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A b s t r a c t - - R e c e n t l y  in [1], Briane announced a new homogenization method for certain non- 
periodic materials in which the H-limit of a highly oscillatory but nonperiodic matrix A ~ is obtained 
by comparing to a locally-periodic matrix B ~ in domains whose size a(e) --* 0 as e --* 0 but slower 
than e. The H-limit of B ~ is a function of every point in the material, and so theoretically, in order 
to homogenize A E, the solution to the usual periodic cell problem must be obtained for every point 
in the material. Computationally this is not feasible, so we approximate the homogenization method 
by keeping a fixed. We show that this approximation is O((~) by proving that the difference of two 
nearby cell solutions (within a cube of side length a) is (P(a) in the Hi-norm. This result requires 
that we show a uniform bound exists for the gradients of the periodic cell solutions in L p. We then 
apply our approximate homogenization theory to the analysis of certain defects in fiber-reinforced 
composites. In particular, we show that when unexpected local spreading of the fibers occurs in a 
small region of the material, constituent stress concentrations of nearly three can arise. 

Keywords- -Homogeniza t ion ,  Nonperiodic, Numerical approximation, Composite material, Pseu- 
dodifferential operators. 

1. I N T R O D U C T I O N  

1.1.  O b j e c t i v e  

We wish to ob ta in  es t imates  for the numerical  approx imat ion  to Br iane ' s  novel homogeniza t ion  

approach of cer ta in  nonper iodic  mater ia ls  (see [1]), and  show how this  approach can be used to 

s t udy  par t icu lar  defects in fibrous composites.  Mathemat ica l ly  of interest ,  is the  asympto t i c  

behavior  of the  sequence of equat ions  

u e e Hol(D), 

- d i v  [A~Vu ~] -- f ,  f e g - l ( ~ ) ,  (1) 

where for each e > 0, A ~ is a highly-oscil latory bu t  nonperiodic uniformly-el l ipt ic  mat r ix -va lued  

func t ion  on ~ ,  an  open bounded  set in R N wi th  sufficiently smooth  boundary .  

In  par t icular ,  we consider the  nonper iodic  mater ia l  s tudied by Briane in [1] which is defined 

as follows: A e is equal  to the cons tan t  ma t r ix  A 1 in a nonper iodic  d i s t r ibu t ion  of spherical  

balls of radius  e and  to a cons tan t  mat r ix  A 2 outside these inclusions;  the balls are centered at  

the po in ts  0(ke), k E Z N, where ~ is a C2-diffeomorphism of R N such tha t  8 -1  is l-Lipschitz 

con t inuous  wi th  0 < l < 1. 
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1.2. H-Convergence 

The standard homogenization procedure for equation (1) with general coefficient matrices is 
the method of H-convergence developed by Murat-Tartar (see [2-5]). The idea is to find the limit 
point A ° in the topology of H-convergence. This means that  

u ~ ---" u °, in Ho 1 (12) weakly, 
(2) 

A 6 V u  e --~ A°Vu °, in L2(~) weakly, 

where u ° in H~(gt) solves -d iv[A°Vu °] = f ,  for any f • H - l ( f l ) ,  and we denote this by A e H A0" 
By Rellich's theorem, it is immediate that  u e --~ u ° in L2(~) strongly, but in order to obtain 

L 2 tf~ RN2~ strong convergence of Vu e, a corrector function Q~ • loc~ , j must be introduced so that  
(see [5]) 

V u  ~ - Q e V u °  --* O, in L~o~(~ ) strongly. 

Although H-convergence holds for a general class of matrix-valued functions, it is not generally 
possible to obtain an explicit form for the H-limit. However, when A e = A ( x / e )  is Y-periodic 
for some parallelepiped Y in R N, an explicit form for the corrector does exist and can be traced 
back to the work of Keller and Babuska (see [6,7]). It is defined by Qe~ = Vt~, where t,~ = 
71" x -- ~ w n ( z / e  ) and 

- - 1  
W~ • Hper(Y), (3) 

div [A(y)Vwn]  = div[A(yfi/] in Y. 

Then, when A e H A0 ' the H-limit A ° can be obtained as 

A ° ~ l -  m ( Y )  [A(y)~-  A ( y ) V w n ( y ) ]  dy, • R N. (4) 

The following standard result which can be found in [8] or [9] allows us to take advantage of 
the explicit form of (4), for a certain class of nonperiodic functions A ~. 

THEOREM 1. L e t  A ~ and B e be sequences  o f  un i formly  bounded and coercive mat r i x -va lued  

func t ions  on f~ and let B e H Bo" Then,  i r A  e - B ~ -* 0 in L I ( ~ ) ,  we have  tha t  A e H BO" 

1.3. Comparison with Locally-Periodic Functions 

In order to use the comparison Theorem 1 to obtain the H-limit of the nonperiodic matrix A e 
defined above, A ~ is compared to periodic matrices in domains for which the size is larger than e, 
but still converges to zero with ~. This is accomplished in three steps. 

1. Cons t ruc t  the associated periodic func t ion .  Let B ( x ,  ( x / e ) )  be defined such that  for 
each x • ~ ,  B ( z ,  .) is Yx-periodic, Yx = T x ( Y ) ,  Y = [0, 1] N, and Tx = V O ( O - l ( x ) ) .  

Then, since O is C 2, Tx is continuous, and Yx forms a continuous family of parallelepipeds 
on ~.  From this, it follows that  B e C(~,  L~oc(RN)). 

2. Cons t ruc t  a part i t ion covering f o r  ~ .  Let l°a(e)ln(a(e)) be a collection of interior disjoint t ~ r t  J n = l  

cubes of side length ~(e) covering f~, such that  e /a(e)  --* 0 as e --. O. 
3. Cons t ruc t  a locally-periodic func t ion .  Define 

Be(x) = 
nCaCe)) 

n = l  

where for each n E {1 , . . . ,  n(a(e))}, x~ is some arbitrary point in ~n a(e) N ~. 
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This locally-periodic function B e satisfies the hypothesis in Theorem 1 [1, Proposition 5.2], and 
so to obtain the homogenization of the nonperiodic matrix A e, it is enough to obtain the H-limit 
of B ~. The primary result in [1] is the following theorem. 

THEOREM 2. Let a(e) be a function such that a(e) --* 0 and E r n / O t ( e )  m + l  ~ 0 for some m E N. 
Let {Y~}=e~ be a continuous family of parallelepipeds, and let B be the uniformly-elliptic matrix- 
valued function defined in Step 1. Then the H-limit of the locally-periodic function B e defined 
in Step 3 is equal to the H-limit  B ° o rB(x ,  (x/e))  defined by 

= dy, (5) 

= is the Yx-periodic solution to where for each x E f~, w n 

= - - 1  y .  
w n e gpe~(=) ,  (6) 

W x div [B(x, y)V n] = div[B(x, y)~] in Y=, fl • R g.  

1 . 4 .  N u m e r i c a l  I m p l e m e n t a t i o n  

In numerically implementing this homogenization scheme, we cannot actually wait for a(¢) to 
get to zero, for this would entail solving the unit cell problem (6) at each point x of ~; instead, 
we keep a > 0 finite and define the locally-periodic matrix 

n(a) 
( x )  ( a X) l .~ (x) ,  

B = " 

r t ,~ l  

B defined in Step 1, 

m 

x n E f~n A fl, (7) 

Moreover, let u °, u °a e H i solve -d iv[B°Vu °] = f ,  -div[B°aVu°a] = f .  Then there exists 
C' > 0 such that 

Ilu °a  - ) < 

The proof of this theorem relies on the regularity of the Yz-periodic cell solutions w~ E Hlp~ r (Y,) 
satisfying (6). It is a fairly simple exercise to show that  w~ is locally weakly continuous in the 

= in 1 N Hlloc(RN)-norm, i.e., w *° ~ w n Hio~(R ) as x0 -~ x. It is somewhat more interesting to 
directly compare two nearby solutions w~ ~ and w~ 2 (e.g., if [Xl - x2[ < a) by pulling-back 
equation (6) to the common periodic lattice configuration Z N. To do so, we consider our family 
of diffeomorphisms T~ parameterized by points in ~.  With T~ being the pullback, we analyze 
the equations 

E 1  
T~w~ e Hper(Y ), 

divv [ T : ' T * B ( x , y ) T : l t V T *  w~(y)] = div v [T: IT*B(x , y )~]  , E R  N, 

II B ° a  - 

and indeed, it is the H-limit B oa of Ba(x ,  (x/e))  that  we can actually compute. A fairly standard 
locality argument can be used to show that  B Oa -~ B ° a.e. in ~ as a -~ 0. In fact, for each 

> 0, the matrix Ba(x ,  .) is Yx~-periodic for each x E ~ ,  and thus H-converges to the con- 
stant matrix B°(x~)  by the classical periodic homogenization result. The local character of the 
H-convergence then gives that  B oa x-~n(a) B~xa~l . = ?---n=l t ~) ~ . ,  and due to the continuity of x ~-~ B ( x , y )  
and T=, the result is obtained. 

Our interest is in the following theorem. 

THEOREM 3. There exists C > 0 such that for each a > O, 
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for each x E G. By showing that  the cell solutions are uniformly bounded in the WplgrV-norm for 
some p > 2, we can obtain the estimate 

* X l  * 3~2 - -  IIT;,w,7 - T;,w,7 HH$.,(y) < Cu [Xl -- X21' 

With this estimate, Theorem 3 easily follows. 

o < c ,  < o0, (8) 

1.5. Appl icat ion to Defect ive  Fibrous Composi tes  

It is often the case that  man-made materials such as composites, which are designed to be 
periodic, have defective regions, wherein the microstructure sharply diverges from its anticipated 
periodic state. In composites consisting of fiber-reinforced materials, these defects may develop 
during the manufacturing process and can take the form of local fiber clumping or its antithesis, 
local fiber spreading, causing stress concentrations to arise and consequently early failure of the 
material. Such defects usually occur in very small regions of the material, for example, the 
unexpected fiber-spreading may occur in a region whose size is of the order of four or five fiber 
diameters. 

By constructing the appropriate diffeomorphism ~, we show, using our approximate theory 
of nonperiodic homogenization, that  although the global stress deviates (in this small defective 
region) by only 20% from its value in the uniform portion of the material, the constituent stress 
can increase by as much as a factor of three. Thus, we are not merely able to capture the 
large fluctuations in stress, but also to estimate the errors made by using the classical periodic 
homogenization scheme for defects which are so slight as to escape visual inspection. 

1.6. Outline 

In Section 2, we define our notation, and prove Theorem 3. In Section 3, we obtain an estimate 
which is necessary for the the proof of Theorem 3, and show that  the periodic solutions to the cell 
equations have gradients which are uniformly bounded in L p. The method of proof requires some 
well known local estimates for elliptic pseudodifferential operators, and relies on a decomposition 
of the operator developed by Meyers in [10]. Finally, in Section 4, we give an application of this 
theory to the analysis of certain defects in fibrous composite materials. 

2. A P P R O X I M A T E  N O N P E R I O D I C  H O M O G E N I Z A T I O N  

2.1. N o t a t i o n  

We denote N-dimensional Euclidean space by ~ N  and n-tuples of integers by Z N, and use I " [ 
to denote the standard Euclidean norm when operating on vectors in ~ N  or  when operating on 
matrices in R N2. If G c R N, then C°°(G) denotes the vector space of all real-valued infinitely 
continuously differentiable functions in G. Then C~°(G) is the subspace of G consisting of those 
functions which vanish on the boundary of G. Similarly, C~er(R N) is the subspace of Coo(R N) 
consisting of periodic functions. 

For 1 g p < oc, we denote by LP(G) the equivalence class of functions or vector fields in ~N 
or matrices in ~ N 2  which are measurable and have finite I1" HL~-norm, where 

/• / 1/p ess sup 
IIfHL~(n) : If[ p dx and IIfHL:¢(~) = x E GIf(x) l .  

Then L~oc(R N) is the set of functions which are in LP(K) for all compact subsets K in R N. As 
usual, the Sobolev space WI,p(G) is the completion of Coo(gt) in the It " IIw,,~(n)-norm, where 

P -- f P  Hf[[w1,,,(n) -- H [iLp(n) + [[Vfll~(n)- 
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Similarly, the space WI~rP(R N) consisting of Y-periodic functions is the completion of C~°~ 
(RN)-functions which are Y-periodic in the I] • [[w~.T(RN)-norm. We specify the periodicity by 

writing Wlp~P(Y) for W~Pr(RN). Since on a bounded domain L p C L 2 for p > 2, we can also con- 
sider the subspace of WID~P(Y), for example, consisting of periodic functions whose integral over Y 

vanishes; we shall denote this class by wI 'P(Y) .  Since every closed subspace of W 1,p containing 

only the 0 rigid displacement satisfies a Poincare-type inequality, we have that  if f • w l . p ( y ) ,  

then [If[Iw~.T(RN) = [[Vf[IL~,~(RN)" We note that  the above also applies to W~ 'p. When p = 2, 

we shall write H 1 for W 1'2. 

We shall denote the characteristic function on some subset E of R g by 1E, where 1E(X) ---- 1 
if X • E and 1E(X) ---- 0, if x • E ~. The ball of radius r in ~N centered at x will be denoted 
by B(x , r ) .  By l[" [[op, we shall mean the operator norm, and we will use (.)o to indicate the 
adjoint of (.). 

DEFINITION 4. Let 0 < A < f~ and let f~ be a bounded open subset of ]I~ g with sufficiently 
smooth boundary. We denote by M(A,/3;i2) the bounded subset of L°°(~,]R g2) consisting of 
matrix-valued functions A satisfying 

vC • R N ~Xlffl 2 ~ A(x)(. ( and  ItAIIL~(~) ~/~. 

Before proceeding, let us make a remark on the measurability of functions of the type B(x ,  
(x/e)) .  The  condition B • L2(ft x Y) is not sufficient to ensure measurability of B(x ,  (x/e));  
however, if we require B • C(12, L2(y) ) ,  for example, then this is equivalent to imposing a 
Caratheodory type condition on B and this is sufficient to ensure measurability. 

2 .2 .  E s t i m a t e s  for  t h e  A p p r o x i m a t e  H - L i m i t  

DEFINITION 5. Let Y = [0, 1] N, and for each x E ~ ,  let Tx be a Cl-diffeomorphism on R N and 

define 
Y~ = Tz(Y) .  (9) 

Then {Yx}xe-fi is a continuous family of  parallelepipeds in ~N,  in the sense that the vectors 
spanning each parallelepiped form continuous vector fields. Then for each x E f~, define T* to be 
the pullback. Then if  f : Yx --* R d, we have that 

T~ f = f o Tz. 

For notational convenience, we will often write Bx in place of B(x ,  .). 

DEFINITION 6. Let Bx be a matrix such that for each x c f~ and 1 _< p < ec, there exists a 
bounded constant FB > 0 depending on p so that 

Bx E M (A, 13; ]RN) , Yx-periodic, 
* B T* _ (10) [IT;, x, - x2Bx:[]L~.,(y) < F p ] X l -  x2[, 

i.e., Bz  o Tx is Lipschitz continuous in the LPer(Y)-norm. 

We will need the following lemma which gives us a uniform bound on the gradients of the 
solutions w~ to (11) in the L~er(Yx)-norm. This technical result is established in Section 3. 

LEMMA 7. For each x E i2, let Bz  satisfy (10) and let w~ be the Yx-periodic solution of 

- d i v  [BxVw~] = - d i v  [Sxr]], 77 e R N. (11) 

Then there exists some p(N)  > 2 and some H~ > 0 such that 

HW~Hw~f(y~) <_ H v. (12) 
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We shall use the notation la[ to mean v/Na.  

THEOREM 8. For each x E ~, let Bz satisfy (10) and w~ be the Yx-periodic solution of (11). 
Then for all x E f~ ,  there exists some bounded constant Cn(n ) > 0 such that 

, x~, 
T;~w n - T;w~ H~..(Y) <- C, lal. (13) 

PROOF. Let us denote Htper(Y ) as simply W(Y),  and let us define for each x E ~q the linear 
operator L= mapping W(Y)  into its dual W(Y) '  by 

= div  [ r : l  

Using Definition 5 and letting the vector b~ = T~Bz~], we may rewrite (11) as 

Txw ~ E W(Y),  

Lx (T* w~) = divy [%-1b~]. (14) 

Let f E W(Y)' .  Then from (14), we have that  [(w~ oT~ - wn ~ o T ~ , f ) ]  is bounded by 

a.x~ u1? ,,f> + ((Lxl -Lxl) ~(Tx, bw) .f)]. (15) 

As a consequence of (I0) and the fact that for each x E ~2, Tx and TZ I are both C I, we have the 

following estimates: 

-1 x: Jgla[, (16) T[lb~ - T ~  b n <_ 
n npper(y) 

T~lb~T[ 't - T -'hx~q~-lt[[ < Ng[a[, (17) 

for some bounded positive constants J~ and N~ depending on p and ~]. 
The first term in (15) is estimated using (16) and is bounded by 

J~lalA -lllyllW(v)'. (18) 

The second term requires some algebraic manipulation. We express T [  1 - T~ '  as T Z I ( T ~  - 
Tx)T~ 1 and use the properties of the adjoint operator and the Cauchy-Schwartz lemma to bound 
this term by 

--10 <T-'bX:#u-It-x, ~? ~x, Tx'b~Tx 't) ~ (w~: oTx,),,L~er(y) Lx, f w(Y)," (19) 

Lemma 7 gives us the existence of some P0 > 2 and H n > 0 such that  

V ~ w , "  L,..(Y.~ < Hn" (20) 1%~"1 "° .o ) - 

Then, if p = (1/2)p0, then p > 1 and so its conjugate q > 1, so using Holder's inequality, the 
term in (19) is bounded by 

rP-'Kx'~rr'-lt - -  T-lb=T - ' t  [ wZ~ " 
L ; d  o ,  IT'=I ~'= "" "~= " " ~ L~.,eY) " wmo(v.=)'" IlYllw(v)'. (21) 

Then, using (17) and (20) and the fact that  for each x E f~, B~ E M(A, ~; RN), (21) is bounded 
by 

[A- 'H .  IT.=[ Ngqlal] IlYllw(Y),, (22) 
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and so by combining this with (18) and taking the supremum over all f in the unit ball of W(Y) ' ,  
we have the result (13). II 

DEFINITION 9. For each a > 0, let 1°aln(a)  be a finite set of interior disjoint cubes of side [ ~ n J n = l  
length a such that  each cube is a translate of (0, a] N and whose union covers ~, and let x~ be 
an arbi t rary  element of fl~ N ft. 

DEFINITION 10. For a > O, let Ba(x, (x/e)) be defined by 

~(~) 

( X n ~ -~  X n B~ ' e B ~ ln~(x),  ~ e fl~ A fL (23) 
r/,=l 

Let B~(x, (x/e)) H_H Bo a and B(x, (x/e)) n BO" Then there exists C > 0 such 

(24) 

Then there exists 

(25) 

THEOREM 11. 
that for each a > O, 

liB °~ - B°IIL~(n) _< lalC. 

Moreover, let u °, u °a E H i solve - d i v [ B ° V u  °] = f ,  -d iv[B°~Vu°a]  = f .  
C' > 0 such that 

II - u°llHo,(   _< I IC'- 

P R O O F .  We wish to bound 

~ S~V~x~ ~ey~ (Y~x) B~xV~x~<  , (26) 

where for each x, w ~ is the vector field on R N whose components w~ are the Yx-periodic solutions 
of (11) with rl = ek. With (9), we may rewrite (26) as 

By Definition 5, T ;  1 is C 1 so the fundamental theorem of calculus combined with the mean value 
theorem gives us some K > 0 such that  

T~ -1 - Tff~ x <_ lalK, Vx ~ fl~. (28)  

Then,  since B satisfies conditions (10), we may apply the Cauchy-Schwarz lemma and use The- 
orem 8 together with (28) to bound (27) by 

lalC~, Vx E f ~ ,  (29) 

where Cn is some positive bounded constant depending on n E { 1 , . . . ,  n(a)}.  
By using (10) again, together with the triangle inequality, we may also conclude tha t  

1 /Yx B.~ekdyx~ < lal13F1, m ~ )  ~ Bxekdyz m ( Y ~ )  ~ v x e ~ .  (3o) 

By noting how B ° is defined in (5), we need only take the maximum of (29) over the set 
{ 1 , . . . ,  n(a)}  and combine this with (30) to obtain the estimate (24). 

Let us now prove (25). For each a >_ 0, let us define the operator G~ E E(H0X(f~), H - l ( f l ) )  by 

G,~u °c' = - d i v  [B°aVu °a] = f ,  f E H- l ( f~)  (B ° = B °°, u ° = u°°) .  
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By the coercivity of B oa for a > 0, it is clear that  

Ilao-lllop 
for some e > 0 independent of f .  Next, choose g • H-a(f~) with [IgllH-,(~) = 1. Then 

l( ua -- uO'g)l  = I(( G°t-1 -- ~0-1)  f,g)[ = l( Go-1 (G~ - G o ) a a  - l f , g ) l  
= ((.0o _ . o )  

-< H B°" - B°HLOO(n)[[a,~ - l s l l . a ( , )  ao-l°g -o'(O) 

_< d HB °" - B°[JL~(~)Ilflln~(n)llgllH-'(n), 

(31) 

where we have used (31) for the last inequality, and the fact that  on a bounded domain [[fl[H-1(n) 

< [[fHL2(fD. But [[u" - U[[H~ ° = suPllgllH_l(n)= x [(U" -- U,g)[, SO with C 1 = C2[[f[[L2(ft), 

II - c1 II - (32) 

Combining (32) with (24) gives us the estimate (25). 

2.3. A N o n p e r i o d i c  D i s t r i b u t i o n  o f  S p h e r e s  

We wish to homogenize a problem of potentials in a composite material which possesses a 
nonperiodic microstructure. In particular, we wish to consider a system of spherical balls of 
radius e embedded in a homogeneous material whose centers are not periodically distributed, 
but, nevertheless, are the image of a periodic lattice under a mapping t?. 

Let us consider a bounded open Lipschitz domain ~ in R g .  We study the behavior of 

u e e H~ (fl), 
(33) 

- d i v [ A e V u  e] = f ,  f • g - l ( g t ) ,  

as e --~ 0, where A ~ E M(a,/3; ~) is a rapidly oscillating nonperiodic matrix taking the values A 1 
in the spheres and A 2 in the matrix. As in [1], we let 0 be a C 2 diffeomorphism of R N with 0 -1 
admitting a Lipschitz constant l / l ,  l > 1; namely, for all Xl,X2 in 

1 
[0-I (Xl) -- 0-1 (X2)[ --<~ T IXl - x21. (3a) 

This requirement states that  0 "spreads-out" the material. In other words, we ensure that  our 
spherical ball of fixed diameter z can be strictly contained in each parallelepiped Yx- Hence, our 
nonperiodic system of spherical balls is defined by 

( e )  zN" (35) O(je) + B 0,-~ , V i E  

Let 9t] = [~ jezN O(je)+ B(O, ¢/2)] N f~ and tim = fl/gt~. Then the nonperiodic matrix A ~ of (33) 
is defined by 

Ae(x) = A 1 ln;  (x) + A21n~ (x). (36) 

In order to obtain a homogenization for (33), we form a one-parameter family of periodic 
matrices. Namely, for each point x in i2, we associate a periodic matrix, whose fundamental 
period is the parallelepiped spanned by the push-forward of the standard orthonormal frame 
at 0-1(x) .  Thus, for each x E ~,  we have a periodic system of spherical balls that  is defined by 

- V 0 ( 0 - 1 ( x ) ) e j + B  x , ~  , Y j e  (37) 
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Hence, with ~ , ~  = [~jeZN VO(O--:(X))gj + B(x,e/2)]  N ~ and ~m,~ = f~/l~,,=, we define our 
pointwise periodic matrix B~(x) = B(x ,  (x/e))  by 

B ( x , y )  = A:lnk , (Y ) + A21~, . .(y), (as) 

where for each z, the matrix B(x ,  y) is VO(O-:(x))(Y)-periodic.  Let 

T x ..~ VO ( O - I ( x ) )  . (39)  

If we now wish to use the periodic matrix B to form a locally periodic approximation B a as 
in Definition 10, then in order to apply Theorem 11, we must show that  Bx o T= is Lipschitz 
continuous in the LPer(Y)-norm. 

THEOREM 12. Let 12~ be an arbitrary partitioning cube and let us fix some arbitrary point 
x n E 12~. Let Bx be defined by (38). Then for 1 <_ p < oc, there exists a bounded constant 
Fp > 0 such that for a11 x E f ~ ,  

liB(=, .) o T= - B (x~, .) o Tx~ -< I~IF~. (40) 

In the following proof, whenever coordinates are used, they are with respect to the standard 
orthonormal frame in R g.  

PROOF. Let x be an arbitrary point in 12n ~ and let "r be the center of Y. Since T,  is linear for all 
x E ~,  Tx'r is the center of Yx- Let us show that  T~ -1 maps spheres centered at T~7 into ellipsoids 
which fit inside Y. From our assumption (34) and with 0 being Gateaux differentiable, we have 
for each x c R N, 

lye ( e - - I ( x ) )  Zl -- V e  ( e - l ( = ) )  z= I = lye (o-'(z)) (Z 1 --  Z2) I 

= lim 1 le ( e - : ( = )  + ~ (zl - z=)) - e ( o - l ( = ) ) l  
6--*0 

z.), = , , z . -  z., 

Hence, with (39) we see that  T~-: also admits a Lipschitz constant 1/l and so the length of 
the major axis of T g : ( B ( T x %  1)) is less than 1. Thus we can define B(x,  .) by the Y~-periodic 
extension of 

(A 1 - A 2) 1B(T~%I) q- A 2 1 y .  

Then it follows that  Bx o T~ is the Y-periodic extension of 

(A I - A 2) ITgIB(T.y,I) + A21y, 

so tha t  

/y IBx o Tx -- Bx~ o Tx~] dy <_ ~ /y ll.y+T;-iB(O,1) - l.t+T-IB(O,1) dy. (41) 

Without loss of generality, let us consider 7 -- 0 and use polar coordinates to integrate (41). Let 
dr/be the measure on aB(0, I) defined by 

&7 = s i n N - 2  r l N - 1  s i n N - 3  ~N-2*" "sin ~72 d~: d?/2" "" , 

and ~ a point on 0B(0,  1) corresponding to the N - 1 angles ~i. Then by the polar decomposition 
theorem, for each x, Tg :  = PxRz,  where Rx is a unitary matrix. Hence, by the continuity o f T / : ,  
with Q~ defined by 

Qx t = R x R ~ ,  V x  E f~,~, 
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Qx is continuous as a function from R N to R N2 and 

-1 : kTZ177, E on T i Q=~/ k R,V~ OB(0,1). (42) 

Then there is a constant CN depending on N so that  

/y ITZ,B(0,1)- IT=~1B(0,1) [ dy <_CN ~S(0,1)[T~-IQ=~[N- T~I~]N &?" (43) 

Let 
1 

1 IT;1Q, wl + T ~ I ,  and qz ~ ]IT;1Q,,I- T; 1, [ (44) p ~  = ~ = . 

Then Px _> qx -> 0 and 

[T;IQ~'TI N T ~  1" N[ (Px + qx) N (Px -- qx) N < ( 2N 1 + N) N-I  (45) - = - _ - p ~  q ~ ,  

where the inequality was furnished by using binomial expansions. Let us estimate qx. By (42), 
we can write qx as 

1 TZ1Qx~ _ T~II~? q:: = -~ 

1 --<2 ( (Tx-1- T~I) r/ +[[r~l l[°pl (Qz-I )~?[)  " 

By the inverse function theorem, 0 -1 is also a C 2 diffeomorphism and 

[ r e  (0-1(x))]-1 = v0_ l (x )  ' Vx • an  a. 

So, by the fundamental theorem of calculus 

T~-lij - T ~ l i j  _< lalC%, v x  • ~ ,  

where 

C'--= f 0 2 8 ~ - 1  
'~ Jo Oxjox~ (x~" + t (x - ~,~))2 . k=l 

Let 7 / =  R = ~ .  Then [(Q~ - I)y[ = [(Rtx - t , R~g)~[ and so we can again estimate 

RLj - n ~ j  < lafC'%, Vx e ~7,, 

where by setting z = 0-1(x), we get 

/1 N 0 ]1/2 
C"..  = I V  "OR~ ( e - * ( x g + t ( x - x T , ) ) )  2 I v e - l ( x ~ , + t ( x - x g ) ) l  dt. 

Then we have that  

so that  by (43) and (45) and with f (x ,  ~l) = (ITS-1Q=~/[-F [T~I~I[)N-I([C'~[ + [[T~-I [[op[C"~?'l), we 
have that  

1 
/y  IT~-IB(O,1) -- IT~IB(O,1)I dY ~-- "4CN (2N -- I"i- N) 'O4 ~B(O,1) f(x'rl)d~" 
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But  since 0 is a C 2 diffeomorphism, f ( x ,  .) • LP(OB(O, 1)), 1 _< p < 00, and since ~ is compact, 
g(71) = maxxeh--~, f ( x ,  71) exists. Consequently, for all x • f~n a, and 1 _< p < oo 

1 
IIBx o Tx - Bx~ o T ~  [IL~er(y ) < -~CN (2 n -- 1 + N)]o4flllgllLp(OB(O,1) ) (46) 

so that  with Fp = (1/4)CN(2 n -- 1 + N)llgllLP(OB(O,1))fl , we have proven the lemma. | 

A remark is now in order. Due to the lack of uniformity in the nonperiodic geometry, our locally 
periodic matrix B~'(x,  ( x / e ) )  as defined in Definition 10 does not satisfy the hypothesis of the 
comparison Theorem 1. In fact, as we have mentioned, the novelty of Briane's homogenization 
scheme requires forming the locally periodic matrix B e as defined in Step 3 of Section 1.3, where 
a is a function of ¢ such that  $rn/ot(e) m+l -'-+ 0 for some m • N. Nevertheless, Theorem 2 

guarantees that  B e H B0 ' and we have shown that  the H-limit B oa is within O(la[) of B °. In 

particular, we have the following corollary. 

COROLLARY 13. Let  A e • M(A, fl; f~) H-converge  to A °. Then 

liB °~ A ° 

for some  bounded  C > 0 independent  of a. 

3. A U N I F O R M / _ 2  B O U N D  
F O R  T H E  P E R I O D I C  CELL S O L U T I O N S  

3.1. D i s c u s s i o n  and  Further  N o t a t i o n  

Let us consider the equation 

L u  - - d i v [ A ( x ) V u ]  = - d i v f ( x )  in Y, u is Y-periodic, (47) 

where Y is an arbitrary parallelepiped which is the fundamental period of periodic I~ N. We 
assume that  A is a Y-periodic measurable function in M(,X, fl; IRN). Then by the standard theory 
for p = 2, we immediately obtain the estimates 

]luilwi,2(y) < A-111fllL2(y ) and llL-111op _< A -I. (48) 

In order to obtain such estimates when p > 2, an algebraic decomposition of the weak form 
of (47) is made which relates the ellipticity of the coefficient matrix A with the regularity of the 
Laplacian operator A. It turns out that  getting an estimate of the form (48) when p > 2 reduces 
to the analysis of the equation 

- A v  = - d i v f ,  f E L p (TN) ,  (49) 

and in particular, to the determination of when the solution v belongs to  WI,p(~r N) and satisfies 

IIVlIw',,(TN) KIIflIL.(TN) (50) 

for some K independent of f and some p which depends on the dimension N of the torus. 
The study of the gradients of the solutions to equations of the form (47) in the spaces L p, 

p > 2 was made by Meyers in [10] in Euclidean space R N for the Dirichlet boundary value 
problem; therein, problem had the necessity of estimates of the form (50) is established (for R N 
instead of TN). Nevertheless, such estimates are only assumed as part of the hypothesis of the 
main theorem and not explicitly proven for any particular scenario. In [5], a similar analysis 
is performed for the Dirichlet problem in R g.  A bound for the operator norm of the inverse 
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Laplacian is calculated using a Reisz-Thorin-type interpolation (this is equivalent to finding the 
constant K in (50)). By virtue of that  method, in order to find a bound for a particular value 
of p > 2, it is assumed that  such a bound is known for some arbitrarily large Po > P. 

We prove the estimate (50) on the torus T N, by constructing a parametrix for A. Namely, we 
find the inverse of the Laplacian modulo a smoothing operator. This allows us to give an explicit 
pointwise representation for the solution v and consequently obtain the estimate 

][VI]L~(TN) <_ K']IfIILP(TN) (51) 

for some p > 2 and some constant K ~ > 0 independent of f .  We then use certain local results from 
the theory of pseudodifferentiai operators to get (50). We note that  our construction of v clearly 
indicates the dependence of p on the dimension N. This then gives us a bound in WI,P(T N) of 
the solutions u of (47) in the usual way. 

With this result, we show that  the periodic solutions to the cell problem in homogenization 
theory have gradients which are uniformly bounded i n / 2 .  In particular, if Y - [0, 1] N and w~ 
is the Y-periodic solution of 

-d iv  [B(y)Vw~(y)] -= - d i v  [ST], 

where B E M(*A, f];]~ N) is Y-periodic, and 7/E R N, then there exists some p(N) > 2 and some 
bounded constant Hv such that  

Ilwullw~;f(y) < g v. (52) 

We will denote by C~(f~) the subspace of ~ consisting of those functions which are supported 
on some compact set K C 12. Also, we designate by s(RN),  the Schwartz space of real-valued 
C °O functions on R g which have rapid decay. For the remainder of this paper, we shall use q to 
indicate the conjugate exponent of p, i.e., p-1 + q-1 __ 1. 

3.2. A WI'P(T N) U n i f o r m  B o u n d  

In order to prove our first result, we will need some well-known results from the theory of 
pseudodifferential operators. We begin by defining a symbol. 

DEFINITION 14. A function a belongs to S m and is of order m / f a ( x ,  ~) • Coo(R 2~v) and satisfies 
the differential inequalities 

< ca,~(1 + I 1) m-I'll, v, ,Z • 

We associate with each symbol a, the pseudodifferential operator T~ defined by 

(Taf) (x) = ~ N  a(x, ~)](()e ~iz'~ d~, v f e s (R"), (53) 

where 

/(~) = ~ N  f(x)e21rix'~ d~ 

is the Fourier transform of f on R g.  Next, we define symbolic calculus on pseudodifferential 
operators. 

LEMMA 15. Let a E S m and b E Sm'. Then there exists c E S m+m' such that  

and 

Tc = Ta o Tb 

(27ri)-Ia) O~aO~b E S m+m'-N, V N > O. (54) c -  ~ '  ~! 
lal<N 
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This in turn implies that  if we let a E S 2 be the characteristic polynomial of the Laplacian 
defined on some open subset f~ of R N, and if c(x, ~) is some arbitrary symbol in Sm' supported 
for x in a compact subset of ~, then there exists b E S m'-2 so that  

TbT~ + Te = T~, (55) 

where e E S -°° - MmS m. Thus, with Tc E S °, Tb is the inverse of the Laplacian modulo the 
infinitely smoothing operator Te (see [11]). Another result that  we shall need is the following 
lemma (see [12]). 

LEMMA 16. Let Tb be the pseudodifferential operator associated to b E Sm. Then Tb is a bounded 
mapping from Wk'p(R N) to Wk-m'P(R N) for arbitrary real k and m, whenever 1 < p < oo. 

We note tha t  this theorem extends (53) from functions in S(RN). We can now prove our result. 

THEOREM 17. Whenever f E LP(T N) and v c WI'P(~ N) satisfies 

- A v  = - d i v f ,  (56) 

then v verifies the estimate 

IlVIIw,,,,(.rN) <_ klIfIIL~,(TN ) (57) 

for some k independent of f and p > 2 depending on the dimension N of the torus. 

PROOF. We first construct a parametrix for the Laplacian on the N-dimensional torus T N. Let 
us define 

d(x,y)  = distance from x to y on T N, 

and a cutoff function ¢ E C ~  (]R) with support on a compact set K such that  

(i) K : = - - ~ ,  

(ii) ¢------lon - 3 '  

( (iii) slope of ¢ does not change sign on 3 '  2 U . . . .  
2 '  

(58) 

Then, 

We define 

It is then easy to see that  

for small enough ¢ > 0, Vx¢l(~,~)u(_.+e,,_~ ) = 0. 

G ( x , y ) =  - ¢ ( d ( x , y ) )  
4~d(x ,y )  " 

A ~ G ( x , y ) = 5 ( x  - y) - r (x ,y) ,  

(59) 

(60) 

(61) 

where 
r(x, y) = - A x ¢ ( d ( x ,  y)) _ Vx¢(d(x,  y))Vx d(x, y) 

47r d(x, y) 4~ d(x, y)2 

The function r(x ,y )  is smooth in (x,y) by (59). Let us write (61) in operator form. We then 
have 

AG = I + R, (62) 

where 

G:(x) = f~,, c(x,y):(y)~y, and R:(x)= f~N T(x,y)/(y)~y. 
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Let us define the operator L -- A - P,  where P is the orthogonal projection onto N ( A )  (null 
space of the Laplacian), i.e., 

) P f ( x )  - m ( T  N) N f ( x )  dx • 1. 

Then, since L -1 : L2(T N) --* L2($ N) is a bounded operator and IIL-1Hop _< 1, we have that  

LG = ( A -  P)G = I + R -  PG. But 

( P G  f ) (x )  = [m ( T N ) - l  ~ N  G(z, y) dy) dz] " l = cP f , 

where the constant c is independent of y, i.e., c = fT N G(z, y) dy, so that  LG = I + R - cP. Let 
us write L -1 in the form G + S. Then, L -1 - G + S if and only if 

I = L ( G + S ) = I + R - c P + L S  or L S = c P - R .  

Therefore S = L - I [ c P  - R], but L - 1 P  = P so that  S = cP - L-1R.  It is easy to see by Fourier 
series arguments that  the kernel of S, s(x, y) = c - L ~  lr(x, y) is smooth. Hence, S is a smoothing 
operator.  

We can now consider (56). Since v _1_ 1, we can write this equation as 

- L v  = - d i v f .  

Then v = - L - l ( d i v f )  = - ( G  + S)divf .  Integrating by parts and noting that  the boundary 
terms vanish on the torus, we can represent the solution as 

v = v ( a +  S) .  f .  

Since the kernels of G and S are smooth, there is no problem in bringing the differentiation under 
the integral sign so that  

v(x) = fvN Vy(G(x,  y) - s(x, y)) f (y)  dy. (63) 

By switching to polar coordinates, one can check that  Vy(G - s) E Lq(']r N) for all q < N/2  so 
that  for all such q by Holder's inequality, we have that  

I I V I I L P ( T N )  ___~ sup IlVu(G(x,. ) - 8(X, .))IILq(TN)II fIILP(TN ) = CI I I fHL . (TN ). (64) 
x 

It  would be nice at this point if we could use (63) to get an estimate of the type (64) for Vv; 
however, problems of interest generally are in three-dimensional space and when N = 3, we cannot 
differentiate again under the integral sign, as we lose the bound in L q. We can, nevertheless, take 
a different approach to bound v in WI'p(TN). 

Let ~ he an open subset of R N and let us choose cutoff functions ¢1 and ¢2 in C ~  (~) such that  
¢2 -= 1 on supp(¢l) .  Then if Av = F in R N and F is locally in W-I 'p(RN),  then (55) together 
with Lemma 16 imply that  for some bounded constant c > 0, 

IlCxvllw~,~,,) -< c [ll¢2fllw-~,~<~,) + 11¢2VlIL~(R,,)] • (65) 

We wish to use this result to analyze A on the torus T g.  (In this scenario, the principal symbol 
of A can be thought of as a nonzero C°°-section of the cotangent bundle T*TN.) Since T N is a 
compact manifold, we choose a locally finite covering by local charts (Oj, Xj) and a C °o parti t ion 
of unity {pj} subordinate to this covering, i.e., we require that  

(i) supp(pj) C Oj 
(ii))-'~j pj(p) = 1, Vp E T N, and V j  pj > O. 
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Then for each j ,  we choose ~bj e Cc~(Oj) such that  Cj = 1 on the supp(pj). For notational 
convenience, in each chart we write pjv o X;  1 as pjv. Let vj = pjv, so that  vj has compact 
support and 

[Nvj = p jF  + [/%, pj] (~bjv) , (66) 

where [-, .] is the commutator, whose symbol is congruent modulo a regularization to the Poisson 
bracket of the symbols of its arguments; hence, [A, pj] has a symbol of order 1 (1 less than the 
symbol of the Laplacian). Considering (66) and (65), there exists some bounded constant A > 0 
such that  

[l~J t lw, , . (~)  ~ _ [[[pjF + [A, PSI 
] < A (Xsv)IIw_,,.(R.)P + Nvs }[L.(RN)jV 

< A' [llpsFI p ] - Iw-,,.(RN) + IlxsVIIL.(~N)+ IlvsII~.(~N) , 

where the constant A I depends on the support of u s and the second inequality arises using 
Lemma 16 and the above mentioned properties of the commutator. Then by changing the constant 
and noting that  we can sum finitely, we have 

E Ilvsll~,,~(R~) --- g" E [IlpsFII~v-,,.(~N) + IlvjlI~.(RN)] • (67) 
s s 

By the triangle inequality, we have that  

Ilvllwl.~(T~) <_ ~ Ilvjllw~,~(RN), (68) 
J 

and if we replace F by divf  where f E LP(qFN), we see that  

IlpsFllw_,,.a~) = Ildiv (Psf) - [d iv ,  Psi fIIL,(~N) < IlpsfllL.(~N) + IIflIw-,,.(R~). (69) 

But by Holder's inequality Q~j P)I/p(~j plI/P 
IIPsflIL,(R~) <_ C Psf = C[IfIIL,(RN ). (70) LT'(~N)/ 

Hence, putting (70), (69), and (68) into (67) asserts that  there exists some bounded constant 
C9~ > 0 so that  

Ilullw,,~(r~) <- c2 [llfllL,(V") + I[UlIL~(TN)] - (71) 

Therefore, (71) together with (64) gives us (57). 

DEFINITION 18. Let us define the bilinear functional 

DA(U,¢) = f A ( z ) V u ( z ) V ¢ ( z )  dz. (72) 
Jv N 

The following lemma of the existence and boundedness of solutions of the type (47) on I~ N is 
well known and can be found in [10]. The result also holds on the torus. 

THEOREM 19. Consider the equation 

-div[A(x)Vu] = - d i v f  on ~N. (73) 

Then, if f E LP(T N) and 

(i) there exists A1 > 0 such that 

inf sup IVA(u,¢)[ ~ /~1 > 0 (74) 
II¢IIwI,,(TN)=I Iiullwa,~(rN)=l 

holds for A and A t, and 
(ii) there exists k > 0 such that Av = divf  has a solution in WI'P(qI "N) verifying 

Ilvllw,,,,(r~) < kIIfIIL.(TN), (75) 
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then 

and 

unique u • W I'p (V N) satisfying (73) 

Ilullw~,,~(TN) ~ CI[fIIL.(TN), 
for some bounded constant C > 0 independent of f .  

(76) 

(77) 

3.3. Appl i ca t ion  to  Cell  So lut ions  

THEOREM 20. For each x ~ 12, let B ~ satisfy (10) and let w~ be the Yx-periodic solution of  

- d i v  [B 'Vw~]  = - d i v  [ B ' , ] .  (78) 

Then there exists some p (N)  > 2 and some H v > 0 such that  

H,. (79) 

PROOF. Following Definition 18, we define 

D~(w~,  ¢) - - /y~  BXVw~VCdyx .  

Then,  since T N ~ ~N/7.N,  with a linear change of variables, Theorem 17 gives us a p > 2 which 
--1,p 

X W ~g 1,p depends on N such tha t  wn e Wper(Yx) satisfies -/kw,~ = div[B~y] in Y~ and II nHw~.,(Y,) -< 

kHBXrlIILg.~(y~) for some bounded k > 0 independent of B x and ~. Thus, by Theorem 19, it 
suffices to show tha t  there exists A1 > 0 so tha t  

inf sup [D~ ( ~ , ¢ ) 1  > ~ (80) 
W z  1 p ~ 1  [[4'[[w~,~(Y~)-=I 11 , ,  [[Wp;r(yZ) 

holds for both  B x and B xt, for we can set H n to be a constant bounding C[[BXvl[[Lg,r(yz) for the 
given p, where C is as in (77). 

In order to get the est imate (80), we will make the usual algebraic decomposition (see [5,10]). 

For each x E ~,  let 
B x = B~ + cI - B~ - cI, (81) 

where B~ = (1 /2)(B x + B :~t) and B~ -- (1/2)(B x - B xt) and for the t ime being, let c E R+ be 

arbitrary.  I t  is then easy to see that  

(), + c)1¢1 ~ < (B~ + cI) ¢.  ~ < (1~ + c)1¢1 ~ (82) 

and tha t  
IJB~ - cZlfop < (Z2 + c2)1/~ 

/ 

Then,  the norm of B~ - cI is small when compared to B~ + cI as c becomes large. In particular,  
let c 2 = minee~+ ((/32 + c2)/(A + c) 2) and define 0 by 

I - 0 - -  (f/2 ÷C2) 1/2 
A + c  m 

so tha t  1 - 0 < 1. Then we can write 

IIB~ - c,~Illop -< (1 - O) (A + cm).  (83) 
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Since 0 = (A + Cm) -1  for the Laplacian operator,  we see tha t  as 0(A + cm) --* 1, the more elliptic 
the matr ix  B x becomes. 

For each A E M(A,/3; R N) tha t  is Yx-periodic, let us define G~, to be the operator  in - d i v  

[AVw~] = - d i v [ B ~ ]  in Yx taking the vector field B~z/to w~, so tha t  G~ : nPer(Y~ ) ---, ~l,PWper(Yx)" 
We then have tha t  (see [10]) 

inf sup [D~ ( w , , ¢ ) l  ~ -~ = IIGAIIo, 
W ~ 1 p ~ 1  I1¢11w~2, o'~>=1 II ,llw~<~> 

(84) 

Let us rewrite (78) as w~ c Wlp~(Yx) satisfying 

D~ + D~Bl÷~x)-; + D~_~; (w~, ¢) = B%vCayx, V¢ e Wper (Y~), (85) 

where O~ is the bilinear form associated with the Laplacian, i.e., D~(w~, ¢) = fy~ Vw~ VCdy~. 
Therefore, with (82), (83), and (84), we satisfy the estimate (80), where 

Gx - 1 . ~ = tl ; Ilop - (1 - 0 (~ + cm)) (86) 

As discussed in [10], HG~]lop is a convex function o fp  which takes its minimum value of 1 at p = 2. 
Hence, we note that ,  if A1 is not positive with the particular choice of p tha t  we obtained from 
Theorem 17, then choose some p '  such tha t  2 < p~ < p and use tha t  p '  as the appropriate  Sobolev 
exponent  for the theorem. Since we can do the same for B zt, we are done. | 

4 .  A N A L Y S I S  O F  D E F E C T I V E  F I B R O U S  C O M P O S I T E S  

Let us consider a cross-section of a reinforced composite material,  designed to be periodic, but 
possessing a small defective region, wherein the fibers unexpectedly spread apar t  as in Figure 1. 

Figure 1. A portion of the square domain ~t with fiber-spreading defect, analyzed for 
the example problem. 

4 .1 .  C o n s t r u c t i o n  o f  0 

Let f~P be an open bounded connected subset of the first quadrant  of R 2, not containing the 
origin, and let 0 : ~-~P --~ ~'~, where f~ is the subset of R 2 occupied by the fiber-reinforced material  
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with defect. We must choose the diffeomorphism 8 such that  O(B(ej, e/2)),  j E Z 2, describes the 
geometry of the material. 

We examine the simplest case of axisymmetric spreading, and so we need only define a one- 
dimensional diffeomorphism along each radial direction. For more generality and other types of 
defects, see [13]. 

We label points in ~P by z and let 

r(z l , z  2) = ((zl)2-~ (Z2)2) 1/2 , (I)(z 1,z 2) = t a n  -1 ~y , 

and fix the branch [0, 27r). We then define our mapping by 

(zl,z 2) = (R (zl,z 2) cos (*  (zl,z2) ) ,R (z l , z  2) sin (*  (z',z2) ) ) , (87) 

where 
R(z l , z  2) = [(r (z l , z  2) + v + i 0 )  t a n h ( r  (z l , z  2) + i 0 ) ] ,  

and where v is y-intercept of the asymptote of u tanh(u) and i0 is the inflection point of the 
function (u + v) tanh(u) which we include in order to ensure the monotonicity of the derivative 
of 0 in the radial direction. Then, in the usual basis, 

[ c o s ( ~ ) ~ - ~  + R s i n ( q ) ) ~  c°s((~)dRZ2dr r Rsin((I))r~] 

dRz2 Rcos(q~)z~/,~_~j (88) 

where 

Since 

d_R_R = tanh (r + i0) + (r + v + i0) sech 2 (r + i0). (89) 
dr 

R dR 
det(VS) = r dr' 

it is clear that  V0 is nonsingular for each z E ~P, and that for our given branch, 8 -1 E C°°(~,  12P). 
See [13] for further discussion on this choice of diffeomorphism and its satisfaction of all the 
required conditions. 

4.2. An  Example  

Although for simplicity we developed our theory for conductivity, it is a trivial extension to 
elasticity. Also, although our global model problem examined Dirichlet boundary conditionsl we 
can also consider the Neumman or mixed problem with minor modifications. 

We let ~ be a square region whose side lengths are 400 times that  of the fiber diameter, and 
we position a single defective region in the center of ~ with 

diam(defective region) = 8. diam(fiber), 

and use the material properties found in Table 1. We note that  in order to visually display the 
fiber cross-sections in Figure 1, we have restricted the domain in the figure to a square whose 
side lengths are approximately 60 times that  of the fiber diameter. 

Table 1. Properties used for the fibrous composite. 

Properties Fiber Matrix 

E 60. .5 
v .22 .35 
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Using the symmet ry  of the problem, we discretize only a quarter  of the domain ft. We par- 
tit ion ft into n(a) squares ft~, and choose x n E ftn N ft, and use a Newton-Raphson scheme to 
compute  

" = 8 -1 (x~) Vn • { 1 , . . . , n ( a ) } ,  Z n 

and then solve n (a )  periodic cell problems 

iv= OXkmn x,~ oCjmn (y) iv~ x~ Sijkl  (x~, y) ~ ( n, Y) ~ dy = - Sijmn ( ,~, y) (y) dy, (90) 

--1 
for all Cjmn • Hper(Yx,~) using the finite element method. From the right-hand side of (90) and 
the assumed hyperelasticity of the material,  it is clear tha t  Xkmn is symmetric  in m and n. We 
need only solve three separate boundary value problems corresponding to the three symmetr ic  
pairings of m and n to obtain the six independent components of X. 

To solve our unit cell problems, we use finite elements of class C o satisfying the assumptions H1, 
H2, and H3 [14, p. 132] and rely on [14, Theorem 3.2.3] to obtain 

Xhmn -- Xkmn ~ 0 in ~1 per, 

where h Xkmn is the finite element solution of (90) corresponding to the discretization whose largest 
element is contained in a ball of diameter  h. For these calculations, h was no larger than  .001, 
and often much smaller for those period cells associated with global positions well inside the 
defective zone of the material.  

The global boundary value problem which we consider is the simplest for which an exact 
solution is known. Namely, we prescribe a unit traction on the portion of the boundary  0 n  
normal to the; xl-axis. We employ the finite element method to solve this global boundary  
value problem as well. The computat ional  domain is a square of side length 200 (using the 
quarter  symmetry) ,  so we choose a = .025, and thus, n (a )  -- 8000. Using h once again for the 
discretization size of the global domain and u h as the finite element solution to (6), we have tha t  

liu0 - u0nllHl(~) = O(h). Thus, to preserve the 0(.025) approximation of our homogenization 
scheme, we use a graded mesh with h <_ .001 and take h much smaller in the defective zone to 
accommodate  the small element size used in the finite element solutions of (90) for period cells 
associated to points in the defective zone. 

In the case of a material  occupying ft with a uniformly periodic microstructure,  it is well known 
tha t  the resulting global stress and strain fields are 

where D -- C -1. 

[ xl [i7 ro,il 
axu J L c~ j L Di~ J 

(91) 

However, the defect present in our material  causes strain and stress concentrations to arise. 
In particular,  Table 2 shows a strain concentration factor of 8, and a a global stress reduction 
of 20%. The following table lists the uniform, minimum, and maximum values of the global 
strains and stress. 

Table 2. Global strains and stresses for spreading defect. 

Global ~ and Y Minimum Maximum Uniform 

"~yy 

"~xy 

"~xx 

~yy 

~xy 

.15 
- . 5 4  

- - .1  

.80 
-0.07 
-0.10 

1.2 
0.0 
0.1 
1.2 
0.2 
0.0 

.15 
0.0 
0.0 
1. 
0.0 
0.0 
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Let us define 

"£ f (x )=  1 / y  e ( X , y ) d y , ~ m ( x ) _  l /y 
m ( Y  I ) m (Yx m ) ~m e( x '  y) dy '  

1 (92) 
= 5 (Tjz + 7 j), 

° ° 

7jl = ~ x t  + Oxk Oy~ 

where v I and  vm are the  local volume (area) fractions of the fiber and  mat r ix  cons t i tuents ,  

respectively, and  Yx / and  Yx'* are the subsets  of the period cell occupied by the  two const i tuents .  

Using (92), we may  define our  cell-averaged cons t i tuen t  stresses as 

 i(x) = = c w(x), 

where C f  and  Cm are the elast ici ty tensors of the fiber and the  matr ix ,  respectively. W i t h  this  

definit ion,  Table  3 shows t h a t  the  ma t r ix  stress ~m increases by almost  a factor of three in the  

defective region of the  material .  

Table 3. Matrix strains and stresses for spreading defect. 

Global gra and ~ n  Minimum Maximum Uniform 

w2** 

.47 
-0.58 
--0.18 

.30 
0.01 

,,~0 

1.3 
-0.1 

0.1 

.90 
0.4 
0.0 

.47 
--0.1 

0.0 
.38 

0.1 

O.0 
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