), A*, y*(t)) is efficient. 
Now we assume that (u*(t), A*, y*(t)) is improperly efficient; i.e., there 

exists (ii(t), I, j(t)) E H such that for some i and all A4 > 0, 

s p Cfi(t, ii(t), ii(t)) + jWT& ii(t), fi(t))l df 

- i ob [f’(t, u*(t), C*(t))+ y*WTg(t, u*(t), C*(t))] dt 

>M 
0 ,” Cf’(4 u*(t), c*(t)) + y*(t)‘g(t, u*(l), a*(f))] dt 

- s ,: Cf’(c G(f), ii(t)) + jW)Tg(t, G(t), ii(f))1 dt} 

and Vj E ( 1, 2, . . . . p}, such that 

s ab Cf’(f, u*(t), C*(t)) + y*WTg(t, u*(t), C*(t))] dt 

> I ab [If’(f, fit?), ii(t)) + wiXt)‘g(f, fi(t), ii(r))1 dt. 

Since XE A+, 

i b [lTf(t, u*(t), h*(t)+ y*(t)Tg(t, u*(t), a*(t))] dt 
a 

I b > CXTf(t, C(t), E(t) + P(tJTg(f, ii(t), ii(t))] dt, 
a 

which along with y*(t)‘g(t, u*(t), C*(t)) = 0 yields 

r” xTf(f, u*(t), C*(t)) dt 

b > s [l’f(t, ii(t), ii(t)) + J(t)‘g(t, G(t), ii(t))] dt. 
0 

This contradicts (10). Thus (u*(t), A*, y*(t)) is properly efficient. 

409,166/l-15 
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THEOREM 4. Let f and g he convex at (u, ti) over K. Let x* be normal 
[S] and a properly efficient solution for (P). Then for some 1 E A +, there 
exists a piecewise smooth y*: I + R” such that (x*, 2, y*) is a properly 
efficient solution of (WD) and 

i‘ h Cf( t, x*(t), i*(t))] dt 
a 

= heft s t, x*(t), i*(t)) + y*(t)=g(t, x*(t), i*(t))] dt. 
a 

Proof: Since f and g are convex and x* is a properly efficient solution 
of (P), by Theorem 2, x* is optimal for (PJ for some 1 E A +. Therefore, 
by Theorem 3, there exists a piecewise smooth y*: I-, R” such that for 
tfzz 

;3=f,(t, x*(t), i.*(t)) + Y*(t)=g,(t, x*(t), i.*(t)) 

= D[PfJt, x*(t), i*(t)) + Y(t)=g&, x*(t), i’*(t))1 (11) 

y*(t)‘g(t, x*(t), 4t)) = 0 (12) 

y*(t) 2 0. (13) 

From (11) and (13) it follows that (x*, Af, y*)~ H. Lemma 1 and (12) 
imply that (x*, 1, y*) is a properly efficient solution of (WD). Using (12) 
we have 

I b Cf ‘(t, x*(t), n*(t))1 dt a 

= s b Cf( t, x*(t), a*(t)) + y*(t)=g(t, x*(t), i*(t))] dt. 
a 

For validating the converse duality theorem (Theorem 5), we make the 
assumption that X, denotes the space of piecewise differentiable function 
x: I-+ R” for which x(a) = 0 =x(b) equipped with the norm llxll = ilxll m + 
l/Dxll co + IJD*xl[ co, defining D as before. The problem (WD) may be rewrit- 
ten in the form 

Minimize -#(u, A, y)=(-4’(u, A, y), -c$*(u, A, y), . . . . -#p(u, A, y)) 
subject to 

u(a) = ~1, u(b) = D, 

@(t, 4th 4th ii(t), 2, y(t), j(t)) = 0, t E I, 

y(t) 20, t E I, 
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where 

d’(u, 1, Y) = 1s: Cf’(t, 4th $t)) + y(OTg(t, 4th zi(t))l & i = 1, 2, . . . . p, 

and 

@ = @(t, u(t), 4th ii(t), 4 y(t), j(t)) 

n’fx(tY 4th a(t)) + Y(t)‘&(t? 4th C(t)) 

- DE~Tf~(t~ u(t), G(t)) + Y(t)T’gi(t, 4th 4t))l, t E z, 

with ii(t) = D*u( t). 

Consider O( ., u( .), ti( .), ii( .), A, y( .), I’( .)) as defining a map !Z? X2 x 
Y x ,4 + + A, where Y is the space of piecewise differentiable function 
y: I+ R” and A is a Banach space. A Fritz John Theorem [4,5] for 
infinite dimensional multiobjective programming problem may be applied 
to problem (WD) along with the analysis outlined in [S] or [3] for the 
derivation of optimality conditions. However, some restrictions are 
required as in [3] on the equality constraint O( .) = 0, since infinite dimen- 
sional space is involved here. It suffices to assume that the Frtchet 
derivative Y’ = (Y,, Y,, Yi) has a (weak*) closed range. 

THEOREM 5. Let f and g be convex at (u, ti) over K. Let (u*, A*, y*) with 
U”EX*, LEA+, and y* E Y be a properly efficient solution of (WD). Let, 

(I) Y’ have a (weak*) closed range, 

(II) f and g be twice continuously differentiable, 

(III) f i - Df i,, i= 1, 2, . . . . p, be linearly independent, and 

(IV) (/3(t)T@,-D~(t)T@,+D2~(t)T@,)/?(t)=O=+(t)=0, tel. 

Then, the objective functions of(P) and (WD) are equal and u* is a properly 
efficient solution of (P). 

Proof Since (u*, ;1*, y*), with u* EX* and Y’ having a (weak*) closed 
range, is properly efficient, it is a weak maximum. Hence, there exists 
CI E RP, ,u E RP, and piecewise smooth 8: I-+ R” and 6: I+ R” satisfying the 
following Fritz John conditions [4, 53, which are derived by means of the 
analysis of [3], 

a'(f,+ y(t)Tg,)-DaT(f,+y(t)Tg,) 
-(/3(t)‘@,-D~(t)‘@,+D’~(t)‘@,)=O, t E z, (14) 
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(a’e) g- (B(t)‘@,- Dfi(t)‘@,,) + h(t) = 0, t E I, (15) 

B(t)=(fr - Ofi) = PL, t E I, (16) 

w=Jw = 0, t E I, (17) 

p=2=0 (18) 

(4 P(t), s(t), P) 2 0, t E I, (19) 

(4 P(t), h(t), PL) z 0, t E I, (20) 

where f=f(t,u*(t), C*(t)), gr g(t, u*(t), C*(t)), f,-f,(t, u*(t), G*(t)), 
etc., with all derivatives evaluated at u = u*. Note that the term 
D’(B(t)‘@,) in (14) is obtained by using integration by parts with 
boundary conditions /I(a) = 0 = /I(b), adjoined to the differential equations 
(14) and (15) so that the integrated parts occurring in their derivation 
vanish. Since f and g are twice continuously differentiable, 0 also is twice 
continuously differentiable. 

Equation (14) along with (7) yields 

(~-(~Te)~*)T(fx-Wi) 

- (/l(t)‘@, - Dj3( t)‘@ \’ + D’b( t)‘@,) = 0, t E I. (21) 

Since 1* EA+ and ~30, (18) implies p=O. Thus (14) implies 

B(~)‘(fr-m)=o, t E I. 

Equation (22) along with (21) yields 

(p(t)‘@, - D/?( t)TO, + D’j3(t)‘@,) P(t) = 0, t E I, 

(22) 

(23) 

which in view of hypothesis (IV) of the theorem gives 

B(t)=% t E I. 

Equations (21) and (24) now yield 

(a -(ctTe)l"*)=(fx-Dfi)=O, 

which along with hypothesis (III) yields 

CI = (a’e) A*. 

We now claim that IX > 0. 

(24) 

(25) 

If cc=O, then from (15) we have J(t)=O, tel. Thus we have 
(LX, p(t), s(t), 11) = 0 for t E I. This contradicts condition (20). Hence we 
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conclude that c1> 0, which means aTe > 0. From (25) it follows that c1> 0. 
Therefore, from (15) we obtain 

g(t, u*(t), c*(t)) = -G(t)/(a%) < 0, t E I. (26) 

Relation (26) yields that u*(t)e K. Again, (26) together with (17) gives 

Y(t)Tg(f, u*(f), c*(t)) = 0, t E I. (27) 

From (27) we have 

i ,” Cf(t, u*(t), c*(t) + y*WTgO, u*(t), ~(t))l dt 

= bf(f, u*(t), a*(t)) dt 
s a 

(28) 

and, by Lemma 1, u*(t) is a properly efficient solution of (P). 

4. RELATED PROBLEMS 

As in [3, S] the foregoing duality results can be extended to the corre- 
sponding problems (PO) and (WD,) given below. We obtain (PO) by 
omitting the boundary conditions (1) and (WD,) by adjoining the “natural 
boundary conditions.” 

(P,) Minimize s: f(t, x(t), a(t)) dt = (ji f’(t, x(t), i(t)) dt, . . . . 
j: f”(t, x(t), 4t)) dt) 

subject to 

g(4 x(t), n(t)) 6 0, t E I. 

(WD,) Maximize (si [f’(t, u(t), C(t)) + y(t)Tg(t, u(t), ti( t))] dt, . . . . 
J1: Cf”(~~ 4th a(t)) + .MTgO> 4th ~(t))l df) 
subject to 

n’f,(t, 4th 4t)) + YWM, 4th $t)) 

= Nn’fAt, 4th a(t)) + Y(t)T&(t, u(t), C(t))l, t E I, 

y(t) 2 0, t E z, 

n’f,(t, 4th 4t)) + J4t)lTg*(t, 4th G(t) = 0, whent=a,t=b, 

/Ien+. 

In particular if (P,) and (WD,) are independent of t; i.e., iff and g do not 
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depend explicitly on t, then these problems essentially reduce to the static 
case (P) and (D) of multiobjective nonlinear programs studied by several 
authors, notably by Weir [ 131. 

(P) Minimize f(x) = (.f’(x), f*(x), . . . . f”(x)) 

subject to 

g(x) 6 0. 

(D) Maximize (f’(u) + yTg(u), f’(u) + y’g(u), . . . . f”(u) + y’g(z.4)) 

subject to 

JbTf,(U) + Y’&(U) = 0 

5. MOND-WEIR TYPE DUALITY 

The Mond-Weir type dual for (Pi) is as follows: 
(MD),) Maximize sf: %=f( t, u(t), ti( t)) dt 

subject to 

y(t) 3 0, t E I, 

where the vector II > 0, 1 E RP is predetermined. 

We white the following vector maximization variational problem as the 
Mond-Weir type dual (MD) of (P). 

(MD) Maximize 12 f(f, u(t), ti(t)) dt = 
J; f”(h 4th 4t)) dt) 

(JS: f*(t, u(t), a(t)) dt, . . . . 
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subject to 

In the above it is easily seen that for p = 1, problems (P) and (MD) 
become the nonsymmetric dual variational problems studied by Bettor, 
Chandra, and Husain [ 11. 

Denoting by G the set of feasible solutions of (MD) we state the 
following duality Theorems 6-8, that can be proved as in Wolfe’s duality. 

THEOREM 6. Let x(t) E K and (u(t), 1, y(t) E G. Let f and g be convex at 
(u, ti) over K. Then the following cannot hold 

j” f’(t, x(t), i(t)) dt d j-” fi(t, u(t), ti(t)) dt, ViE { 1, 2, . . . . /I}, 
a a 

s ,: f’(t, -4th 4t)) dt < fub f’(t, 4th 4t)) dt, for at least one j. 

THEOREM 7. Let f and g be convex at (u, zi) over K. Let x* be normal 
and a properly efficient solution for (P). Then for some 1 E A+, there exists 
a piecewise smooth y*: I-+ R” such that (x*, 1, y*) is a properly efficient 
solution of (MD) and 

j; [f(t, x*(t), i*(t)) dt=f; f(t, x*(t), i*(t)) dt. 

THEOREM 8. Let f and g be convex at (u, ti) over K. Let (u*, A*, y*) with 
U*EX*,AEA+, and y* E Y be properly efficient solution of (MD). Let 

(I) Y’ haoe a (weak*) closed range, 

(II) f and g twice continuously differentiable, 

(III) f k - Df :, i = 1,2, . . . . p, be linearly independent, and 

(IV) (/?(t)‘Q,-D/?(t)‘@,+D2~(t)*@,)~(t)=0+3(t)=0, FEZ. 
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Then, the objective functionals of (P) and (MD) are equal and u* is a 
properly efficient solution of (P). 

The duality results similar to those contained in the above section can 
also be established for the following pair of problems with “natural 
boundary values.” 

(PO) Minimize 1: f(t, x(t), i(t)) dt = (fi f’(t, x(t), i(t)) dt, . . . . 
j: f”(t, x(t), a(t) dt) 

subject to 

s(t, -4th 4t)) d 0, t E I. 

(MD,,) Maximize (JI: f ‘(t, u(t), C(t)), dt, . . . . Ji f”(t, u(t), C(t)) dt) 

subject to 

n=fT(t, 4th a(t)) + Y(t)=g,(t, 4th 4t)) 

= NiTfAt, u(t), C(t)) + Y(t)‘&@, u(t), 4t))l, t E I, 

i 

h 

y(t)=& 4th C(t)) dt 20, 
u 

y(t) ao, t E I, 

n=fi(t, u(t), G(t)) + .Y(t)=&(t, u(t), 4t)) = 0, when t=a, t=b, 

LEA+. 

If the problems (PO) and (MD,) are independent of t; i.e., if f and g do not 
depend explicitly on t, then these problems essentially reduce to be the 
static case (P) and (I)) of multiobjective nonlinear programs studied by 
several authors, notably by Weir [13]. 

(P) Minimize f(x) = (f l(x), f2(x), . . . . f”(x)) 

subject to 

g(x) d 0. 

(D) Maximize (f’(u), f2(u), . . . . f”(u)) 

subject to 

nTfX(u) + Y=&(u) = 0 

Y=g(u) 2 0 

,vao, /IEn+. 
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