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Drought is a natural hazard that can have severe and long-lasting impacts on natural and human systems.
Although increases in global greenhouse forcing are expected to change the characteristics and impacts of
drought in the 21st century, there remains persistent uncertainty about how changes in temperature,
precipitation and soil moisture will interact to shape the magnitude – and in some cases direction – of
drought in different areas of the globe. Using data from 15 global climate models archived in the Coupled
Model Intercomparison Project (CMIP5), we assess the likelihood of changes in the spatial extent, dura-
tion and number of occurrences of four drought indices: the Standardized Precipitation Index (SPI), the
Standardized Runoff Index (SRI), the Standardized Precipitation–Evapotranspiration Index (SPEI) and
the Supply–Demand Drought Index (SDDI). We compare these characteristics in two future periods
(2010–2054 and 2055–2099) of the Representative Concentration Pathway 8.5 (RCP8.5). We find
increases from the baseline period (1961–2005) in the spatial extent, duration and occurrence of ‘‘excep-
tional’’ drought in subtropical and tropical regions, with many regions showing an increase in both the
occurrence and duration. There is strong agreement on the sign of these changes among the individual
climate models, although some regions do exhibit substantial uncertainty in the magnitude of change.
The changes in SPEI and SDDI characteristics are stronger than the changes in SPI and SRI due to the
greater influence of temperature changes in the SPEI and SDDI indices. In particular, we see a robust
permanent emergence of the spatial extent of SDDI from the baseline variability in West, East and Sah-
aran Africa as early as 2020 and by 2080 in several other subtropical and tropical regions. The increasing
likelihood of exceptional drought identified in our results suggests increasing risk of drought-related
stresses for natural and human systems should greenhouse gas concentrations continue along their
current trajectory.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Droughts can have severe and long-lasting impacts on natural
and human systems. These include humanitarian disasters, eco-
nomic losses, and stresses on natural ecosystems across the globe.
For example, 450,000 deaths in Ethiopia and Sudan in 1984 and
325,000 deaths in the Sahel region in 1974–1975 are directly
attributed to drought (Guha-Sapir et al., 2004). Likewise, the
2012–2013 U.S. drought in the Central Plains caused more than
$US12 billion in damage in the U.S. (Hoerling et al., 2013), while
the 1995 drought in Spain and the 1982 drought in Australia cost
$US4.5 billion and $US6 billion, respectively (Guha-Sapir et al.,
2004).

In addition to mortality and economic losses, political and soci-
etal impacts can also manifest during and after drought events,
especially in less economically developed nations that have limited
adaptive capacity. Recurring water shortages affect 550 million
people worldwide, and can cause environmental refugees to be dis-
placed when consequent food shortages arise (Myers, 2002). For
example, 20–24 million people in Sudan were affected when grain
yields fell to 20% of the annual demand during a drought in 1984,
and 90% of Kenyan households’ food supply was in jeopardy during
a 3–5 month drought period in 1999–2000 (Epule et al., 2014).
Through food and water shortages, drought is also thought to have
caused the displacement of one million environmental refugees in
Niger is 1985 (Gemenne, 2011) and 5 million in the African Sahel in
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1995 (Myers, 2002). Civil conflict has also been shown to correlate
with past drought events in sub-Saharan Africa (Hsiang et al.,
2013), with displacement hypothesized to be either a direct or
indirect contributor.

In addition to the intertwined economic, social and political
effects, terrestrial ecosystems have also been subject to severe
damage from drought. Anderegg et al. (2013) found that high
summer temperatures and negative soil moisture anomalies were
significant predictors of high aspen mortality rates associated with
the unprecedented drought in Colorado in 2002. In the Amazon,
mortality of large trees and lianas increased by 38% in response
to an experimental four-year drought (Nepstad et al., 2007). In
addition, severe drought conditions in 2005 caused a large loss in
above ground biomass, causing the Amazon to store 1.2 to 1.6 pet-
agrams less carbon that year (Phillips et al., 2009). The Mediterra-
nean region also experienced large tree mortality rates (Allen et al.,
2010) and large reductions in gross primary productivity (Ciais
et al., 2005) during extreme heat wave and drought conditions in
2003.

In addition to the impacts of low soil moisture, atmospheric
vapor pressure deficits, and high atmospheric temperatures on ter-
restrial vegetation, decreases in stream flows caused by drought
can also affect aquatic ecology. For example, Poff et al. (1997)
found that changes in mean monthly stream flows can affect the
habitat available for aquatic organisms and the reliability of water
supplies for terrestrial animals. Droughts can also cause river
reaches to become isolated, causing local extirpations of species
(Palmer et al., 2009). Additionally, further ecological stresses can
occur when surface water deficits cause over extraction of ground-
water by humans, as seen often in the Southwest U.S. (Zektser
et al., 2004).

Given the widespread impacts of drought, the causes of drought
in the past and the possible mechanisms by which drought could
change in the future have received substantial attention in the lit-
erature. However, while the concept of drought is intuitive (i.e., a
prolonged water deficit in the atmosphere, soil, and rivers),
drought is caused by the complex coupling of atmospheric, hydro-
logical and biogeophysical processes. As a result, there is no unified
definition of drought (Dai, 2011). For instance, droughts do not
have a clear onset, duration, or ending. In addition, the threshold
for drought can vary significantly by seasons and regions, with
the same amount of precipitation having different implications in
wet and arid regions, or in monsoon and non-monsoon seasons.
As a result, different metrics of drought highlight different vari-
ables of interest, such as precipitation for meteorologic droughts,
soil moisture for agricultural droughts, and streamflow for hydro-
logic droughts. Mishra and Singh (2010) and Dai (2011) have pre-
sented comprehensive reviews of commonly-used drought indices,
including the statistical characteristics of these indices (such as
frequency, number of occurrences, and duration) that can be
important for short- and long-term water management actions.

Drought assessment and preparation are further challenged by
climate change. While heat extremes have intensified in recent
decades and show a robust response to further global warming
(e.g., IPCC (2012), Hawkins et al. (2014) and Diffenbaugh and
Scherer (2011)), drought can be caused by a multitude of climate
variables, and is not solely dependent on temperature or precipita-
tion. In addition, unlike atmospheric water vapor, which is linked
to atmospheric temperature through the Clausius–Clapeyron rela-
tionship, drought has no direct theoretical relationship with atmo-
spheric temperature, and can be greatly affected by feedbacks in
the climate system. Indeed, attempts to evaluate changes in
drought over the instrumental record have yielded conflicting
results, with contradictions attributable at least in part to discrep-
ancies in the data used, as well as to the selection of the compari-
son period (Trenberth et al., 2014). The absence of a clear
theoretical expectation, combined with challenges in evaluating
the observed record, motivate the need to assess the mechanisms
by which changes in surface temperatures and variations in precip-
itation patterns could influence different drought characteristics
(e.g., Dai (2012), Madadgar and Moradkhani (2013), Liu et al.
(2013), and Ojha et al. (2013)).

Several recent studies that used the Coupled Model Intercom-
parison Project Phase 3 (CMIP3) archives have shown projected
drought to increase in frequency and severity in the future (e.g.,
Dai (2012) and Sheffield and Wood (2007)). Moreover, studies
using the current CMIP5 archive have shown an increase in
drought over different regions of the globe in response to contin-
ued global warming (e.g., Wang and Chen (2014) and Orlowsky
and Seneviratne (2013)). However, both sets of studies have also
noted the large uncertainties associated with the use of general cir-
culation model (GCM) projections to estimate drought. Most of
these uncertainties in GCM-based drought projections are a result
of disagreement on the magnitude and/or sign of precipitation
change, as well as the magnitude of warming (Trenberth et al.,
2014). Additionally, there have been several studies that compare
drought projections obtained using various drought indices, and
show that the choice of methods to calculate drought characteris-
tics can also introduce uncertainties in drought projections in the
future periods (Dai, 2011; Keyantash and Dracup, 2002; Mo,
2008; Sheffield and Wood, 2007).

In addition to the publically-available global climate model
archives, it is also possible to use climate variables (precipitation
and temperature) as input to a hydrologic model, in order to refine
the simulation of the response of the hydrologic cycle to increasing
greenhouse forcing (e.g., Ashfaq et al. (2010, 2013) and van
Huijgevoort et al. (2014)). However, this approach requires well-
calibrated hydrologic models, as well as high-resolution climate
land surface data. Given data and computational constraints, such
studies have been confined to selected regions of interest where
such models and data exist (e.g., the United States (Oubeidillah
et al., 2014), Sweden (Andréasson et al., 2004) and Turkey
(Fujihara et al., 2008)).

The sensitivity of drought assessments to physical factors such
as natural variability and the interaction of multiple climate vari-
ables, and technical factors such as data availability and the defini-
tion of drought itself, motivates systematic investigation of the
response of the spatial and temporal drought characteristics to
increasing greenhouse gas concentrations (Wuebbles et al.,
2013). Our study attempts to add to the current understanding
by systematically analyzing four commonly-used drought indices
using simulations from 15 GCMs available in the CMIP5 multi-
model archive. We use both single- and multiple-variable indices,
which allows us to separate the effects of different variables on
drought. We also assess the time of emergence of statistically
robust change in each drought index, which allows us to quantita-
tively evaluate the emergence of changes beyond the background
variability. In addition, we compare the sign of change of each
index across the multi-model ensemble, which allows us to quan-
tify the level of model agreement for each index. Finally, we assess
the uncertainty in the magnitude of change in each index, which
allows us to understand the range of changes that are plausible
over the course of the 21st century.
2. Methods

2.1. Data

We use monthly precipitation (P), temperature (T) and surface
runoff (R) data from 15 Global Climate Models (GCMs) that are part
of the CMIP5 data archive (Taylor et al., 2012), which were the
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GCMs that had archived the necessary variables at the time of the
design of our study. Following the Intergovernmental Panel on Cli-
mate Change Regional Climate Atlas (IPCC, 2013), we select the
first ensemble member (r1i1p1) from each of the selected GCMs.
We use bilinear interpolation, described in Wang et al. (2006), to
regrid all variables from their original spatial resolution, ranging
from 0.3� to 3.75� latitude and longitude (Table 1), to a common
resolution of 1� horizontal grid spacing. This method is used in sev-
eral multi-model studies in order to calculate uncertainty in the
spatial response across an ensemble of different climate models
(e.g., Burke et al. (2006), Chadwick et al. (2013), Hawkins and
Sutton (2009) and Seth et al. (2013)). Given that the GCMs all have
interactive land components, we rely on the output of each GCM,
and do not explicitly ‘‘remodel’’ any of the variables in our study.
For example, we depend on the land components of the individual
models to take into account soil properties, topography and other
relevant characteristics to simulate the surface runoff at a given
grid point.

We use 45 years of the CMIP5 historical simulations, which are
run until 2005, as the baseline period (1961–2005). We compare
the climate of this baseline period with the Representative Concen-
tration Pathway 8.5 (RCP8.5) simulations. In order to compare peri-
ods of equal length, we subdivide 2010–2099 into two 45-year
periods (2010–2054 and 2055–2099) for the analysis. Although
differences between the different pathways (RCP 2.6, 4.5, 6.0 and
8.5) are small in the next few decades, RCP8.5 is the highest emis-
sions pathway of the four, with radiative forcing reaching 8.5 W/
m2 by the end of the 21st century, and global warming ranging
from 3.9 to 6.1 �C (Rogelj et al., 2012).
Table 1
GCMs used for drought analysis with their original resolution in degrees latitude by degr
March and June 2012.

Modeling group

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau o
Canadian Centre for Climate Modelling and Analysis (CCCMA)
University of Miami—RSMAS
Centre National de Recherches Météorologiques/Centre Européen de Recherche et Fo

Avancée en Calcul Scientifique (CNRM–CERFACS)
Commonwealth Scientific and Industrial Research Organization in collaboration with

Climate Change Centre of Excellence (CSIRO–QCCCE)
NOAA Geophysical Fluid Dynamics Laboratory (GFDL)
NOAA Geophysical Fluid Dynamics Laboratory (GFDL)
NASA Goddard Institute for Space Studies (GISS)
Met Office Hadley Centre (MOHC)
Institute for Numerical Mathematics (INM)
Institut Pierre-Simon Laplace (IPSL)
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institu

Studies, and Japan Agency for Marine-Earth Science and Technology (MIROC)
Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) (MPIM)
Meteorological Research Institute (MRI)
Norwegian Climate Centre (NCC)

a GCM not used for SRI.
b Resolution is approximate and varies for different latitudes.

Table 2
Drought indices used, the variables used in their calculation and the method in which the

Drought index Variable Dist

SPI (McKee et al., 1993) P Gam
or gSRI (Shukla and Wood, 2008) R

SPEI (Vicente-Serrano et al., 2010) P-PETb Log–
SDDI (Rind et al., 1990) P-PETb Non

a AIC used for distribution selection, KS and CM tests used for goodness-of-fit tests.
b PET calculated using the Thornthwaite method (Thornthwaite, 1948).
2.2. Drought Indices

Although a multitude of drought indices exist (Dai, 2011), we
select a subset of four indices to evaluate different types of
drought: the Standardized Precipitation Index (SPI) (McKee
et al., 1993), the Standard Runoff Index (SRI) (Shukla and Wood,
2008), the Standardized Precipitation–Evapotranspiration Index
(SPEI) (Vicente-Serrano et al., 2010) and the Supply–Demand
Drought Index (SDDI) (Table 2; Rind et al., 1990). As noted in
Table 1, SRI is not calculated for CNRM-CM5 and HadGEM2-CC,
since the monthly surface runoff data were not available at the
time of analysis. For each GCM, the parameters that are required
to calculate each drought index are derived using the 1961–2005
baseline simulation data at each grid point. The fitted parameters
are then utilized to calculate the projected drought indices in the
2010–2099 period. We analyze each index at various lengths (l) of
interest (e.g., 3-month) by using running averages of the variable
used in that index. Though Shukla and Wood (2008), Vicente-
Serrano et al. (2010) and Rind et al. (1990) use the accumulated
variable to calculate SRI, SPEI and SDDI (respectively), we find
that there is little to no difference between the averaged and
accumulated variable in the resulting standardized drought index.
(See Fig. S1, which shows the lack of difference between using the
accumulated and averaged precipitation when calculating the SPI
using the ACCESS1.0 model and Fig. S2, which shows differences
between using the accumulated and averaged precipitation when
calculating SPI the for all the 15 GCMs.) We therefore use the l-
month averaged variable for all indices for consistency in our
analysis.
ees longitude before regridding to the common 1� resolution. Downloaded between

GCM Original resolution

f Meteorology (BOM), Australia ACCESS1.0 1.25 � 1.875
CanESM2 2.77b � 2.8125
CCSM4 0.94b � 1.25

rmation CNRM-CM5a 1.40b � 1.40625

Queensland CSIRO-Mk3.6.0 1.86b � 1.875

GFDL-ESM2G 2.02b � 2.5
GFDL-ESM2M 2.02b � 2.5
GISS-E2-R 2.0 � 2.5
HadGEM2-CCa 0.34b � 1
INM-CM4 1.5b � 1
IPSL-CM5A-LR 1.89b � 3.75

te for Environmental MIROC5 1.40b � 1.40625

MPI-ESM-LR 1.86b � 1.875
MRI-CGCM3 1.12b � 1.125
NorESM1-M 1.89b � 2.5

timeseries of the variables are standardized.

ribution(s) fitted Standardization

ma, 2-parameter lognormal
eneralized extreme valuea CDF standardized to Gaussian values
logistic

e Standardized using the standard
deviation and the mean
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SPI is designed to identify precipitation deficit (for meteorologic
drought), while SRI is designed to identify runoff deficit (for
hydrologic drought). Although the two indices focus on different
variables, their statistical concepts are similar. Based on a length
(l) of interest (e.g., 3-month), these two approaches first identify
a suitable probability distribution that may fit to the running
averages of a variable during the baseline period. The probability
distribution is then used to convert the variable into cumulative
probability values and then to the standardized Gaussian values
as the drought indices (Table 2). These two indices thereby provide
a distribution-free, probability-based drought measure that can be
compared across different locations and climates.

In this study, we fit and test three distributions, including log-
normal (LN2), gamma (G2) and generalized extreme value (GEV)
to identify suitable parameters for the 3-month, 6-month and
12-month SPI and SRI (Table 2). To remove seasonality, we use
the sample stratification technique (Guttman, 1998). For each grid
point and each GCM, we use the Akaike information criterion (AIC)
to select an appropriate distribution that has the minimum AIC
value. We do this to accommodate the variations in the distribu-
tions of precipitation and runoff in different geographical locations,
and in different GCMs. For precipitation, the G2 distribution is
found suitable in about two-thirds of the grid points across all
GCMs, while for runoff both G2 and LN2 distributions fit equally
well (Table 3). GEV is suitable in only 5% of the grid points for pre-
cipitation and 17% of the grid points for runoff (Table 3).

We test the goodness-of-fit for the chosen distributions in all
the GCMs and indices at the 5% significance level using the Kol-
mogorov–Smirnov (KS) and the Cramér–von Mises (CM) tests
(see Rao and Hamed (2000) and Laio (2004) for mathematical
details). We found that, on average across all GCMs, 96% of the
selected SPI distributions pass either the KS or CM test. However,
due to the presence of extended zero values and multiple peaks
often seen in GCM-simulated runoff, only 66% of the selected SRI
distributions pass the KS or CM tests. The test statistics for selected
SRI distributions cannot be effectively improved by using other
parametric probability distributions. While the empirically-based,
non-parametric approaches (e.g., kernel density estimation) could
be used, we opt to use parametric distributions because the non-
parametric approach is weaker for the estimation of tail
distribution (i.e., for the identification of extreme droughts). Once
the distribution is chosen and the parameters are calculated, the
l-month averaged precipitation and runoff can be converted to
Table 3
Percentage of grid points that use Lognormal, Gamma, and GEV distributions for
fitting 6 month averaged precipitation and runoff data for the calculation of SPI and
SRI respectively for each GCM. All values are in percent (%).

Lognormal Gamma GEV

SPI SRI SPI SRI SPI SRI

ACCESS1.0 26.5 29.2 70.0 64.6 3.5 6.1
CanESM2 29.5 49.9 67.6 16.1 2.9 34.0
CCSM4 29.7 58.8 66.8 35.2 3.5 6.0
CNRM-CM5a 31.0 – 66.5 – 2.5 –
CSIRO-Mk3.6.0 25.7 26.7 70.6 44.8 3.7 28.5
GFDL-ESM2G 21.6 48.7 73.3 41.7 5.2 9.6
GFDL-ESM2M 20.2 46.4 73.2 43.4 6.6 10.2
GISS-E2-R 36.1 29.3 58.7 66.2 5.3 4.5
HadGEM2-CCa 30.6 – 65.1 – 4.4 –
INM-CM4 26.4 48.9 68.5 39.4 5.1 11.7
IPSL-CM5A-LR 28.3 21.9 66.8 33.5 4.9 44.6
MIROC5 31.7 27.0 64.4 59.3 4.0 13.7
MPI-ESM-LR 16.3 53.4 78.6 40.2 5.1 6.4
MRI-CGCM3 31.4 45.7 66.3 13.9 2.3 40.4
NorESM1-M 27.3 53.3 68.5 40.5 4.2 6.2
Average 27.5 41.5 68.3 41.5 4.2 17.1

a GCM not used for SRI.
the cumulative probability values and then to the standardized
Gaussian values, where zero indicates the median precipitation
and surface runoff, negative values indicate dry conditions, and
positive values indicate wet conditions (McKee et al., 1993;
Shukla and Wood, 2008).

In addition to SPI (precipitation) and SRI (surface runoff), we also
evaluate future drought status using SPEI and SDDI (precipitation
minus potential evapotranspiration (PET), described in Section
2.2.1). Since PET represents the maximum evapotranspiration that
may occur (mainly driven by temperature), the value of (P–PET) will
be conceptually close to the effective precipitation value that con-
siders the potential loss of precipitation due to temperature change.
As a result, the (P–PET) based SPEI and SDDI can provide the inter-
mediate drought measures between the processes from SPI to SRI,
and can be used as surrogates to infer agricultural drought.

The stratified sampling technique is also applied to (P–PET) to
remove seasonality when calculating SPEI and SDDI. To calculate
SPEI, we first calculate the monthly time series of (P–PET) at each
grid point with different l-month averaging periods. The log–logis-
tic distribution (LL2) is then fitted to (P–PET) and standardized in
the same way as SPI and SRI (Vicente-Serrano et al., 2010) (Table 2).
To calculate the SDDI, we use the standard deviations and means of
the anomalies of (P–PET) in the baseline period to standardize the
time series of (P–PET) of l-month averaging periods over the base-
line and future periods (Table 2; Rind et al., 1990).

Zi;j;m ¼
ðP � PETÞi;j;m � lj;m

rj;m
ð1Þ

In Eq. (1), Zi,j,m is the standardized (P–PET) at year i, grid point j and
month m, lj,m and rj,m are the mean value and standard deviation of
(P–PET) at month m and grid point j, respectively. Once a time series
of Z is achieved, the current SDDI is calculated by adding a fraction
of the previous month’s SDDI value to the Z current value (Rind
et al., 1990).

SDDIn;j ¼ 0:897 � SDDIn�1;j þ Zn;j ð2Þ

In Eq. (2), SDDIn,J is the SDDI value at time step n and grid point j,
and SDDI0,J = Z0,j. Similar to the other indices, negative values of
SDDI indicate dry conditions and positive values indicate wet
conditions.

2.2.1. Potential evapotranspiration
We estimate the monthly potential evapotranspiration (PET) at

each grid point using the Thornthwaite equations (Thornthwaite,
1948), where

PET ¼ 16
L

12

� �
N
30

� �
10T

I

� �a

; ð3Þ

i ¼ T
5

� �1:514

ð4Þ

a ¼ ð6:75� 10�7ÞI3 � ð7:71� 10�5ÞI2 þ ð1:792� 10�2ÞI þ 0:49239

ð5Þ

In Eqs. (3)–(5), PET is in mm/month, T is the average daily temper-
ature of the month in degrees Celsius, N is the number of days in
that month, L is the average day length of that month in hours, I
is a heat index equaling to the sum of 12 monthly index values of
i (Eq. (4)), and a is an empirically derived exponent that is a function
of I.

Although there are other alternative methods to estimate PET,
such as the Penman and Penman–Monteith equations, we select
the Thornthwaite method because it relies solely on the average
temperature and length of day of each month. Although the
Thornthwaite method may be over simplified compared with other
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approaches, it has been shown that the choice of methods in the
calculation of PET does not critically influence the outcome of
drought projections (Burke et al., 2006).

2.3. Definition of drought

We analyze five levels of drought severity based on US Drought
Monitor classifications (Svoboda et al., 2002): D0 (abnormally dry,
20–30% percentile), D1 (moderate drought, 10–20%), D2 (severe
drought, 5–10%), D3 (extreme drought, 2–5%) and D4 (exceptional
drought, <2%). For each grid point in each GCM, we find the thresh-
olds corresponding to each level of drought based on the percentile
of the 1961–2005 baseline period. For example, to find the D4
drought threshold for the SPI for a grid point (e.g., 39.5 N,
120.5 W) over Western North America in the ACCESS1.0 GCM, we
find the 2nd percentile of the SPI time series in the ACCESS1.0
baseline simulation (e.g., �2.1). This value is then considered to
be the D4 threshold for that grid point in the ACCESS1.0 GCM.
Any month in either the baseline period or future sub-periods that
the SPI for that grid point falls below this threshold (i.e., SPI < �2.1)
is considered to be a D4 drought month. Similarly, we apply this
method for all drought levels in each drought index and each GCM.

Although we assess the characteristics of the 3-month, 6-month
and 12-month drought for all indices and all levels of drought (D0–
D4), we focus our results and discussion on the characteristics of
the 6-month ‘‘exceptional’’ (D4) drought, including differences
among the various climate models and drought indices.

2.4. Drought characteristics

We investigate the characteristics of drought in each index and
at each level of drought severity. For a given level of drought sever-
ity, we define (1) a drought event as a continuous period of time
when the drought index in each month is below that level, (2)
the duration of drought as the length of a drought event in months,
(3) the occurrence of drought as the total number of drought events
in the entire study period (i.e., baseline or future), and (4) the spa-
tial extent of drought as the percentage of grid points in which the
drought index falls below the given drought level each month. We
quantify the drought characteristics over the regions defined by
Giorgi and Bi (2005). In order to account for differences in actual
grid sizes, we calculate the area-weighted regional mean using
the cosine of latitude.

We calculate the difference in drought characteristics between
the baseline and 21st century periods. In addition, to understand
the robustness of the change in the spatial extent of drought in
the future, we find the decade of emergence in which the change
permanently exceeds the baseline variability. More specifically,
we calculate the year at which the changes in spatial extent for
each region permanently exceeds two standard deviations of the
anomalies of the spatial extent of that region during the baseline
period (e.g., Diffenbaugh et al. (2011)). We calculate this time of
emergence for each GCM for each region, and define the decade
of emergence for that region as the decade in which the median
time of emergence of the GCMs occurs, although the time of emer-
gence for certain models may fall outside the decade of emergence.
3. Results and discussion

3.1. Changes in 21st century precipitation and temperature

Since the drought indices that we use are highly dependent on
temperature and precipitation, we first evaluate the response of
mean precipitation and temperature in the 21st century of
RCP8.5. Fig. 1 shows simulations from the 15 GCMs we use in this
study (Table 1). These simulations show a mean increase in tem-
perature of 1.8 �C for 2010–2054 and 4.2 �C for 2055–2099. Higher
temperatures (usually associated with greater rates of evapotrans-
piration) are expected to lead to higher levels of frequency of
drought. However, there is also an increase in mean precipitation
over land (2% in 2010–2054 and 6% in 2055–2099), which could
reduce some of the impact of increasing temperature. Given the
interwoven and nonlinear relationships among precipitation, tem-
perature and other hydro-meteorological variables in different
regions, it is imperative to examine the overall drought status
using multiple indices that span different phases of the hydrologic
cycle.

3.2. Changes in 21st century drought characteristics

3.2.1. Spatial extent of drought
Fig. 2 shows the 21st century time series of projected change of

D4 6-month spatial extent for all indices in the 26 regions. Since
the severity levels are derived using the baseline model simula-
tions, the D4 spatial extent in the baseline period is approximately
2%. In all regions, the SPEI and SDDI show the largest changes in
spatial extent, especially in the tropical and subtropical regions
during the 21st century period. For instance, South Asia (SAS)
and Central Asia (CAS) exhibit an increase of approximately 50%
in the SPEI spatial extent and 80% in the SDDI spatial extent by
the end of 21st century, but show little changes in SPI and SRI spa-
tial extent. On the other hand, extra-tropical regions such as Wes-
tern North America (WNA) and Central North America (CNA) show
more moderate increase in the SPEI and SDDI (<30% and <60%
respectively) spatial extent, and some increase (>10%) in the SRI
frequency by the end of 21st century. However, nearly all regions
show no noticeable changes in the SPI spatial extent of drought,
with the exception of the Mediterranean (MED), Southern South
America (SSA), and Central America (CAM), where increases of
<10% are exhibited by the end of 21st century.

To test the statistical robustness of the simulated changes of
spatial extent, we also calculate the decade of emergence. Given
that the model simulations are restricted to the 21st century, we
follow Diffenbaugh et al. (2011) and Diffenbaugh and Scherer
(2011) in only considering emergence prior to 2080 to be perma-
nent. The SDDI spatial extent of drought shows a median decade
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of emergence prior to 2080 for 15 subtropical and tropical regions,
with the Sahara (SAH), East Africa (EAF) and West Africa (WAF)
showing median emergence in the 2020s (Fig. 2). The SPEI spatial
extent of drought shows a median decade of emergence for nine
regions, with the earliest decade of emergence occurring in the
2040s in WAF. On the other hand, there are no regions with
changes in spatial extent that permanently exceed two standard
deviations of the baseline variability of SPI and SRI during the
21st century of RCP8.5.

3.2.2. Occurrence of drought events
Fig. 3 shows the spatial pattern of changes in the occurrences of

6-month D4 drought episodes in the early (2010–2054) and late
(2055–2099) 21st century periods. Additionally, we have quanti-
fied the agreement among the GCMs in the projections to address
the uncertainty in the multi-model projections. In general, the SPI
shows the least agreement and the SPEI shows the most agreement
among the GCMs. The SPI shows greater agreement among the
models over CAM, Amazon (AMZ), South Africa (SAF) and MED,
all of which exhibit greater occurrences of the D4 drought episodes
in the late 21st century period. Similarly, the SRI and SPEI show lar-
ger changes and greater agreement among models in the late 21st
century period (Fig. 3b, d and f). In contrast, the SDDI shows
changes occurring in different regions for each of the two future
periods (Fig. 3g and h). For example, AMZ shows increases of
approximately 10 SDDI drought occurrences in the 45 years of
the early 21st century period, but no changes in the later period.
Comparatively, CAS shows increases of approximately 10 SDDI
drought occurrences in the 45 years of the early 21st century per-
iod, but decreases of approximately 3 occurrences in the later per-
iod (Fig. 3g and h). It is important to note that these decreases in
occurrence do not necessarily imply fewer total months of drought,
as the drought events could be longer in duration and therefore
show fewer separate occurrences during the 45-year period (see
Section 3.2.3 below).

Our analysis shows that even if a region exhibits strong
agreement in the sign of change among the GCMs, there could
still be a discrepancy in the magnitude of this change, unveiling
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Fig. 3. Change of 6-month D4 drought occurrence in the early future period (2010–2054) and late future period (2055–2099) relative to the baseline period (1961–2005),
using (a, b) SPI, (c, d) SRI, (e, f) SPEI and (g, h) SDDI. The color shows the GCM ensemble mean. Areas with no stippling indicate where 90% or more of the GCMs agree on the
sign of change, the white stippling shows where at least two-thirds of the GCMs agree on the sign of change and the grey lines show where less than two-thirds of the GCMs
agree on the sign of change.
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the uncertainty among the GCMs. For example, the SPEI and
SDDI show strong agreement (among at least two-thirds of
GCMs) in the sign of change of D4 6-month drought occurrences
over Western and Central North America in the late 21st century
period (Fig. 3f and h). However, the spread in the magnitude of
the changes is large (Fig. 4g and h). The CNA region shows a
change in SDDI occurrence ranging from an increase of 3 to 13
events in 45 years and a change in SPEI occurrence ranging from
a decrease of 10 events to an increase of 40 events in 45 years.
On the other hand, other regions, including Central South Amer-
ica (CSA) and SSA, show strong agreement in the sign of change
in SPEI and SDDI occurrence in the late 21st century period
(Fig. 3f and h), and also exhibit a relatively small spread in the
magnitude of change (Fig. 4g and h). Although there are differ-
ences in the inter-model spread for the change in occurrences
between the two 21st century periods, the spread tends to be
greater over most regions for the later period.

3.2.3. Duration of drought events
Fig. 5 shows the spatial pattern of changes in the duration of D4

drought episodes in the 2010–2054 and 2055–2099 periods of
RCP8.5. The mean duration of 6-month D4 drought events is still
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relatively low in the 2010–2054 period (Fig. 5a, c, e and g), with the
exception of SDDI, which shows long-lasting drought events in
SAH and AMZ (Fig. 5g). The 2055–2099 period shows much longer
SPEI and SDDI drought durations (Fig. 5f and h), where SAH and
AMZ have SDDI and SPEI drought events longer than 10 and
3 years, respectively. These large increases in the duration of SDDI
episodes help to explain the decreases in drought occurrence over
these regions (Section 3.2.2), as large increases in duration tend to
reduce number of individual occurrences, particularly for very long
duration events. In contrast, the higher latitudes tend to show rel-
atively little change in drought duration, even in the 2055–2099
period. Changes in drought characteristics in these higher latitude
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regions can therefore be explained predominantly by changes in
drought occurrence.

Fig. 6 captures the relationship between the ensemble-median
changes in drought duration and occurrence for the 26 regions.
In most of the regions, there is an increase in both the occurrence
and duration of drought. Exceptions include the SAH and WAF
regions in the 2055–2099 period, where the SDDI duration of
drought increases by more than 500 and 420 months respectively,
but the occurrence of drought decreases (Fig. 6h). These large
increases in the SDDI duration of drought can also be inferred from
the spatial extent of drought in SAH and WAF (Fig. 2). In these
regions, the SDDI spatial extent increases and remains high, with
>80% of the regions being under D4 drought throughout the
2055–2099 period. The large extent of D4 drought can be
explained by the large increases in global temperature (Fig. 1) in
the 2055–2099 period in RCP8.5, (which range spatially from
2 �C to 11 �C (IPCC, 2013)). which in turn explain the decreases in
the deficit (P–PET). In addition, the non-parametric standardization
of the deficit used in the calculation of the SDDI allows the SDDI to
decrease continuously and rapidly throughout the 21st century,
resulting in large increases in the duration of SDDI drought.

In contrast, several areas, including Eastern North America
(ENA), Greenland (GRL), Alaska (ALA) and North Asia (NAS) regions
show decreases, albeit small, in both the occurrences and duration
of SPI drought events in the 2050–2099 period (Fig. 6b). In the
same period, there is also a minimal decrease in occurrences and
duration of SRI events in Southeast Asia (SEA) (Fig. 6d). Moreover,
in 2010–2054, the changes in the occurrence of SPEI and SDDI are
large, while the changes in duration are small for most regions
(Fig. 6e and g). On the other hand, the 2055–2099 period shows
large increases in both the occurrence and duration of SPEI and
SDDI (Fig. 6f and h). The 2010–2054 period shows similar changes
in SPI and SRI duration and occurrence among the regions, while
the 2055–2099 period shows regions where the SPI and SRI
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duration and occurrence are more responsive to the RCP 8.5 forcing
(Fig. 6a–d), with the MED, AMZ, CAM and SSA being examples of
this stronger response.

3.3. Multi-index and multi-model assessments

Our analysis shows that many regions exhibit increases in the
spatial extent, duration and occurrence of drought in the 21st cen-
tury of the RCP8.5 pathway. However, by using multiple GCMs and
multiple indices we also highlight the uncertainty of the responses
of the drought characteristics.

The smallest increases occur in the SPI spatial extent and dura-
tion of drought (Figs. 2 and 5), even in locations where all other
indices show relatively large increases. However, there are some
noticeable increases in occurrence (Fig. 3). Areas where SPI occur-
rence increases tend to correspond to decreases in the annual pre-
cipitation in RCP8.5 (Diffenbaugh and Field, 2013), suggesting that
decreases in annual precipitation over the 21st century could lead
to greater SPI drought occurrence, but not necessarily greater spa-
tial extent or duration.

Alternatively, stronger increases in the spatial extent, duration
and occurrence are seen in SPEI and SDDI, along with greater
agreement on the sign of change among the GCMs. Although these
indices take both precipitation and temperature into account, it is
clear that they are highly responsive to the temperature changes
that occur in RCP8.5 (Fig. 1), with the largest increases in SPEI
and SDDI drought occurrence, duration and spatial extent co-
occurring with the largest increases in annual temperature (i.e.,
over North and West Africa and the Mediterranean and Amazon
regions) (Diffenbaugh and Field, 2013). The effect of these changes
in temperature is therefore amplified in the SDDI and SPEI, which
use temperature as the sole, non-stationary variable, as defined in
the Thornthwaite equation for PET. However, we note that when
Cook et al. (2014) use the Penman–Monteith method for PET, they
also find that PET is the main contributor to large decreases in the
average SPEI index in 2080–2099 in RCP8.5 over most of the globe.
Therefore, irrespective of PET method choice, large increases in
drought are projected in the 21st century when using a deficit var-
iable (P–PET).

We note a number of important caveats to our analyses. The
changes in SRI drought characteristics in this study reflect the
changes in surface runoff and not the total runoff, as originally
studied by Shukla and Wood (2008). We can better represent
drought characteristics by using the total runoff, which responds
to changes in climate variables at longer time scales, rather than
using surface runoff, which responds to changes at shorter, more
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instantaneous timescales. Therefore, the absence of sub-surface
runoff in our analysis could potentially enhance the spread among
the GCMs’ simulated responses and cause low agreement among
the GCMs as seen in Figs. 3 and 4.

We also note that our study does not include a soil moisture
index, which could alter the range of responses of the drought
characteristics. Orlowsky and Seneviratne (2013) use the soil mois-
ture anomaly to quantify drought in the CMIP5 ensemble. Similar
to our study, they find large increases in drought frequency in
many regions, although the soil-moisture-based changes are smal-
ler in magnitude than the changes we identify using the SPEI and
SDDI.

In addition, because our drought severity categories (D0–D4)
are defined relative to the baseline variability, biases in the
simulated variability could influence the results. For example,
insufficient variability in the baseline period could enhance the
simulated increase in drought occurrence resulting from a given
simulated temperature trend, and show an earlier decade of
emergence.

Finally, it is important to emphasize that even in regions where
there is strong agreement on the sign of the change in occurrences
of drought events (Fig. 3), there are still large discrepancies in the
magnitude of these changes among the GCMs. This result expands
on previous drought studies that also find large uncertainties
among GCMs when projecting drought into the 21st century using
either the CMIP3 or the CMIP5 ensemble (Dai, 2012; Orlowsky and
Seneviratne, 2013; Sheffield and Wood, 2007). In addition, uncer-
tainty arising from internal variability and emissions pathway
(Hawkins and Sutton, 2009) could potentially create further uncer-
tainty in the drought indices. In fact, Orlowsky and Seneviratne
(2013) find that although internal variability can be the main
source of uncertainty in SPI drought projections, the spread among
the GCMs can overwhelm both scenario uncertainty and internal
variability in shaping uncertainty in soil moisture anomaly projec-
tions for the late 21st century. However, although the GCM uncer-
tainties, in our study and others, can be large and variable among
indices and regions, we extend the analysis by showing the
strength of agreement (or disagreement) of the GCMs on the sign
of change in the occurrence of drought in the 21st century (Fig. 3).
4. Conclusions

We find that spatial extent, occurrence and duration of ‘‘excep-
tional’’ (D4) drought increase in subtropical and tropical regions in
all four drought indices in the 21st century of the RCP8.5 pathway.
Additionally, the increases in SPEI and SDDI drought extend into
the higher latitudes, including Southern South America, South
Africa and Southern Australia in the southern hemisphere, and
Northeastern Europe and Central North America in the northern
hemisphere. In addition, we find high agreement in the sign of
the change over many areas of the globe, including emergence of
changes in the frequency of drought that permanently exceed
two standard deviations of the baseline variability in multiple
regions.

Our results have important implications for near- and long-
term climate risk management. Given that the risk of impacts on
human and natural systems results from the intersection of hazard,
exposure and vulnerability (Oppenheimer et al., 2014), increases in
the likelihood of drought hazards implies increasing risk for
drought-sensitive systems. For regions to manage these drought
risks, both local and inter-regional water management policies will
likely have to be modified and adapted in the coming decades, as
existing water management practices are unlikely to be able to
reduce negative impacts of drought on water supply reliability
and aquatic systems (Kundzewicz et al., 2008). In addition, global
mitigation of greenhouse gas emissions could prevent or postpone
the permanent emergence of increasing drought frequency,
thereby reducing the risks for humans and ecosystems.
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