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Abstract

This paper deals with blow-up properties for a degenerate parabolic system with nonlinear localized sources subject to the
homogeneous Dirichlet boundary conditions. The main aim of this paper is to study the blow-up rate estimate and the uniform
blow-up profile of the blow-up solution. Our conclusions extend the results of [L.L. Du, Blow-up for a degenerate reaction—
diffusion system with nonlinear localized sources, J. Math. Anal. Appl. 324 (2006) 304-320]. At the end, the blow-up set and blow
up rate with respect to the radial variable is considered when the domain §2 is a ball.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the following degenerate parabolic system with nonlinear localized sources

u;=u“(Au+up(x,t)vq(xo,t)), (x,)e 2 x(0,T),

v = v (Av + 0" (x, D" (x0, 1)), (x,1) € 2 x (0,T), (W
ulx,t)=v(x,t)=0, (x,1) €082 x(0,T),

u(x,0) = up(x), v(x,0) =vo(x), xe,

where parameters ¢,n >0, p,m 20, o, 8 € (0,1), 2 C RY is a bounded domain with smooth boundary 92 and
X0 € £2 is a fixed point. The initial data ug, vg satisfies the following conditions:

(H1) ug, vo € C*+¥(£2) N C'(£2) for some @ € (0, 1), ug, vo > 0 in £2, and ug = vo =0, 30 < 0, 2% < 0 on 942,
where v is the unit outward normal vector on 052;
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(H2) Aug +ufvi (x0) =0, Avg + vf'uf)(x0) > 0in £2, and Aug = 0= Avg on 9£2;

(H3) Aug + ulvl (xo) > nu(l)/p+1_“, Av + vfug(xo) = nvé/0+l_’3, where positive constants p and 6 are given
in (2.1), and 7 is given in (2.2).

Set 07 =2 x (0,T), I'r =382 x (0, T) with0 < T < oo.

Theorem 1.1. Assume that (H1)-(H2) hold. Then the problem (1.1) has a unique positive classical solution (u,v) €
[CEF 120 % (0, T]) N C(82 x [0, T)]? for some &: 0 <& < 1, and u; > 0, v, > 0. Moreover, if T < 0o then

loc

Tim (Jlu (.0 o + [v¢. D] ) = o0.

Proof. Under the condition (H1), by the standard perturbation methods of [2, Theorem 2.5] for the single equation
with a localized source and [17, Theorem 1] for the systems with two components, we can prove that the problem (1.1)
has at least one positive classical solution (u, v) € [Clzc)ta’l+a/2(.{2 x (0, THNC(2 x[0,T)]? forsome &: 0 <@ < 1.
Thanks to the condition (H2), similar to Steps 1 and 2 in the proof of [17, Lemma 3], it can be proved that the positive

classical solution is unique. The details was omitted here. O

Recently, the parabolic equations and systems with localized sources and local terms have attracted and been
discussed by many authors, see [1-10,12—14,16,18,19]. Particularly, in the paper [4], Du proved thatif p <1, m < 1
and gn < (1 — p)(1 — m), then every solution (u, v) of (1.1) is global; if p > 1orm > 1 or gn > (1 — p)(1 —m),
then the solution (u, v) of (1.1) blows up in finite time for the large initial data and exists globally for the small initial
data. Moreover, Du also studied the blow-up rates and uniform blow-up profiles of blow-up solutions for some special
cases.

Theorem A. (See [4].) Let conditions (H1)—(H3) hold and (u, v) be a solution of (1.1) which blows up in finite time T .

G Ifp=0orp>1, m=0o0rm> 1 and satisfy g > max{l,m + B — 1}, n > max{l, p + « — 1}, then there exist
positive constants C; (i = 1,2, 3,4) such that
C; <maxu(x, t)(T — ) @ti=m=P/lng=(pte=DHm+p=Dl <, vOo <t <T,
xef2

C3 <maxv(x, 1)(T — ) Hi=p=@/ng=(pra=bm+f=-Dl <0, vo <t <T.
xXeS

(i) If p=m=0,andn > 1, g > 1, then
lim (T — ) @H1=P/iy(x 1) = M—(tl-‘rl—ﬁ)/li(n +1— a)ti/li(q +1-— ﬁ)(l—ﬁ)/ll,
t—>T
lim (T _ t)(n-‘rl—()l)/liv(x’ t) — M—(Vl+1—(x)//,6(q + 1— IB)VL/;L(n + 1— a)(l—o{)/u
t—>T

uniformly on any compact subset of §2, where u =gn — (1 —a)(1 — B).

The main purpose of the present paper is to study the blow-up rate estimate and uniform blow-up profile of the
blow-up solution. Our results extend Theorem A. Moreover, we will discuss blow up set and blow-up rate with respect
to the radial variable when the domain £2 is a ball.

This paper is organized as follows. In Sections 2 and 3, we estimate the blow-up rate and the uniform blow-up
profile for the blow-up solution by modifying Souplet’s method. In the final section, we will study the blow-up set
and the blow-up rate in space with respect to the radial variable of blow-up solution when the domain £2 is a ball.
Throughout this paper, we always assume that the solution (u, v) blows up in finite time 7.

2. Estimate of the blow-up rate

Throughout this section we assume that

qg>m-+p—1, n>p+oa-—1, ng>(p+a—Dm+p-—1).
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To simplify the notations, we set

q+k n+h
1—p—a=h, 1—m—B=k, = , 0= . 2.1
p—a m=p P nqg — hk ng — hk @D

Then p, 6 > 0 by our assumption. Denote
1 [ 0(p+1) \! 1 [ p6+1)\""!
”‘Z%(m) ’ ”F%(m) ’
n=max{n1, n2, p, 0, p(z—lco)mi—im,e(z—lco)ﬁ}, 2.2)
where cg is given by (2.5).

The main result of this section is the following:

Theorem 2.1. Assume that (H1)-(H3) hold. Then we have the following estimates:

0 1/(n+h)
(3) (T —1)"” <maxu(x,t) <n (T —1)"",
2

co 1/(q+k)
<7> (T — 1)~ <maxv(x, ) <n~ %1 —1)7?.
2

To prove Theorem 2.1, we first prove two lemmas.

Lemma 2.1. Assume that (H1)—(H2) hold. Let M (t) = max u(x,t), M2(t) = maxg v(x,t). Then

—(g+k) (n+h)

M) + M) > co(T — 1) maie 2.3)

where c is a positive constant which will be given by (2.5).

Proof. It is easy to see that M () and M (¢) are Lipschitz continuous and satisfy

lim M{(t) =oc0, or lim M)(t) =00,
t—T t—>T

M) < MTPOME@), My <METT(OMI@) ae.[0,T).
By Young’s inequality, we have

d n(g+k)+qn+h)

" [MIFh )+ MIT* D] < 0+ b+ g + M (OME @) < K[MIH(0) + MITE )] oshasn (2.4)
where

ngritalh) max{n(q +k),q(n+h)}
K=m+h+q+kK, "0 Ky= ’ .
( 9+ bk, T TG+l +qnth)
Integrating (2.4) from ¢ to T, we obtain that
—(g+k) (n+h)

M) + MITR () > co(T — 1) " e

where
( hk)K 7(q+k)§1r;\+h)
— ng—hk
co= (2422 . (2.5)
(g+k)y(n+h)

The proof is complete. O

Lemma 2.2. Assume that (H1)—(H3) hold. Then we have

up —qu'/PT >0, v ="t >0, (x,1)e Or.
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Proof. Denote J; = u, — nu'/P*!, Jo = v, — nu'/?*!, Using Theorem 1.1, we have u;, v; >0, (x,1) € Q7. A direct
calculation yields
Jir — u“AJy = 2nau’P Iy — qutPvi (xo, 1) Ja (x0, 1)
_ +1 _
— ou 1J12+n¥ul/p+a UVul? + an?uPt 4 gnuePudt10 (g 1)
0
— (L4 1/p)u PPyl (xo. 1) + pugu? w9 (xo, 1)
> an*u® Pt 4 gnue P oIt (xo, 1) — (14 1/ p)u PPy (xo, 1),

Notice that g6/(1 + g0) + 1/(2 4+ ph) = 1, by Young’s inequality we have

1/0..q n< & 1/p\2+ph &q q ¢ l+1/(q0).
u v(xo,)\2+ph(u ) +—q9+1(v (x0,1))

Choose ¢ = p(g6 + 1)/[6(p + 1)], then we get
Jiy —u“AJ — 2nau1/pJ1 - qu“+pvq_l(xo, 1 Jr(xg, 1)
> an?u® Pt quu TPVt (g, 1) — (1 1/ p)u PP (xo, 1)
> an(n —nu*?t > 0.
Similarly
Jor — VP AT — 2300 Iy — nP T (xg, 1) J1 (x0, 1) = 0.
In view of J; = J, =0 for (x, ) € I'r and J; (x, 0), J2(x, 0) > 0 for x € £2. By the comparison principle we have
wp—nu'P >0, v -t >0, (x,0) € 0r. (2.6)

So we arrive at the conclusion. O

Proof of Theorem 2.1. By (2.6), we have

M) =My @0, My =Myt @) ae 10, 7). @.7)

Since (u, v) blows up in finite time 7', without loss of generality, we may assume that lim,_, 7 M (t) = oco. Integrating
the first inequality of (2.7) from ¢ to T, it yields

M@ <n"p (T —1)"". (2.8)

By (2.3) and the definition of n, we can prove that lim,_, 7 M>(¢) = oco. Integrating the second inequality of (2.6) from
tto T, we have

My(t) <n~?0%(T —1)7".
On the other hand, note that the definition of 7, it follows from (2.3) and (2.8) that
co 1/(g+k)
My (t) > <5> (T—-0n7" Vte(.T).
Similarly,

co 1/(n+h) B
M) > > (T -0, Vte(0,T).

The proof is completed. O
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3. The uniform blow-up profile

In this section we study the uniform blow-up profile of (u, v) for the case: p <1 —«a, m <1 — B. Note that (u, v)
blows up in finite time, there holds

ngz(l—-p)l—-—m>U—-p—-a)yd—m—p).

So the parameters £, k, p and 0, defined in the previous section, satisfy 0 < &, k < 1, ng > hk and p, 0 > 0. Set
Si=y @+ e+, S=y W+ "7,

where y =ng — hk > 0.

Theorem 3.1. Assume that (H1)-(H3) hold. If ap < 1, B0 < 1, and Aug <0, Avg <0 on 2, then the following
statements hold uniformly on any compact subset of §2.

(i) Whenp <1 —aandm <1 — B, then

7t . 1t
im D oy YD o
t—>T (T —1t)=F t—>T (T —1t)~?
(i) Whenp=1—a andm <1 — B, then
Inu(x,t) q+k . Inv(x,t) 1
im = , Iim ——— = —.
t—T [In(T —1)] qn (—»T |In(T —1)] ¢

(iii)) When p <1 —a andm =1 — B, then
Inu(x,t) 1 . Inv(x,t) n+h
im ——=—, im = .
(—T |In(T —1)] =n =T |In(T —1)] qn

@iv) When p=1—a andm =1 — B, then

Inu(x,t) _1 . Inv(x,t) _1

)

m-—— = =—.
t—T [In(T —t)] n t—-T |In(T —1)] ¢
In order to prove Theorem 3.1, we first prove some lemmas.

Lemma 3.1. Assume that (H1)-(H3) hold, and Aug <0, Avy <0 on 2. Then Au <0 and Av <0on any compact
subset of 2.

Proof. The proof is similar to that of Lemma 5.1 in [20]. O

Denote
t t
f()=v"(xo,1), F(l)=ff(S)ds, g(t) =u"(xo,1), G(t)=/g(S)dS~
0 0

In the following, f(¢) ~ g(t) means that lim,_, 7 ‘é%t)) =1L

Lemma 3.2. Assume that (H1)-(H3) hold. Then

lim f(t) = lim F(t) = o0, lim g(¢) = lim G(t) = oo.
t—>T t—>T t—>T t—>T
Proof. Let

M;(t) =maxu(x,1t), M>(t) =maxv(x,1),
Q Q
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then M (¢) and M>(¢) are Lipschitz continuous and satisfy
M) <MTPOF@), My <MYy (0g()  ae. [0,T). 3.1)

By Theorem 2.1, we may assume that M1 (0) > 1, M2(0) > 1. In view of & > 0, integrating the first inequality of (3.1)
from O to 7, we get

M@ [ M) .
h éff(s)ds—l— h =:/f(s)ds+M if h >0, (3.2)
0 0
t t
1nM1(z)</f(s)ds+1nM1(0) =:/f(s)ds+M ifh=0. (3.3)
0 0

Since lim;_.7 M{(¢t) = oo, it follows that lim,_.7 F(¢#) = oo. Note that v; > 0, we see that f(¢) is monotone
non-decreasing. It follows that lim,_,7 f(#) = oo since lim,_,7 F(¢t) = oo. Similarly we have lim,_, 1 g(t) =
lim;_, 7 G(t) = o0.

Lemma 3.3. Assume that (H1)-(H3) hold. If ap < 1, 6 < 1, and Aug <0, Avyg <0 on 2, then the following
statements hold uniformly on any compact subset of §2.

(i) Whenp<1—aandm <1 — B, then
W, n o fuC Dl vk Gl
im = —_— = im = lim =
=T hF(@{) =T hF() —T kG(t) 1T kG(t)
(i) Whenp=1—a andm <1 — B, then

’

Inu(x,r) . llnu(, 1)l vk e nllk
im ——=lim ——— =1, lim — = lim —= =
t—T F(t) t—T F(t) t—T kG(t) t—>T kG(t)
(iii)) When p <1 —aandm =1 — B, then

Lot Gl Lo oG Dl
—~T hF(@t) 1—»T hF@) i—~T G(t) 1—»T G@)
(iv) Whenp=1—«a andm =1 — B, then
i Inu(x,t) . lnu, )l . Inv@e, ) v Dllee
—~T F@)  1>T  F@) —~T G@t) >T  G()
Proof. For the case (i), we have & > 0. Denote
ul(x, 1)

2

where ¢ (x) is the principal eigenfunction of —A in £ with the null Dirichlet boundary condition, and satisfies ¢ > 0
in £2, f o @(x)dx = 1. Let A1 > 0 be the corresponding eigenvalue. A directly computation shows that

¢/(1) = / (£ ) — " Oy, Dus (v 1) p () dy = — f (™" (v, ) Auy, De(y)) dy

2 2

| -1
= [ (———A@ "y, 0) = pu= PV, VU Jo() dy < —— | APy, 0)e(y) dy
1—-p t=r
2
N )
=15 ful—f’(y, De(y)dy = Cf(F(f> —w(.0) " () dy.
) 2
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Using (a + b)P < 2P=L(aP + bP) fora,b > Oand p > 1, and f_Q(p(y)dy =1, we get

1-p
h

¢'(1) < c(plz"(,) + / (W= (.0) " e dy),
2

where w™ (x, t) = max{—w(x, t), 0}. By (3.2), we have
wx,t)>—M, ((x,t)ef2x][0,T). (3.4)

1—
This implies w™ (x, r) < M. Hence ¢'(r) < C(FTP (t) + 1). Integrating this inequality from O to 7 yields

t

b(0) <C<1 +/F¥(s)ds).

0
Therefore,

/Iw(y,t)lw(y)dy= / w(y, He(y)dy — / w(y, De(y)dy

2 {w=>0} {w<0}
<fw<y,z)¢(y>dy—2 / w(y. D) dy < $(t) +C
2 {w<0}
t
§C<1+/FlTp(s)ds>. (3.5)
0

For any given ¢ > 0, define £2; = {y € £2: dist(y, d§2) > ¢}. Note that 0 < h < 1, by Lemma 3.1, we have —Aw < 0.
Note that (3.5), we can use Lemma 4.5 in [15] and get that

t

max w(x, 1) < {N%(l +/Fl71p(s)ds>. (3.6)

2
¢ 0

It follows from (3.4) and (3.6) that, for x € [_2; andt € (0,7T),

t

M wen W € 1+/F%(s)ds 3.7)
F(t) = F@) hF@)  ¢N*TIF@) ' '
0

By (3.2) and Theorem 2.1, we get that, as ¢ close to T,
F(t) > CM(x,1) > C(T —1)~", (3.8)

t

t t
F(t):/f(s)ds:/vq(xo,s)ds</Mg(s)ds
0 0

0

t
_n—4%949
<9940 /(T _ et as < 1O pyman
1—4g6
0
—q@eq@
=7 hp (T —1)~h. (3.9)

Note that ap < 1, it follows from (3.8) and (3.9) that

t

. 1 1=p
lim —— [ F7% (s)ds =0.
—T F(t)
0
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This combined with (3.7) yields that the following holds uniformly on Qg:

h
, 1
im Dy (3.10)
t—T hF(t)
We claim that
h
-t
fiminf 10 Dlloe - 3.11)
t—T  hF(@)
If this is not true, then there exists 0 < & < 1, t; — T and x; € §2 such that
h
u'(x;, t;)
‘at': ’t'a 7<1_‘
u(xi, t;) mgxu(x i) WE() £

We may assume that x; — x* € 2. Using (3.10), it is easy to derive that x* € 9£2. For the small constant ¢ > 0, we
see that x; ¢ £2, = {y € £2: dist(y, 0§2) > ¢} for all > 1. Since max g, u(x, t;) < u(x;,t),it follows that

Wl ) ul(xi, 1)
WEG)  hF()

This contradicts (3.10).
On the other hand, it follows from (3.2) that

h
ot
Jim sup lu(-, )llo
t—»1  hF(1)
This combined with (3.11) yields

oAk
Gl
t—-T hF(t)

<l—g, Vxes2.

~X

Similarly, we can prove that the following holds uniformly on Q;:
v n LG ol
1m = 11m ——— =
—»T kG(t) =T kG(t)
For the case (ii), we have & = 0. Define

2(x, 1) =F(1) —Inu(x,1), )u(t)=/z(y,t)90(y)dy-
2
A direct computation shows that

NOE / (f®) —u™ 3, Du (v, 0)p(y) dy

2

= _f(u“—l(y,t)Au(y,t)(p(y))dy

2

1
Z/_[Emﬂ(y,o — (@ — 1>u‘2+°‘<y,t)|w|2}o<y>dy
2

1
< —&fw(y)Au“(y,t)dy
2

MM o
=—/u (v, He(y)dy
2

o

= C/exp{oc[F(t) —z(y.0)]}e () dy.

22
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Using (3.3), we have
2, )= —-M, (x,1)e 2 x[0,T). (3.12)
Thus

V@) <C / exp{aF (1) }p(y)dy = Cexp{aF(1)}.
2
Integrating from O to 7, it yields

t t
A1) <x(0)+c/exp{aF(s)}ds <c<1 +/exp{aF(s)}ds>.
0 0
Similar to the proof of (3.5) we have
t
/|Z(y,t)|g0(y)dy gc(l +fexp{aF(s)}ds>. (3.13)
2 0

For any given ¢ > 0, similar to the above we define £2; = {y € £2: dist(y, 9§2) > ¢}. By Lemma 3.1, — Az < 0. Note
that (3.13), we can use Lemma 4.5 in [15] and get

t

max z(x, 1) < gw%(l +/exp{aF(s)}ds). (3.14)

2
¢ 0

It follows from (3.12) and (3.14) that

t

<1+/exp{aF(s)}ds), x €82, 1te0,T).

0

B M <z(x,r)zl_lnu(x,r)< C
F(t) = F(@) F(1) ¢NHLF (1)

Without loss of generality, we assume that 7 > 1. By Theorem 2.1 we have

t t t
F(t):[f(s)ds g/Mg(s)ds gn—le)/(T—s)—lds
0 0 0

= 'omT —0) "+ 0T <In(T —1) ' +1InT.
Using (3.3), we get
FO)ZClnMi(t) >2CIn(T —¢t)™" ast—T.
Thus, for x € Qg andr € (0,7),

. t
M 1 .t C _
o1 nu(x,1) < <1+/exp{aln(T—S) 1—i—OtlIlT}ds>. (3.15)

CF@) F(t)  ¢NHUn(T =)=~

Using 1 —« > 0, it is easy to derive

t
/exp{aln(T —5)"'+aInT}ds =0. (3.16)
0

1
lim ——
t—T In(T —t)=P
Note that F(t) — oo as t — T, it follows from (3.15) and (3.16) that the following holds uniformly on ng

Inu(x,t)
im —— =
t—T F(t)
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Similar to the proof of (3.11), we have

liminfM >1
t—>T F()

It follows from (3.3) that
Inu(-,t
t—T F(r)
Thus
nu(-, Dlloo
im ———— =
t—>T F()
Similarly, we can prove that the following holds uniformly on [_2;:
k PN
G N LI C10]
=T kG(t) =T kG(t)

The proofs of (iii) and (iv) are similarly. O

Lemma 3.4. Let (H1)—(H3) hold. Assume that ap < 1, B0 < 1, and Augp < 9 Avg < 0 on £2. Then for any given
positive constants 8, €, and T satisfying 0 <8, ¢ < 1 and © > 1, there exists T < T such that, for allt € [T, T), the
following statements hold:

) Ifp=1—aandm <1 — B, then

n q+k
it kel
1 :k In[kG ()] <nTF ).

ndF(1) <Infse™'tt} +1n

+

q n
Injted*t +1n
{ } q+k
) If p<l—aandm=1-— 8, then
q n+h
——In[hF(1)],
5 T m[hFo)]

h
In[AF ()] < qTtG(@).

g8G(1) <In{se'ch} +1n

n

n+h
a +
n+h h

(i) If p=1—aandm=1— B, then

ln{rsﬁ}—l—ln

né net
néF(t) <In— +1tqG(1), q8G(t) +In— < nF(1).
&qr dq

Proof. (i) p=1—oa,m <1— B. By (ii) of Lemma 3.3, we know that for any given compact subset £29 € £2, which
contains xg, there exists 0 < fyp < T such that the following hold on £2¢:

SF() <Inu(x,t) <tF@1),  8kG@t) <vi(x,t) <tkG(t), telty,T).

Therefore,

q 94
k k

exp{néF(1)} < G'(1) <exp{ntF ()},  [SkG)]* < F' (1) <[tkGD)]*, 1€, T).
It follows that
(kG (1)1 _dF@) _ [tkG()]F
exp{ntF (1)}  dG(t) ~ exp{ndF ()}’

In view of the right-hand side of (3.17), we have

teln,T). (3.17)

exp{nd F (1)} dF (1) < [th(t)]% dG(@t), telt,T).
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Integrating the above inequality from 7 to ¢, we get

1 t ¢ k k+q ¢ k k+q
5 eSO}, < Tt ——G T 0, < (Tht PO
Due to lim;_, 7 F(t) = oo, there exists #y: ty < fy < T such that
1 -
%exp{néF(to)} <(1- 8)% exp{néF (1)}, telio,T).
Hence,
® exp{néF(n)) <t ! kGO, relh.T)
—ex <7 ,T).
ns P ktq 0
Thus we have
q+k -
ndF(t) <In{de™ }+1n +k + P In[kG@®)], te€lio,T). (3.18)

Applying the similar analysis as the above to the left-hand side of (3.17), there exists #;: t < #; < T such that, for
telty, T),

+k
+‘1
q+k k

Set T = max{to,t }, then (3.18) and (3.19) hold for ¢ € [T T).
Analogous to the case (i), we can draw the cases (ii) and (iii). O

Infrest} +1n In[kG ()] < ntF (). (3.19)

Proof of Theorem 3.1. For the case (i). By (i) of Lemma 3.3 we have that,as t — T,

q n
F'(t)=v(o.0) ~[kGO]*,  G'(0)=u"(xo. 1) ~ [hF(D)]".
It follows that
[kG(t)]
Consequently,
F)y~h'siT -0,  G@)~k 'S5 — 17,
This fact combined with the conclusion (i) of Lemma 3.3 asserts that the following hold uniformly on any compact
subset of £2:
u(x,r) v, 1)
im ————— = §j, im ——— =
=T (T —1t)=F t—>T (T —1t)~?
For the case (ii). Choose sequences {6;}7°, {&;}72, and {7;}72 satisfying 0 < §;,&; <1,7; > land§; — 1,&; — 1,
7; — 1. Putting (8, &, ) = (8;, &, 7;) in Lemma 3.4, we get a sequence {T;}7°, satisfying 7; < T and T; — T, such
that the corresponding conclusion (i) of Lemma 3.4 holds for 7; <t < T. _
In view of p=1—a and m < 1 — B, by the second conclusion of (ii) of Lemma 3.3, there exists {7;}7°, with

f} <T, T, — T, such that

e (k+q)

Bt
“h
it

2.

[3:ikGO]F <vi(xo.0) = f() = F'()) < [ukG0)]*, VT <1 <T. (3.20)
Set T;* = max{T;, T;}. Then for any T <t < T, (3.20) and the conclusion (i) of Lemma 3.4 hold. Thus we have

2

n
( )kw ((q +h)ei ) _k exp{ qq’fk F(t)},
1<+q i
F'(t) < ( ) (ns ) exp{j’j:kF(t)}.

g 4 qné;
F'(1) > [8ikG()]* =8 ex
> [5G ] > 5] expl 21
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2

Hence, for T* <t < T,
‘1 q
8; | F& k a+k
on|-gprofro= ()T ()
u/o n (3.21)

q+
q q
: N\ KD [k Fig
exp{——q”” F(t)}F/(t)é(E) ! ( +q> !
q+k §; ne;

Let A=—Ingn+ q+k In(g + k) + q+k Inn and using lim;_, 7 F(t) = oo, integrating (3.21) from ¢ to T,

1 1
—(¢; + In(T — ¢ —Ft —(C; + [In(T , 3.22
Tl_(cz+|n( )|) < " ) < 3i(z+|n( ) (3.22)
where

A—Int q2 nTi~|— | Ine
= A — R SN PR S .,
' Y g+kk & g4k

2
8.

C,-:A—lnS,-—qiln—l—{—Llnsfl.

g+kk ©v qg+k !
By joining (3.22) and (i) of Lemma 3.4, it follows that, for T>'< <t<T,

8 .
T—’_{é,~+|ln(T—t)|} L mfkG () < —’{C,+|1n(T 1. (3.23)
1
where
A Tq 1ty Tg n
G g ) &w+k>%q+k}
@,-:C,-—Sliq {81'1','5;}— 816] Il{ " }
7i(q + k) ! ti(g+k) |lg+k

It follows from (3.22) and (3.23) that, when Tl* <t<T,
+ |In(T —1)] < gnF(t) < Ci + [In(T —1)]
(T —1)| (g +K)IT =0 = §[In(T —1)]

)

N A 3.24
116+ InT DI} _ g InfkG@®) _ wlC;+ InT ~ 1)) 429
LT —1)| k(T —1)| = &|In(T —1)|
Note that §;, &;, t; — 1, and
q n
ci,Ci—> A, c,,C —>A——l{ }
q+k q+k
Letting i — oo in (3.24), it yields
In{kG (¢ k F( k
im M = -, lim @ _a+ (3.25)
t—-T |In(T —1)| ¢ T [In(T —1)|  gn

It follows from the second conclusion of (ii) of Lemma 3.3 that
kinv(x, 1) ~In[kG(1)]
uniformly on any compact subset of §2. Thanks to the first conclusion of (3.25),
Inv(x,t) 1
AT =0 ¢
holds uniformly on any compact subset of £2. Similarly,
Inu(x,t) g9+ k
ST I =0 qn
holds uniformly on any compact subset of £2.
By the same way, we can prove conclusions (iii) and (iv). O
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4. Blow-up set and blow-up rate in space: A special case

In this section, we study the blow-up set and the blow-up rates in space with respect to the radial variable of
blow-up solution when the domain §2 is a ball. We need the following additional assumption:

(H4) 2 = Br(0), xo =0, and up(x) and vo(x) are radially symmetric and non-increasing continuous functions.

Under the above assumptions (H1), (H2) and (H4), we have u(x, t) = u(r,t), v(x,t) = v(r, t) with r = |x|, and

1223 209 Ut 205 Ur gov Ur <O’ (r’ t) € (O’ R) X (07 T)’

u(0,1) =maxu(x,1t), v(0, ) =maxuv(x, ).
2 2

Theorem 4.1. Assume that (H1), (H2) and (H4) hold. If p > 1 and m > 1, then x = 0 is the only blow-up point
of (u, v).

Proof. We use the ideas of [7] and [11] to complete the proof. Without loss of generality, we assume that # blows up
in finite time 7. On the contrary we assume that u blows up in another point x” # 0, i.e. lim,_, 7 u(x’, 1) = co. Let
r* = |x’| > 0. Because of u(r, t) is non-increasing in r, we have lim;_ 7 u(r, t) = oo for any r € [0, r*].

Denote B (0) = {x € Bg(0): x; > o} witho =r*/3 > 0. Let

J, ) =ug + Y’ (x, 1), (x,1) € B3(0) x [0, T),
where 1 <5 < p, ¥ (x1) =e(x; — )%, and & > 0 will be determined later. The carefully calculation gives
Ji —u“AJ = (u”"’“vq (0, t))x1 + otuxlu_l(u, —uPrye(0, t)) + s1//(x1)us_l(ut - uo‘Au)
—2eu Y — dgeut T (x) — Oy, — (s — Dy (x4 2| Vu)?
< (p + a)uPT* 1y (0, Dy, — auPte1ya (0, Dy, + sy (e TPHe1y9(0, 1)
=2y ()T (g — 0) 72 — dseu T (x) — o)uy,
= [pup“’*lvq 0,1) —4des(x) — 0)us+°‘71]J
— Y Du T (p - P90, 1) — des(x) — o)’ 4+ 2(x) — 0)_2]
<, — YD) [(p — $)uP 70, 1) — desRu* ' +2R 2], 4.1)

where c¢(x, 1) = puPt*=11(0, 1) — des(x; — o)uT*~ 1. Notice that v(0,7) > v(0,0) > 0, u(r, 1) > 0 for (r,t) €
[0,R) x[0,T) and 1 < s < p, there exists 0 < &1 < 1 such that for 0 < ¢ < ¢q,

(p —)uP" (0, 1) —4esRu*~' +2R72 > 0.
It follows from (4.1) that
Jo—u®*AJ —c(x,1)J <0, (x,1) € B{(0) x (0, T).

We claim that uq, is non-positive and non-trivial (otherwise u((r) = 0, hence u = 0 which contradicts the assumption
that u blows up in finite time 7). By the standard method we can deduce that u,(r,¢) < 0 in B%(0) x (0, T). Thus
uy, (x,1) <0in B%(0) x (0, T). Hence

J(x, ) =uy (x,1) <0, (x,1)€dBf x(0,7T).

Taking 7: 0 < 7o < T and considering fy as the initial time, we may assume that u,, (x,0) <0 on B3(0). So, there
exists a constant 0 < &> < 1, such that when 0 < ¢ < &2,

J(x,0) =y, (x,0) + ¢ (x)ud (x) < uy, (x,0) + eR?uf(0) <0, x e BZ(0).

Choose & = min{ey, &2}. Since for any fixed Tp: 0 < Ty < T, the function c¢(x, ¢) is bounded on B%(0) x [0, Ty], by
the maximum principle we have

J(x,1) <0, (x,1) € Bg(0) x [0, Tol,
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and so
J(x,1) <0, (x,t) € Bz(0)x[0,7T).
That is
Yx) < —u (x, Duy, (x,1),  (x,1) € BR(0) x [0, T). 4.2)

Let y=(20,0,...)and z = (+r*,0,...). Then y, z € B%(0). Integrating (4.2) from y to z

1

s —

Z
O</l//(x1)dx1< 1Ltlfs(z,t), 0<t<T.
y

Since lim; .7 u'~%(z, 1) = 0, we get a contradiction from the above inequality. O
Under some additional assumptions on the initial data, the blow-up rate in space can be evaluated as follows.
Theorem 4.2. Assume that p > 1, m > 1 and (H1), (H2) and (H4) hold. Suppose that there exist ¢ > 0 and 0 <& < 1
such that
up(r) < —cr®, vo(r) < —cr®,  rel0, Rl
Then
ur,t) <Cr ", v(r,t) <Cr772, (r,1)€(0,R] x[0,T),
hold for some constant C > 0 and any y1 >2/(p — 1), yo > 2/(m — 1).
Proof. We only give an evaluation of u(r, t). Similar as Theorem 4.1, we still apply the ideas of [7] and [11] to discuss
the above statement. Let
J(rot) =up(r,t) + cyu'(r,0), - (1) €10, R1x [0, T),

where | <? < p,c(r) = er!t8 8§ >0, and & > 0 to be determined later. A direct computation shows that

o a N —1
Jr—u p Jr+ I
N -1 N -1 N -1
=|:ut_“a< Mr+urr):| ‘|‘0”4a_l“r( ur+urr>_ua 5 Ur
r r r r

N -1
—i—Ec(r)uz_l[u, - u“(

— " (Mu =20 Mut Ty — 0 = De(r)ut T 2u?
< [puP ™90, 1) — u*(N — Dr—2 = 20(1 + 8)er®u =1 u,

+Le(ru =Py e0, 1) — utE N — Dr 2 (14 8)e(r) — (14 8)8r 2 (r)u ™
=b(r,0)J — c(u T puP w1 (0,1) — (N — Dr= —2¢(1 + §)er®u’~"

— ™ TPV 0, 1) + (N — Dr (1 +8) + (1 + 8)8r 2]
=b(r,0)J — c(uT[(p — OuP~"v1(0,1) — 20(1 + &)er®u ™" +r728(N +8)]
<b(r,0)J —c(ru™[(p — OuP~"09(0,1) — 2(1 + e R%u " + R28(N +8)],

uy + u)} — (N = Dr7 e (ryutte

where b(r, t) = puPt* 1020, 1) — (N — 1)r—2u® — 2¢(1 + 8)erlutte—1,
In view of v(r,t) > 0, v(0,7) = maxog,<gr v(r, 1), and v(0,7) > v(0,0) > 0, 1 < £ < p, there exists 0 < g < 1
such that, for 0 < ¢ < g1,

(p—OuP~ 90, 1) +8(N + )R> =201+ 8)eR%u*"1>0, (r,1)€(0,R) x (0,T). (4.3)
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Thus

o N —1 _
Ji—u Jr+ Iy b(r,t)J <0, (r,t)e(0,R)x (0, 7).
r

In addition, as u(r,t) > 0 and u(R, t) =0, we see that u, (R, t) < 0. Therefore
J(O,t) =u,0,t) =0, JR,t)=u,(R,1) <0, te(0,T).
For t = 0. Note that 0 < & < 1, there exists 0 < & < 1 such that, for 0 < & < &3,
J(r,0) = up(r) + er' Pul (r) <rf[—c +eR™EUf(0)] <0, [0, RI. (4.4)
Choose ¢ = min{ey, €3}, then (4.3) and (4.4) hold. Similar to the proof of Theorem 4.1, we have J(r, ) <0, i.e.
—u"u, = er', (1) €10, R] x [0, T).

Integrating the above inequality from O to r we have

—1 —1/e-1) D\ VED
u(r,r><(8(2i+5)r2+8+ul—f(o,r>) <<8(2—+8)> P B (e RIx[0,7).

Note that § > 0 and 1 < ¢ < p are arbitrary, and 2 4+ 6)/(¢ — 1) - 2/(p — 1) as 6§ - 0 and £ — p, and
2+6)/(—1) > occasf — l.Forany y; >2/(p—1),thereexist 6 > 0and £ € (1, p) suchthat y; = (2+48)/(£—1).
Hence u(r,t) < Cr " forany y; >2/(p—1). O
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