Available online at www.sciencedirect.com J. Math. Anal. Appl. 343 (2008) 621-635 www.elsevier.com/locate/jmaa # Blow-up properties for a degenerate parabolic system with nonlinear localized sources [☆] Minxing Wang*, Yunfeng Wei Department of Mathematics, Southeast University, Nanjing 210018, PR China Received 25 July 2007 Available online 2 February 2008 Submitted by P. Sacks ## **Abstract** This paper deals with blow-up properties for a degenerate parabolic system with nonlinear localized sources subject to the homogeneous Dirichlet boundary conditions. The main aim of this paper is to study the blow-up rate estimate and the uniform blow-up profile of the blow-up solution. Our conclusions extend the results of [L.L. Du, Blow-up for a degenerate reaction–diffusion system with nonlinear localized sources, J. Math. Anal. Appl. 324 (2006) 304–320]. At the end, the blow-up set and blow up rate with respect to the radial variable is considered when the domain Ω is a ball. © 2008 Elsevier Inc. All rights reserved. Keywords: Degenerate parabolic system; Blow-up rate; Uniform blow-up profile ## 1. Introduction In this paper, we consider the following degenerate parabolic system with nonlinear localized sources $$\begin{cases} u_{t} = u^{\alpha} \left(\Delta u + u^{p}(x, t) v^{q}(x_{0}, t) \right), & (x, t) \in \Omega \times (0, T), \\ v_{t} = v^{\beta} \left(\Delta v + v^{m}(x, t) u^{n}(x_{0}, t) \right), & (x, t) \in \Omega \times (0, T), \\ u(x, t) = v(x, t) = 0, & (x, t) \in \partial \Omega \times (0, T), \\ u(x, 0) = u_{0}(x), & v(x, 0) = v_{0}(x), & x \in \bar{\Omega}, \end{cases}$$ $$(1.1)$$ where parameters q, n > 0, $p, m \ge 0$, $\alpha, \beta \in (0, 1)$, $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial \Omega$ and $x_0 \in \Omega$ is a fixed point. The initial data u_0, v_0 satisfies the following conditions: (H1) $u_0, v_0 \in C^{2+\tilde{\alpha}}(\Omega) \cap C^1(\bar{\Omega})$ for some $\tilde{\alpha} \in (0, 1), u_0, v_0 > 0$ in Ω , and $u_0 = v_0 = 0, \frac{\partial u_0}{\partial \nu} < 0, \frac{\partial v_0}{\partial \nu} < 0$ on $\partial \Omega$, where ν is the unit outward normal vector on $\partial \Omega$; E-mail address: mxwang@seu.edu.cn (M. Wang). ^{*} This work was supported by PRC Grants NSFC 10471022, 10771032, and the Natural Science Foundation of Jiangsu province (BK2006088). ^{*} Corresponding author. - (H2) $\Delta u_0 + u_0^p v_0^q(x_0) \geqslant 0$, $\Delta v_0 + v_0^m u_0^n(x_0) \geqslant 0$ in Ω , and $\Delta u_0 = 0 = \Delta v_0$ on $\partial \Omega$; - (H3) $\Delta u_0 + u_0^p v_0^q(x_0) \geqslant \eta u_0^{1/\rho + 1 \alpha}$, $\Delta v_0 + v_0^m u_0^n(x_0) \geqslant \eta v_0^{1/\theta + 1 \beta}$, where positive constants ρ and θ are given in (2.1), and η is given in (2.2). Set $$Q_T = \Omega \times (0, T)$$, $\Gamma_T = \partial \Omega \times (0, T)$ with $0 < T < \infty$. **Theorem 1.1.** Assume that (H1)–(H2) hold. Then the problem (1.1) has a unique positive classical solution $(u, v) \in [C_{\text{loc}}^{2+\hat{\alpha}, 1+\hat{\alpha}/2}(\Omega \times (0, T]) \cap C(\overline{\Omega} \times [0, T])]^2$ for some $\hat{\alpha}$: $0 < \hat{\alpha} < 1$, and $u_t \ge 0$, $v_t \ge 0$. Moreover, if $T < \infty$ then $\lim_{t \to T} (\|u(\cdot, t)\|_{\infty} + \|v(\cdot, t)\|_{\infty}) = \infty.$ **Proof.** Under the condition (H1), by the standard perturbation methods of [2, Theorem 2.5] for the single equation with a localized source and [17, Theorem 1] for the systems with two components, we can prove that the problem (1.1) has at least one positive classical solution $(u, v) \in [C_{loc}^{2+\hat{\alpha}, 1+\hat{\alpha}/2}(\Omega \times (0, T]) \cap C(\overline{\Omega} \times [0, T])]^2$ for some $\hat{\alpha}$: $0 < \hat{\alpha} < 1$. Thanks to the condition (H2), similar to Steps 1 and 2 in the proof of [17, Lemma 3], it can be proved that the positive classical solution is unique. The details was omitted here. \Box Recently, the parabolic equations and systems with localized sources and local terms have attracted and been discussed by many authors, see [1–10,12–14,16,18,19]. Particularly, in the paper [4], Du proved that if p < 1, m < 1 and qn < (1-p)(1-m), then every solution (u,v) of (1.1) is global; if p > 1 or m > 1 or qn > (1-p)(1-m), then the solution (u,v) of (1.1) blows up in finite time for the large initial data and exists globally for the small initial data. Moreover, Du also studied the blow-up rates and uniform blow-up profiles of blow-up solutions for some special cases. **Theorem A.** (See [4].) Let conditions (H1)–(H3) hold and (u, v) be a solution of (1.1) which blows up in finite time T. (i) If p = 0 or p > 1, m = 0 or m > 1 and satisfy $q > \max\{1, m + \beta - 1\}$, $n > \max\{1, p + \alpha - 1\}$, then there exist positive constants C_i (i = 1, 2, 3, 4) such that $$C_{1} \leqslant \max_{x \in \bar{\Omega}} u(x,t)(T-t)^{(q+1-m-\beta)/[nq-(p+\alpha-1)(m+\beta-1)]} \leqslant C_{2}, \quad \forall 0 < t < T,$$ $$C_{3} \leqslant \max_{x \in \bar{\Omega}} v(x,t)(T-t)^{(n+1-p-\alpha)/[nq-(p+\alpha-1)(m+\beta-1)]} \leqslant C_{4}, \quad \forall 0 < t < T.$$ (ii) If p = m = 0, and n > 1, q > 1, then $$\lim_{t \to T} (T - t)^{(q+1-\beta)/\mu} u(x, t) = \mu^{-(q+1-\beta)/\mu} (n + 1 - \alpha)^{q/\mu} (q + 1 - \beta)^{(1-\beta)/\mu},$$ $$\lim_{t \to T} (T - t)^{(n+1-\alpha)/\mu} v(x, t) = \mu^{-(n+1-\alpha)/\mu} (q + 1 - \beta)^{n/\mu} (n + 1 - \alpha)^{(1-\alpha)/\mu}$$ uniformly on any compact subset of Ω , where $\mu = qn - (1 - \alpha)(1 - \beta)$. The main purpose of the present paper is to study the blow-up rate estimate and uniform blow-up profile of the blow-up solution. Our results extend Theorem A. Moreover, we will discuss blow up set and blow-up rate with respect to the radial variable when the domain Ω is a ball. This paper is organized as follows. In Sections 2 and 3, we estimate the blow-up rate and the uniform blow-up profile for the blow-up solution by modifying Souplet's method. In the final section, we will study the blow-up set and the blow-up rate in space with respect to the radial variable of blow-up solution when the domain Ω is a ball. Throughout this paper, we always assume that the solution (u, v) blows up in finite time T. ## 2. Estimate of the blow-up rate Throughout this section we assume that $$q > m + \beta - 1$$, $n > p + \alpha - 1$, $nq > (p + \alpha - 1)(m + \beta - 1)$. To simplify the notations, we set $$1 - p - \alpha = h, \qquad 1 - m - \beta = k, \qquad \rho = \frac{q + k}{nq - hk}, \qquad \theta = \frac{n + h}{nq - hk}. \tag{2.1}$$ Then ρ , $\theta > 0$ by our assumption. Denote $$\eta_{1} = \frac{1}{\theta \alpha} \left(\frac{\theta(\rho+1)}{\rho(q\theta+1)} \right)^{q\theta+1}, \qquad \eta_{2} = \frac{1}{\beta \rho} \left(\frac{\rho(\theta+1)}{\theta(n\rho+1)} \right)^{n\rho+1}, \eta = \max \left\{ \eta_{1}, \eta_{2}, \rho, \theta, \rho \left(2^{-1} c_{0} \right)^{\frac{-1}{\rho(n+h)}}, \theta \left(2^{-1} c_{0} \right)^{\frac{-1}{\theta(q+k)}} \right\},$$ (2.2) where c_0 is given by (2.5). The main result of this section is the following: **Theorem 2.1.** Assume that (H1)–(H3) hold. Then we have the following estimates: $$\left(\frac{c_0}{2}\right)^{1/(n+h)} (T-t)^{-\rho} \leqslant \max_{\bar{\Omega}} u(x,t) \leqslant \eta^{-\rho} \rho^{\rho} (T-t)^{-\rho},$$ $$\left(\frac{c_0}{2}\right)^{1/(q+k)} (T-t)^{-\theta} \leqslant \max_{\bar{\Omega}} v(x,t) \leqslant \eta^{-\theta} \theta^{\theta} (T-t)^{-\theta}.$$ To prove Theorem 2.1, we first prove two lemmas. **Lemma 2.1.** Assume that (H1)–(H2) hold. Let $M_1(t) = \max_{\bar{\Omega}} u(x,t)$, $M_2(t) = \max_{\bar{\Omega}} v(x,t)$. Then $$M_1^{n+h}(t) + M_2^{q+k}(t) \geqslant c_0(T-t)^{\frac{-(q+k)(n+h)}{nq-hk}},$$ (2.3) where c_0 is a positive constant which will be given by (2.5). **Proof.** It is easy to see that $M_1(t)$ and $M_2(t)$ are Lipschitz continuous and satisfy $$\begin{split} & \lim_{t \to T} M_1(t) = \infty, \quad \text{or} \quad \lim_{t \to T} M_2(t) = \infty, \\ & M_1'(t) \leqslant M_1^{\alpha+p}(t) M_2^q(t), \qquad M_2'(t) \leqslant M_2^{\beta+m}(t) M_1^n(t) \quad \text{a.e. } [0,T). \end{split}$$ By Young's inequality, we have $$\frac{\mathrm{d}}{\mathrm{d}t} \left[M_1^{n+h}(t) + M_2^{q+k}(t) \right] \leqslant (n+h+q+k) M_1^n(t) M_2^q(t) \leqslant K \left[M_1^{n+h}(t) + M_2^{q+k}(t) \right]^{\frac{n(q+k)+q(n+h)}{(n+h)(q+k)}}, \tag{2.4}$$ where $$K = (n+h+q+k) K_0^{\frac{n(q+k)+q(n+h)}{(n+h)(q+k)}}, \qquad K_0 = \frac{\max\{n(q+k), q(n+h)\}}{n(q+k)+q(n+h)}.$$ Integrating (2.4) from t to T, we obtain that $$M_1^{n+h}(t) + M_2^{q+k}(t) \ge c_0(T-t)^{\frac{-(q+k)(n+h)}{nq-hk}},$$ where $$c_0 = \left(\frac{(nq - hk)K}{(q + k)(n + h)}\right)^{\frac{-(q + k)(n + h)}{nq - hk}}.$$ (2.5) The proof is complete. \Box **Lemma 2.2.** Assume that (H1)–(H3) hold. Then we have $$u_t - \eta u^{1/\rho + 1} \ge 0, \quad v_t - \eta v^{1/\theta + 1} \ge 0, \quad (x, t) \in \bar{Q}_T.$$ **Proof.** Denote $J_1 = u_t - \eta u^{1/\rho+1}$, $J_2 = v_t - \eta v^{1/\theta+1}$. Using Theorem 1.1, we have $u_t, v_t \ge 0$, $(x, t) \in \bar{Q}_T$. A direct calculation yields $$\begin{split} J_{1t} - u^{\alpha} \Delta J_{1} - 2\eta \alpha u^{1/\rho} J_{1} - q u^{\alpha+p} v^{q-1}(x_{0}, t) J_{2}(x_{0}, t) \\ &= \alpha u^{-1} J_{1}^{2} + \eta \frac{(\rho+1)}{\rho^{2}} u^{1/\rho+\alpha-1} |\nabla u|^{2} + \alpha \eta^{2} u^{2/\rho+1} + q \eta u^{\alpha+p} v^{q+1/\theta}(x_{0}, t) \\ &- \eta (1+1/\rho) u^{1/\rho+\alpha+p} v^{q}(x_{0}, t) + p u_{t} u^{p+\alpha-1} v^{q}(x_{0}, t) \\ &\geqslant \alpha \eta^{2} u^{2/\rho+1} + q \eta u^{\alpha+p} v^{q+1/\theta}(x_{0}, t) - \eta (1+1/\rho) u^{1/\rho+\alpha+p} v^{q}(x_{0}, t). \end{split}$$ Notice that $q\theta/(1+q\theta)+1/(2+\rho h)=1$, by Young's inequality we have $$u^{1/\rho}v^q(x_0,t) \leqslant \frac{\varepsilon^{-q\theta}}{2+\rho h} \left(u^{1/\rho}\right)^{2+\rho h} + \frac{\varepsilon q\theta}{q\theta+1} \left(v^q(x_0,t)\right)^{1+1/(q\theta)}.$$ Choose $\varepsilon = \rho(q\theta + 1)/[\theta(\rho + 1)]$, then we get $$J_{1t} - u^{\alpha} \Delta J_{1} - 2\eta \alpha u^{1/\rho} J_{1} - q u^{\alpha+p} v^{q-1}(x_{0}, t) J_{2}(x_{0}, t)$$ $$\geqslant \alpha \eta^{2} u^{2/\rho+1} + q \eta u^{\alpha+p} v^{q+1/\theta}(x_{0}, t) - \eta (1 + 1/\rho) u^{1/\rho+\alpha+p} v^{q}(x_{0}, t)$$ $$\geqslant \alpha \eta (\eta - \eta_{1}) u^{2/\rho+1} \geqslant 0.$$ Similarly $$J_{2t} - v^{\beta} \Delta J_2 - 2\eta \beta v^{1/\theta} J_2 - n v^{\beta + m} u^{n-1}(x_0, t) J_1(x_0, t) \geqslant 0.$$ In view of $J_1 = J_2 = 0$ for $(x, t) \in \Gamma_T$ and $J_1(x, 0), J_2(x, 0) \ge 0$ for $x \in \bar{\Omega}$. By the comparison principle we have $$u_t - \eta u^{1/\rho + 1} \geqslant 0, \qquad v_t - \eta v^{1/\theta + 1} \geqslant 0, \quad (x, t) \in \bar{Q}_T.$$ (2.6) So we arrive at the conclusion. \Box **Proof of Theorem 2.1.** By (2.6), we have $$M_1'(t) \ge \eta M_1^{1/\rho+1}(t), \qquad M_2'(t) \ge \eta M_2^{1/\theta+1}(t) \quad \text{a.e. } [0, T).$$ (2.7) Since (u, v) blows up in finite time T, without loss of generality, we may assume that $\lim_{t\to T} M_1(t) = \infty$. Integrating the first inequality of (2.7) from t to T, it yields $$M_1(t) \le \eta^{-\rho} \rho^{\rho} (T - t)^{-\rho}.$$ (2.8) By (2.3) and the definition of η , we can prove that $\lim_{t\to T} M_2(t) = \infty$. Integrating the second inequality of (2.6) from t to T, we have $$M_2(t) \leqslant \eta^{-\theta} \theta^{\theta} (T-t)^{-\theta}.$$ On the other hand, note that the definition of η , it follows from (2.3) and (2.8) that $$M_2(t) \geqslant \left(\frac{c_0}{2}\right)^{1/(q+k)} (T-t)^{-\theta}, \quad \forall t \in (0,T).$$ Similarly, $$M_1(t) \geqslant \left(\frac{c_0}{2}\right)^{1/(n+h)} (T-t)^{-\rho}, \quad \forall t \in (0,T).$$ The proof is completed. \Box # 3. The uniform blow-up profile In this section we study the uniform blow-up profile of (u, v) for the case: $p \le 1 - \alpha$, $m \le 1 - \beta$. Note that (u, v) blows up in finite time, there holds $$nq \ge (1-p)(1-m) > (1-p-\alpha)(1-m-\beta).$$ So the parameters h, k, ρ and θ , defined in the previous section, satisfy $0 \le h, k < 1, nq > hk$ and $\rho, \theta > 0$. Set $$S_1 = \gamma^{-\rho} (q+k)^{k/\gamma} (n+h)^{q/\gamma}, \qquad S_2 = \gamma^{-\theta} (n+h)^{h/\gamma} (q+k)^{n/\gamma},$$ where $\gamma = nq - hk > 0$. **Theorem 3.1.** Assume that (H1)–(H3) hold. If $\alpha \rho < 1$, $\beta \theta < 1$, and $\Delta u_0 \leq 0$, $\Delta v_0 \leq 0$ on $\bar{\Omega}$, then the following statements hold uniformly on any compact subset of Ω . (i) When $p < 1 - \alpha$ and $m < 1 - \beta$, then $$\lim_{t \to T} \frac{u(x,t)}{(T-t)^{-\rho}} = S_1, \qquad \lim_{t \to T} \frac{v(x,t)}{(T-t)^{-\theta}} = S_2.$$ (ii) When $p = 1 - \alpha$ and $m < 1 - \beta$, then $$\lim_{t \to T} \frac{\ln u(x,t)}{|\ln (T-t)|} = \frac{q+k}{qn}, \qquad \lim_{t \to T} \frac{\ln v(x,t)}{|\ln (T-t)|} = \frac{1}{q}.$$ (iii) When $p < 1 - \alpha$ and $m = 1 - \beta$, then $$\lim_{t \to T} \frac{\ln u(x,t)}{|\ln (T-t)|} = \frac{1}{n}, \qquad \lim_{t \to T} \frac{\ln v(x,t)}{|\ln (T-t)|} = \frac{n+h}{qn}.$$ (iv) When $p = 1 - \alpha$ and $m = 1 - \beta$, then $$\lim_{t \to T} \frac{\ln u(x,t)}{|\ln(T-t)|} = \frac{1}{n}, \qquad \lim_{t \to T} \frac{\ln v(x,t)}{|\ln(T-t)|} = \frac{1}{q}.$$ In order to prove Theorem 3.1, we first prove some lemmas. **Lemma 3.1.** Assume that (H1)–(H3) hold, and $\Delta u_0 \leq 0$, $\Delta v_0 \leq 0$ on $\bar{\Omega}$. Then $\Delta u \leq 0$ and $\Delta v \leq 0$ on any compact subset of Ω . **Proof.** The proof is similar to that of Lemma 5.1 in [20]. \Box Denote $$f(t) = v^q(x_0, t),$$ $F(t) = \int_0^t f(s) \, ds,$ $g(t) = u^n(x_0, t),$ $G(t) = \int_0^t g(s) \, ds.$ In the following, $f(t) \sim g(t)$ means that $\lim_{t \to T} \frac{f(t)}{g(t)} = 1$. **Lemma 3.2.** Assume that (H1)–(H3) hold. Then $$\lim_{t \to T} f(t) = \lim_{t \to T} F(t) = \infty, \qquad \lim_{t \to T} g(t) = \lim_{t \to T} G(t) = \infty.$$ **Proof.** Let $$M_1(t) = \max_{\Omega} u(x, t), \qquad M_2(t) = \max_{\Omega} v(x, t),$$ then $M_1(t)$ and $M_2(t)$ are Lipschitz continuous and satisfy $$M'_1(t) \leqslant M_1^{\alpha+p}(t)f(t), \qquad M'_2(t) \leqslant M_2^{\beta+m}(t)g(t) \quad \text{a.e. } [0,T).$$ (3.1) By Theorem 2.1, we may assume that $M_1(0) > 1$, $M_2(0) > 1$. In view of $h \ge 0$, integrating the first inequality of (3.1) from 0 to t, we get $$\frac{M_1^h(t)}{h} \le \int_0^t f(s) \, \mathrm{d}s + \frac{M_1^h(0)}{h} =: \int_0^t f(s) \, \mathrm{d}s + M \quad \text{if } h > 0,$$ (3.2) $$\ln M_1(t) \le \int_0^t f(s) \, \mathrm{d}s + \ln M_1(0) =: \int_0^t f(s) \, \mathrm{d}s + \tilde{M} \quad \text{if } h = 0.$$ (3.3) Since $\lim_{t\to T} M_1(t) = \infty$, it follows that $\lim_{t\to T} F(t) = \infty$. Note that $v_t \geqslant 0$, we see that f(t) is monotone non-decreasing. It follows that $\lim_{t\to T} f(t) = \infty$ since $\lim_{t\to T} F(t) = \infty$. Similarly we have $\lim_{t\to T} g(t) = \lim_{t\to T} G(t) = \infty$. **Lemma 3.3.** Assume that (H1)–(H3) hold. If $\alpha \rho < 1$, $\beta \theta < 1$, and $\Delta u_0 \leq 0$, $\Delta v_0 \leq 0$ on $\bar{\Omega}$, then the following statements hold uniformly on any compact subset of Ω . (i) When $p < 1 - \alpha$ and $m < 1 - \beta$, then $$\lim_{t \to T} \frac{u^h(x,t)}{hF(t)} = \lim_{t \to T} \frac{\|u(\cdot,t)\|_{\infty}^h}{hF(t)} = 1, \qquad \lim_{t \to T} \frac{v^k(x,t)}{kG(t)} = \lim_{t \to T} \frac{\|v(\cdot,t)\|_{\infty}^k}{kG(t)} = 1.$$ (ii) When $p = 1 - \alpha$ and $m < 1 - \beta$, then $$\lim_{t \to T} \frac{\ln u(x,t)}{F(t)} = \lim_{t \to T} \frac{\|\ln u(\cdot,t)\|_{\infty}}{F(t)} = 1, \qquad \lim_{t \to T} \frac{v^k(x,t)}{kG(t)} = \lim_{t \to T} \frac{\|v(\cdot,t)\|_{\infty}^k}{kG(t)} = 1.$$ (iii) When $p < 1 - \alpha$ and $m = 1 - \beta$, then $$\lim_{t \to T} \frac{u^h(x,t)}{hF(t)} = \lim_{t \to T} \frac{\|u(\cdot,t)\|_{\infty}^h}{hF(t)} = 1, \qquad \lim_{t \to T} \frac{\ln v(x,t)}{G(t)} = \lim_{t \to T} \frac{\|\ln v(\cdot,t)\|_{\infty}}{G(t)} = 1.$$ (iv) When $p = 1 - \alpha$ and $m = 1 - \beta$, then $$\lim_{t\to T}\frac{\ln u(x,t)}{F(t)}=\lim_{t\to T}\frac{\|\ln u(\cdot,t)\|_{\infty}}{F(t)}=1, \qquad \lim_{t\to T}\frac{\ln v(x,t)}{G(t)}=\lim_{t\to T}\frac{\|\ln v(\cdot,t)\|_{\infty}}{G(t)}=1.$$ **Proof.** For the case (i), we have h > 0. Denote $$w(x,t) = F(t) - \frac{u^h(x,t)}{h}, \qquad \phi(t) = \int_{\Omega} w(y,t)\varphi(y) \,dy,$$ where $\varphi(x)$ is the principal eigenfunction of $-\Delta$ in Ω with the null Dirichlet boundary condition, and satisfies $\varphi > 0$ in Ω , $\int_{\Omega} \varphi(x) dx = 1$. Let $\lambda_1 > 0$ be the corresponding eigenvalue. A directly computation shows that $$\begin{split} \phi'(t) &= \int_{\Omega} \left(f(t) - u^{h-1}(y,t) u_t(y,t) \right) \varphi(y) \, \mathrm{d}y = -\int_{\Omega} \left(u^{-p}(y,t) \Delta u(y,t) \varphi(y) \right) \mathrm{d}y \\ &= \int_{\Omega} \left(-\frac{1}{1-p} \Delta \left(u^{-p+1}(y,t) \right) - p u^{-(p+1)}(y,t) |\nabla u|^2 \right) \varphi(y) \, \mathrm{d}y \leqslant \frac{-1}{1-p} \int_{\Omega} \Delta \left(u^{-p+1}(y,t) \right) \varphi(y) \, \mathrm{d}y \\ &= \frac{\lambda_1}{1-p} \int_{\Omega} u^{1-p}(y,t) \varphi(y) \, \mathrm{d}y = C \int_{\Omega} \left(F(t) - w(y,t) \right)^{\frac{1-p}{h}} \varphi(y) \, \mathrm{d}y. \end{split}$$ Using $(a+b)^p \le 2^{p-1}(a^p+b^p)$ for $a,b\ge 0$ and $p\ge 1$, and $\int_{\Omega} \varphi(y)\,\mathrm{d}y=1$, we get $$\phi'(t) \leqslant C \left(F^{\frac{1-p}{h}}(t) + \int_{\Omega} \left(w^{-}(y,t) \right)^{\frac{1-p}{h}} \varphi(y) \, \mathrm{d}y \right),$$ where $w^{-}(x, t) = \max\{-w(x, t), 0\}$. By (3.2), we have $$w(x,t) \geqslant -M, \quad (x,t) \in \Omega \times [0,T).$$ (3.4) This implies $w^-(x,t) \leq M$. Hence $\phi'(t) \leq C(F^{\frac{1-p}{h}}(t)+1)$. Integrating this inequality from 0 to t yields $$\phi(t) \leqslant C \left(1 + \int_{0}^{t} F^{\frac{1-p}{h}}(s) \, \mathrm{d}s \right).$$ Therefore, $$\int_{\Omega} |w(y,t)| \varphi(y) \, \mathrm{d}y = \int_{\{w \ge 0\}} w(y,t) \varphi(y) \, \mathrm{d}y - \int_{\{w < 0\}} w(y,t) \varphi(y) \, \mathrm{d}y$$ $$\leqslant \int_{\Omega} w(y,t) \varphi(y) \, \mathrm{d}y - 2 \int_{\{w < 0\}} w(y,t) \varphi(y) \, \mathrm{d}y \leqslant \phi(t) + C$$ $$\leqslant C \left(1 + \int_{0}^{t} F^{\frac{1-p}{h}}(s) \, \mathrm{d}s \right). \tag{3.5}$$ For any given $\zeta > 0$, define $\Omega_{\zeta} = \{ y \in \Omega : \operatorname{dist}(y, \partial \Omega) \geqslant \zeta \}$. Note that 0 < h < 1, by Lemma 3.1, we have $-\Delta w \leqslant 0$. Note that (3.5), we can use Lemma 4.5 in [15] and get that $$\max_{\bar{\Omega}_{\zeta}} w(x,t) \leqslant \frac{C}{\zeta^{N+1}} \left(1 + \int_{0}^{t} F^{\frac{1-p}{h}}(s) \, \mathrm{d}s \right). \tag{3.6}$$ It follows from (3.4) and (3.6) that, for $x \in \bar{\Omega}_{\zeta}$ and $t \in (0, T)$, $$-\frac{M}{F(t)} \leqslant \frac{w(x,t)}{F(t)} = 1 - \frac{u^h}{hF(t)} \leqslant \frac{C}{\zeta^{N+1}F(t)} \left(1 + \int_0^t F^{\frac{1-p}{h}}(s) \, \mathrm{d}s \right). \tag{3.7}$$ By (3.2) and Theorem 2.1, we get that, as t close to T, $$F(t) \ge CM_1^h(x,t) \ge C(T-t)^{-h\rho},$$ $$F(t) = \int_0^t f(s) \, ds = \int_0^t v^q(x_0, s) \, ds \le \int_0^t M_2^q(s) \, ds$$ $$\le \eta^{-q\theta} \theta^{q\theta} \int_0^t (T-s)^{-q\theta} \, ds \le \frac{-\eta^{-q\theta} \theta^{q\theta}}{1-q\theta} (T-t)^{-q\theta+1}$$ $$= \frac{\eta^{-q\theta} \theta^{q\theta}}{h\rho} (T-t)^{-h\rho}.$$ (3.8) Note that $\alpha \rho < 1$, it follows from (3.8) and (3.9) that $$\lim_{t \to T} \frac{1}{F(t)} \int_{0}^{t} F^{\frac{1-p}{h}}(s) \, \mathrm{d}s = 0.$$ This combined with (3.7) yields that the following holds uniformly on $\bar{\Omega}_{\zeta}$: $$\lim_{t \to T} \frac{u^h(x,t)}{hF(t)} = 1. \tag{3.10}$$ We claim that $$\liminf_{t \to T} \frac{\|u(\cdot, t)\|_{\infty}^{h}}{hF(t)} \geqslant 1.$$ (3.11) If this is not true, then there exists $0 < \varepsilon < 1$, $t_i \to T$ and $x_i \in \Omega$ such that $$u(x_i, t_i) = \max_{\Omega} u(x, t_i), \qquad \frac{u^h(x_i, t_i)}{hF(t_i)} \leqslant 1 - \varepsilon.$$ We may assume that $x_i \to x^* \in \bar{\Omega}$. Using (3.10), it is easy to derive that $x^* \in \partial \Omega$. For the small constant $\zeta > 0$, we see that $x_i \notin \bar{\Omega}_{\zeta} = \{y \in \Omega : \operatorname{dist}(y, \partial \Omega) \geqslant \zeta\}$ for all $i \gg 1$. Since $\max_{\bar{\Omega}_{\zeta}} u(x, t_i) < u(x_i, t_i)$, it follows that $$\frac{u^h(x,t_i)}{hF(t_i)} < \frac{u^h(x_i,t_i)}{hF(t_i)} \leqslant 1 - \varepsilon, \quad \forall x \in \bar{\Omega}_{\zeta}.$$ This contradicts (3.10). On the other hand, it follows from (3.2) that $$\limsup_{t \to T} \frac{\|u(\cdot, t)\|_{\infty}^{h}}{hF(t)} \leqslant 1.$$ This combined with (3.11) yields $$\lim_{t \to T} \frac{\|u(\cdot, t)\|_{\infty}^h}{hF(t)} = 1.$$ Similarly, we can prove that the following holds uniformly on $\bar{\Omega}_{\zeta}$: $$\lim_{t \to T} \frac{v^k(x,t)}{kG(t)} = \lim_{t \to T} \frac{\|v(\cdot,t)\|_{\infty}^k}{kG(t)} = 1.$$ For the case (ii), we have h = 0. Define $$z(x,t) = F(t) - \ln u(x,t),$$ $\lambda(t) = \int_{\Omega} z(y,t)\varphi(y) \,dy.$ A direct computation shows that $$\lambda'(t) = \int_{\Omega} \left(f(t) - u^{-1}(y, t) u_t(y, t) \right) \varphi(y) \, \mathrm{d}y$$ $$= -\int_{\Omega} \left(u^{\alpha - 1}(y, t) \Delta u(y, t) \varphi(y) \right) \, \mathrm{d}y$$ $$= \int_{\Omega} -\left[\frac{1}{\alpha} \Delta u^{\alpha}(y, t) - (\alpha - 1) u^{-2 + \alpha}(y, t) |\nabla u|^2 \right] \varphi(y) \, \mathrm{d}y$$ $$\leq -\frac{1}{\alpha} \int_{\Omega} \varphi(y) \Delta u^{\alpha}(y, t) \, \mathrm{d}y$$ $$= \frac{\lambda_1}{\alpha} \int_{\Omega} u^{\alpha}(y, t) \varphi(y) \, \mathrm{d}y$$ $$= C \int_{\Omega} \exp \left\{ \alpha \left[F(t) - z(y, t) \right] \right\} \varphi(y) \, \mathrm{d}y.$$ Using (3.3), we have $$z(x,t) \geqslant -\tilde{M}, \quad (x,t) \in \Omega \times [0,T).$$ (3.12) Thus $$\lambda'(t) \leqslant C \int_{\Omega} \exp\{\alpha F(t)\} \varphi(y) \, \mathrm{d}y = C \exp\{\alpha F(t)\}.$$ Integrating from 0 to t, it yields $$\lambda(t) \leqslant \lambda(0) + C \int_0^t \exp\{\alpha F(s)\} \, \mathrm{d}s \leqslant C \left(1 + \int_0^t \exp\{\alpha F(s)\} \, \mathrm{d}s\right).$$ Similar to the proof of (3.5) we have $$\int_{C} |z(y,t)| \varphi(y) \, \mathrm{d}y \leqslant C \left(1 + \int_{0}^{t} \exp\{\alpha F(s)\} \, \mathrm{d}s \right). \tag{3.13}$$ For any given $\zeta > 0$, similar to the above we define $\Omega_{\zeta} = \{y \in \Omega : \operatorname{dist}(y, \partial \Omega) \geqslant \zeta\}$. By Lemma 3.1, $-\Delta z \leqslant 0$. Note that (3.13), we can use Lemma 4.5 in [15] and get $$\max_{\bar{\Omega}_{\zeta}} z(x,t) \leqslant \frac{C}{\zeta^{N+1}} \left(1 + \int_{0}^{t} \exp\{\alpha F(s)\} \, \mathrm{d}s \right). \tag{3.14}$$ It follows from (3.12) and (3.14) that $$-\frac{\tilde{M}}{F(t)} \leqslant \frac{z(x,t)}{F(t)} = 1 - \frac{\ln u(x,t)}{F(t)} \leqslant \frac{C}{\zeta^{N+1}F(t)} \left(1 + \int_{0}^{t} \exp\{\alpha F(s)\} ds\right), \quad x \in \bar{\Omega}_{\zeta}, \ t \in (0,T).$$ Without loss of generality, we assume that T > 1. By Theorem 2.1 we have $$F(t) = \int_{0}^{t} f(s) \, ds \le \int_{0}^{t} M_{2}^{q}(s) \, ds \le \eta^{-1} \theta \int_{0}^{t} (T - s)^{-1} \, ds$$ $$= \eta^{-1} \theta \ln(T - t)^{-1} + \eta^{-1} \theta \ln T \le \ln(T - t)^{-1} + \ln T.$$ Using (3.3), we get $$F(t) \geqslant C \ln M_1(t) \geqslant C \ln (T-t)^{-\rho}$$ as $t \to T$. Thus, for $x \in \bar{\Omega}_{\zeta}$ and $t \in (0, T)$, $$-\frac{\tilde{M}}{F(t)} \le 1 - \frac{\ln u(x,t)}{F(t)} \le \frac{C}{\zeta^{N+1} \ln(T-t)^{-\rho}} \left(1 + \int_{0}^{t} \exp\{\alpha \ln(T-s)^{-1} + \alpha \ln T\} \, \mathrm{d}s \right). \tag{3.15}$$ Using $1 - \alpha > 0$, it is easy to derive $$\lim_{t \to T} \frac{1}{\ln(T-t)^{-\rho}} \int_{0}^{t} \exp\{\alpha \ln(T-s)^{-1} + \alpha \ln T\} \, \mathrm{d}s = 0. \tag{3.16}$$ Note that $F(t) \to \infty$ as $t \to T$, it follows from (3.15) and (3.16) that the following holds uniformly on $\bar{\Omega}_{\zeta}$: $$\lim_{t \to T} \frac{\ln u(x,t)}{F(t)} = 1.$$ Similar to the proof of (3.11), we have $$\liminf_{t\to T} \frac{\|\ln u(\cdot,t)\|_{\infty}}{F(t)} \geqslant 1.$$ It follows from (3.3) that $$\limsup_{t \to T} \frac{\|\ln u(\cdot, t)\|_{\infty}}{F(t)} \leqslant 1.$$ Thus $$\lim_{t \to T} \frac{\|\ln u(\cdot, t)\|_{\infty}}{F(t)} = 1.$$ Similarly, we can prove that the following holds uniformly on $\bar{\Omega}_{\zeta}$: $$\lim_{t \to T} \frac{v^k(x,t)}{kG(t)} = \lim_{t \to T} \frac{\|v(\cdot,t)\|_{\infty}^k}{kG(t)} = 1.$$ The proofs of (iii) and (iv) are similarly. **Lemma 3.4.** Let (H1)–(H3) hold. Assume that $\alpha \rho < 1$, $\beta \theta < 1$, and $\Delta u_0 \leq 0$, $\Delta v_0 \leq 0$ on Ω . Then for any given positive constants δ , ε , and τ satisfying $0 < \delta$, $\varepsilon < 1$ and $\tau > 1$, there exists $\tilde{T} < T$ such that, for all $t \in [\tilde{T}, T)$, the following statements hold: (i) If $p = 1 - \alpha$ and $m < 1 - \beta$, then $$\begin{cases} n\delta F(t) \leqslant \ln\left\{\delta\varepsilon^{-1}\tau^{\frac{q}{k}}\right\} + \ln\frac{n}{q+k} + \frac{q+k}{k}\ln\left[kG(t)\right], \\ \ln\left\{\tau\varepsilon\delta^{\frac{q}{k}}\right\} + \ln\frac{n}{q+k} + \frac{q+k}{k}\ln\left[kG(t)\right] \leqslant n\tau F(t). \end{cases}$$ (ii) If $p < 1 - \alpha$ and $m = 1 - \beta$, then $$\begin{cases} q\delta G(t) \leqslant \ln\left\{\delta\varepsilon^{-1}\tau^{\frac{n}{h}}\right\} + \ln\frac{q}{n+h} + \frac{n+h}{h}\ln\left[hF(t)\right],\\ \ln\left\{\tau\varepsilon\delta^{\frac{n}{h}}\right\} + \ln\frac{q}{n+h} + \frac{n+h}{h}\ln\left[hF(t)\right] \leqslant q\tau G(t). \end{cases}$$ (iii) If $p = 1 - \alpha$ and $m = 1 - \beta$, then $$n\delta F(t) \leqslant \ln \frac{n\delta}{\varepsilon q \tau} + \tau q G(t), \qquad q\delta G(t) + \ln \frac{n\varepsilon \tau}{\delta q} \leqslant \tau n F(t).$$ **Proof.** (i) $p = 1 - \alpha$, $m < 1 - \beta$. By (ii) of Lemma 3.3, we know that for any given compact subset $\Omega_0 \in \Omega$, which contains x_0 , there exists $0 < t_0 < T$ such that the following hold on $\bar{\Omega}_0$: $$\delta F(t) \leqslant \ln u(x,t) \leqslant \tau F(t), \qquad \delta k G(t) \leqslant v^k(x,t) \leqslant \tau k G(t), \quad t \in [t_0,T).$$ Therefore, $$\exp\{n\delta F(t)\} \leqslant G'(t) \leqslant \exp\{n\tau F(t)\}, \qquad \left[\delta kG(t)\right]^{\frac{q}{k}} \leqslant F'(t) \leqslant \left[\tau kG(t)\right]^{\frac{q}{k}}, \quad t \in [t_0, T).$$ It follows that $$\frac{\left[\delta kG(t)\right]^{\frac{q}{k}}}{\exp\{n\tau F(t)\}} \leqslant \frac{\mathrm{d}F(t)}{\mathrm{d}G(t)} \leqslant \frac{\left[\tau kG(t)\right]^{\frac{q}{k}}}{\exp\{n\delta F(t)\}}, \quad t \in [t_0, T). \tag{3.17}$$ In view of the right-hand side of (3.17), we have $$\exp\{n\delta F(t)\}\,\mathrm{d}F(t) \leqslant \left[\tau kG(t)\right]^{\frac{q}{k}}\,\mathrm{d}G(t),\quad t\in[t_0,T).$$ Integrating the above inequality from t_0 to t, we get $$\frac{1}{n\delta} \exp\{n\delta F(t)\}\Big|_{t_0}^t \leqslant (\tau k)^{\frac{q}{k}} \frac{k}{k+a} G^{\frac{k+q}{k}}(t)|_{t_0}^t \leqslant (\tau k)^{\frac{q}{k}} \frac{k}{k+a} G^{\frac{k+q}{k}}(t).$$ Due to $\lim_{t\to T} F(t) = \infty$, there exists \tilde{t}_0 : $t_0 \le \tilde{t}_0 < T$ such that $$\frac{1}{n\delta}\exp\{n\delta F(t_0)\} \leqslant (1-\varepsilon)\frac{1}{n\delta}\exp\{n\delta F(t)\}, \quad t \in [\tilde{t}_0, T).$$ Hence. $$\frac{\varepsilon}{n\delta}\exp\{n\delta F(t)\} \leqslant \tau^{\frac{q}{k}} \frac{1}{k+q} [kG(t)]^{\frac{q+k}{k}}, \quad t \in [\tilde{t}_0, T).$$ Thus we have $$n\delta F(t) \leqslant \ln\left\{\delta\varepsilon^{-1}\tau^{\frac{q}{k}}\right\} + \ln\frac{n}{q+k} + \frac{q+k}{k}\ln\left[kG(t)\right], \quad t \in [\tilde{t}_0, T). \tag{3.18}$$ Applying the similar analysis as the above to the left-hand side of (3.17), there exists t_0^* : $t_0 \le t_0^* < T$ such that, for $t \in [t_0^*, T)$, $$\ln\left\{\tau\varepsilon\delta^{\frac{q}{k}}\right\} + \ln\frac{n}{q+k} + \frac{q+k}{k}\ln\left[kG(t)\right] \leqslant n\tau F(t). \tag{3.19}$$ Set $\tilde{T} = \max{\{\tilde{t}_0, t_0^*\}}$, then (3.18) and (3.19) hold for $t \in [\tilde{T}, T)$. Analogous to the case (i), we can draw the cases (ii) and (iii). \Box **Proof of Theorem 3.1.** For the case (i). By (i) of Lemma 3.3 we have that, as $t \to T$, $$F'(t) = v^q(x_0, t) \sim [kG(t)]^{\frac{q}{k}}, \qquad G'(t) = u^n(x_0, t) \sim [hF(t)]^{\frac{n}{h}}.$$ It follows that $$\left[kG(t)\right]^{\frac{k+q}{k}} \sim \frac{(k+q)}{(h+n)} \left[hF(t)\right]^{\frac{h+n}{h}}.$$ Consequently, $$F(t) \sim h^{-1} S_1^h (T-t)^{-h\rho}, \qquad G(t) \sim k^{-1} S_2^k (T-t)^{-k\theta}.$$ This fact combined with the conclusion (i) of Lemma 3.3 asserts that the following hold uniformly on any compact subset of Ω : $$\lim_{t \to T} \frac{u(x,t)}{(T-t)^{-\rho}} = S_1, \qquad \lim_{t \to T} \frac{v(x,t)}{(T-t)^{-\theta}} = S_2.$$ For the case (ii). Choose sequences $\{\delta_i\}_{i=1}^{\infty}$, $\{\varepsilon_i\}_{i=1}^{\infty}$ and $\{\tau_i\}_{i=1}^{\infty}$ satisfying $0 < \delta_i$, $\varepsilon_i < 1$, $\tau_i > 1$ and $\delta_i \to 1$, $\varepsilon_i \to 1$, $\tau_i \to 1$. Putting $(\delta, \varepsilon, \tau) = (\delta_i, \varepsilon_i, \tau_i)$ in Lemma 3.4, we get a sequence $\{T_i\}_{i=1}^{\infty}$ satisfying $T_i < T$ and $T_i \to T$, such that the corresponding conclusion (i) of Lemma 3.4 holds for $T_i \leqslant t < T$. In view of $p = 1 - \alpha$ and $m < 1 - \beta$, by the second conclusion of (ii) of Lemma 3.3, there exists $\{\tilde{T}_i\}_{i=1}^{\infty}$ with $\tilde{T}_i < T$, $\tilde{T}_i \to T$, such that $$\left[\delta_{i}kG(t)\right]^{\frac{q}{k}} \leqslant v^{q}(x_{0}, t) = f(t) = F'(t) \leqslant \left[\tau_{i}kG(t)\right]^{\frac{q}{k}}, \quad \forall \tilde{T}_{i} \leqslant t < T.$$ (3.20) Set $T_i^* = \max\{T_i, \tilde{T}_i\}$. Then for any $T_i^* \le t < T$, (3.20) and the conclusion (i) of Lemma 3.4 hold. Thus we have $$F'(t) \geqslant \left[\delta_{i}kG(t)\right]^{\frac{q}{k}} \geqslant \delta_{i}^{\frac{q}{k}} \exp\left\{\frac{qn\delta_{i}}{q+k}F(t)\right\} \delta_{i}^{-\frac{q}{q+k}} \left(\frac{(q+k)\varepsilon_{i}}{n}\right)^{\frac{q}{q+k}} \tau_{i}^{-\frac{q^{2}}{k(k+q)}}$$ $$= \left(\frac{\delta_{i}}{\tau_{i}}\right)^{\frac{q^{2}}{k(k+q)}} \left(\frac{(q+k)\varepsilon_{i}}{n}\right)^{\frac{q}{q+k}} \exp\left\{\frac{qn\delta_{i}}{q+k}F(t)\right\},$$ $$F'(t) \leqslant \left(\frac{\tau_{i}}{\delta_{i}}\right)^{\frac{q^{2}}{k(k+q)}} \left(\frac{k+q}{n\varepsilon_{i}}\right)^{\frac{q}{k+q}} \exp\left\{\frac{qn\tau_{i}}{q+k}F(t)\right\}.$$ Hence, for $T_i^* \leq t < T$, $$\begin{cases} \exp\left\{-\frac{qn\delta_{i}}{q+k}F(t)\right\}F'(t) \geqslant \left(\frac{\delta_{i}}{\tau_{i}}\right)^{\frac{q^{2}}{k(k+q)}}\left(\frac{(q+k)\varepsilon_{i}}{n}\right)^{\frac{q}{q+k}}, \\ \exp\left\{-\frac{qn\tau_{i}}{q+k}F(t)\right\}F'(t) \leqslant \left(\frac{\tau_{i}}{\delta_{i}}\right)^{\frac{q^{2}}{k(k+q)}}\left(\frac{k+q}{n\varepsilon_{i}}\right)^{\frac{q}{k+q}}. \end{cases} (3.21)$$ Let $A = -\ln qn + \frac{k}{q+k}\ln(q+k) + \frac{q}{q+k}\ln n$ and using $\lim_{t\to T} F(t) = \infty$, integrating (3.21) from t to T, $$\frac{1}{\tau_i} \left(c_i + \left| \ln(T - t) \right| \right) \leqslant \frac{qn}{q + k} F(t) \leqslant \frac{1}{\delta_i} \left(C_i + \left| \ln(T - t) \right| \right), \tag{3.22}$$ where $$c_{i} = A - \ln \tau_{i} - \frac{q^{2}}{(q+k)k} \ln \frac{\tau_{i}}{\delta_{i}} + \frac{q}{q+k} \ln \varepsilon_{i},$$ $$C_{i} = A - \ln \delta_{i} - \frac{q^{2}}{(q+k)k} \ln \frac{\delta_{i}}{\tau_{i}} + \frac{q}{q+k} \ln \varepsilon_{i}^{-1}.$$ By joining (3.22) and (i) of Lemma 3.4, it follows that, for $T_i^* \leq t < T$, $$\frac{\delta_i}{\tau_i} \left\{ \hat{c}_i + \left| \ln(T - t) \right| \right\} \leqslant \frac{q}{k} \ln \left\{ kG(t) \right\} \leqslant \frac{\tau_i}{\delta_i} \left\{ \hat{C}_i + \left| \ln(T - t) \right| \right\}, \tag{3.23}$$ where $$\hat{c}_{i} = c_{i} - \frac{\tau_{i}q}{\delta_{i}(q+k)} \ln\left\{\delta_{i}\varepsilon_{i}^{-1}\tau_{i}^{\frac{q}{k}}\right\} - \frac{\tau_{i}q}{\delta_{i}(q+k)} \ln\left\{\frac{n}{q+k}\right\},$$ $$\hat{C}_{i} = C_{i} - \frac{\delta_{i}q}{\tau_{i}(q+k)} \ln\left\{\varepsilon_{i}\tau_{i}\delta_{i}^{\frac{q}{k}}\right\} - \frac{\delta_{i}q}{\tau_{i}(q+k)} \ln\left\{\frac{n}{q+k}\right\}.$$ It follows from (3.22) and (3.23) that, when $T_i^* \leq t < T$, $$\begin{cases} \frac{c_{i} + |\ln(T - t)|}{\tau_{i} |\ln(T - t)|} \leqslant \frac{qnF(t)}{(q + k)|\ln(T - t)|} \leqslant \frac{C_{i} + |\ln(T - t)|}{\delta_{i} |\ln(T - t)|}, \\ \frac{\delta_{i} \{\hat{c}_{i} + |\ln(T - t)|\}}{\tau_{i} |\ln(T - t)|} \leqslant \frac{q \ln\{kG(t)\}}{k|\ln(T - t)|} \leqslant \frac{\tau_{i} \{\hat{C}_{i} + |\ln(T - t)|\}}{\delta_{i} |\ln(T - t)|}. \end{cases} (3.24)$$ Note that δ_i , ε_i , $\tau_i \to 1$, and $$c_i, C_i \to A, \qquad \hat{c}_i, \hat{C}_i \to A - \frac{q}{q+k} \ln \left\{ \frac{n}{q+k} \right\}.$$ Letting $i \to \infty$ in (3.24), it yields $$\lim_{t \to T} \frac{\ln\{kG(t)\}}{|\ln(T-t)|} = \frac{k}{q}, \qquad \lim_{t \to T} \frac{F(t)}{|\ln(T-t)|} = \frac{q+k}{qn}.$$ (3.25) It follows from the second conclusion of (ii) of Lemma 3.3 that $$k \ln v(x,t) \sim \ln[kG(t)]$$ uniformly on any compact subset of Ω . Thanks to the first conclusion of (3.25), $$\lim_{t \to T} \frac{\ln v(x,t)}{|\ln(T-t)|} = \frac{1}{q}$$ holds uniformly on any compact subset of Ω . Similarly, $$\lim_{t \to T} \frac{\ln u(x,t)}{|\ln(T-t)|} = \frac{q+k}{qn}$$ holds uniformly on any compact subset of Ω . By the same way, we can prove conclusions (iii) and (iv). \Box ## 4. Blow-up set and blow-up rate in space: A special case In this section, we study the blow-up set and the blow-up rates in space with respect to the radial variable of blow-up solution when the domain Ω is a ball. We need the following additional assumption: (H4) $\Omega = B_R(0)$, $x_0 = 0$, and $u_0(x)$ and $v_0(x)$ are radially symmetric and non-increasing continuous functions. Under the above assumptions (H1), (H2) and (H4), we have u(x,t) = u(r,t), v(x,t) = v(r,t) with r = |x|, and $$\begin{split} u_t \geqslant 0, & v_t \geqslant 0, & u_r \leqslant 0, & v_r \leqslant 0, & (r,t) \in (0,R) \times (0,T), \\ u(0,t) &= \max_{\bar{\Omega}} u(x,t), & v(0,t) &= \max_{\bar{\Omega}} v(x,t). \end{split}$$ **Theorem 4.1.** Assume that (H1), (H2) and (H4) hold. If p > 1 and m > 1, then x = 0 is the only blow-up point of (u, v). **Proof.** We use the ideas of [7] and [11] to complete the proof. Without loss of generality, we assume that u blows up in finite time T. On the contrary we assume that u blows up in another point $x' \neq 0$, i.e. $\lim_{t \to T} u(x', t) = \infty$. Let $r^* = |x'| > 0$. Because of u(r, t) is non-increasing in r, we have $\lim_{t \to T} u(r, t) = \infty$ for any $r \in [0, r^*]$. Denote $B_R^{\sigma}(0) = \{x \in B_R(0): x_1 > \sigma\} \text{ with } \sigma = r^*/3 > 0.$ Let $$J(x,t) = u_{x_1} + \psi(x_1)u^s(x,t), \quad (x,t) \in \overline{B_R^{\sigma}(0)} \times [0,T),$$ where 1 < s < p, $\psi(x_1) = \varepsilon(x_1 - \sigma)^2$, and $\varepsilon > 0$ will be determined later. The carefully calculation gives $$J_{t} - u^{\alpha} \Delta J = \left(u^{p+\alpha} v^{q}(0,t)\right)_{x_{1}} + \alpha u_{x_{1}} u^{-1} \left(u_{t} - u^{p+\alpha} v^{q}(0,t)\right) + s \psi(x_{1}) u^{s-1} \left(u_{t} - u^{\alpha} \Delta u\right)$$ $$- 2\varepsilon u^{s+\alpha} - 4s\varepsilon u^{s+\alpha-1} (x_{1} - \sigma) u_{x_{1}} - s(s-1) \psi(x_{1}) u^{s+\alpha-2} |\nabla u|^{2}$$ $$\leq (p+\alpha) u^{p+\alpha-1} v^{q}(0,t) u_{x_{1}} - \alpha u^{p+\alpha-1} v^{q}(0,t) u_{x_{1}} + s \psi(x_{1}) u^{s+p+\alpha-1} v^{q}(0,t)$$ $$- 2\psi(x_{1}) u^{s+\alpha} (x_{1} - \sigma)^{-2} - 4s\varepsilon u^{s+\alpha-1} (x_{1} - \sigma) u_{x_{1}}$$ $$= \left[p u^{p+\alpha-1} v^{q}(0,t) - 4\varepsilon s(x_{1} - \sigma) u^{s+\alpha-1} \right] J$$ $$- \psi(x_{1}) u^{s+\alpha} \left[(p-s) u^{p-1} v^{q}(0,t) - 4\varepsilon s(x_{1} - \sigma) u^{s-1} + 2(x_{1} - \sigma)^{-2} \right]$$ $$\leq c(x,t) J - \psi(x_{1}) u^{s+\alpha} \left[(p-s) u^{p-1} v^{q}(0,t) - 4\varepsilon s R u^{s-1} + 2R^{-2} \right], \tag{4.1}$$ where $c(x,t) = pu^{p+\alpha-1}v^q(0,t) - 4\varepsilon s(x_1 - \sigma)u^{s+\alpha-1}$. Notice that $v(0,t) \geqslant v(0,0) > 0$, u(r,t) > 0 for $(r,t) \in [0,R) \times [0,T)$ and 1 < s < p, there exists $0 < \varepsilon_1 < 1$ such that for $0 < \varepsilon \leqslant \varepsilon_1$, $$(p-s)u^{p-1}v^{q}(0,t) - 4\varepsilon sRu^{s-1} + 2R^{-2} \geqslant 0.$$ It follows from (4.1) that $$J_t - u^{\alpha} \Delta J - c(x, t)J \leq 0, \quad (x, t) \in B_R^{\sigma}(0) \times (0, T).$$ We claim that u_{0r} is non-positive and non-trivial (otherwise $u_0(r) \equiv 0$, hence $u \equiv 0$ which contradicts the assumption that u blows up in finite time T). By the standard method we can deduce that $u_r(r,t) < 0$ in $\overline{B_R^{\sigma}(0)} \times (0,T)$. Thus $u_{x_1}(x,t) < 0$ in $\overline{B_R^{\sigma}(0)} \times (0,T)$. Hence $$J(x,t) = u_{x_1}(x,t) < 0, \quad (x,t) \in \partial B_R^{\sigma} \times (0,T).$$ Taking t_0 : $0 < t_0 < T$ and considering t_0 as the initial time, we may assume that $u_{x_1}(x, 0) < 0$ on $\overline{B_R^{\sigma}(0)}$. So, there exists a constant $0 < \varepsilon_2 < 1$, such that when $0 < \varepsilon \leqslant \varepsilon_2$, $$J(x,0) = u_{x_1}(x,0) + \psi(x_1)u_0^s(x) \leqslant u_{x_1}(x,0) + \varepsilon R^2 u_0^s(0) \leqslant 0, \quad x \in \overline{B_R^{\sigma}(0)}.$$ Choose $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$. Since for any fixed T_0 : $0 < T_0 < T$, the function c(x, t) is bounded on $\overline{B_R^{\sigma}(0)} \times [0, T_0]$, by the maximum principle we have $$J(x,t) \leq 0$$, $(x,t) \in B_R^{\sigma}(0) \times [0, T_0]$, and so $$J(x,t) \leqslant 0$$, $(x,t) \in B_R^{\sigma}(0) \times [0,T)$. That is $$\psi(x_1) \leqslant -u^{-s}(x,t)u_{x_1}(x,t), \quad (x,t) \in B_R^{\sigma}(0) \times [0,T). \tag{4.2}$$ Let $y = (2\sigma, 0, ...)$ and $z = (r^*, 0, ...)$. Then $y, z \in B_R^{\sigma}(0)$. Integrating (4.2) from y to z $$0 < \int_{y}^{z} \psi(x_1) dx_1 \leqslant \frac{1}{s-1} u^{1-s}(z,t), \quad 0 < t < T.$$ Since $\lim_{t\to T} u^{1-s}(z,t) = 0$, we get a contradiction from the above inequality. \Box Under some additional assumptions on the initial data, the blow-up rate in space can be evaluated as follows. **Theorem 4.2.** Assume that p > 1, m > 1 and (H1), (H2) and (H4) hold. Suppose that there exist c > 0 and $0 \le \xi \le 1$ such that $$u_0'(r) \leqslant -cr^{\xi}, \qquad v_0'(r) \leqslant -cr^{\xi}, \quad r \in [0, R].$$ Then $$u(r,t) \leqslant Cr^{-\gamma_1}, \quad v(r,t) \leqslant Cr^{-\gamma_2}, \quad (r,t) \in (0,R] \times [0,T),$$ hold for some constant C > 0 and any $\gamma_1 > 2/(p-1)$, $\gamma_2 > 2/(m-1)$. **Proof.** We only give an evaluation of u(r, t). Similar as Theorem 4.1, we still apply the ideas of [7] and [11] to discuss the above statement. Let $$J(r,t) = u_r(r,t) + c(r)u^{\ell}(r,t), \quad (r,t) \in [0,R] \times [0,T),$$ where $1 < \ell < p$, $c(r) = \varepsilon r^{1+\delta}$, $\delta > 0$, and $\varepsilon > 0$ to be determined later. A direct computation shows that $$\begin{split} J_t - u^\alpha \bigg(\frac{N-1}{r} J_r + J_{rr} \bigg) \\ &= \bigg[u_t - u^\alpha \bigg(\frac{N-1}{r} u_r + u_{rr} \bigg) \bigg]_r + \alpha u^{\alpha-1} u_r \bigg(\frac{N-1}{r} u_r + u_{rr} \bigg) - u^\alpha \frac{N-1}{r^2} u_r \\ &+ \ell c(r) u^{\ell-1} \bigg[u_t - u^\alpha \bigg(\frac{N-1}{r} u_r + u_{rr} \bigg) \bigg] - (N-1) r^{-1} c'(r) u^{\ell+\alpha} \\ &- c''(r) u^{\ell+\alpha} - 2\ell c'(r) u^{\ell+\alpha-1} u_r - \ell(\ell-1) c(r) u^{\ell+\alpha-2} u_r^2 \\ &\leqslant \bigg[p u^{p+\alpha-1} v^q(0,t) - u^\alpha (N-1) r^{-2} - 2\ell (1+\delta) \varepsilon r^\delta u^{\ell-1+\alpha} \bigg] u_r \\ &+ \ell c(r) u^{\ell-1+p+\alpha} v^q(0,t) - u^{\alpha+\ell} (N-1) r^{-2} (1+\delta) c(r) - (1+\delta) \delta r^{-2} c(r) u^{\ell+\alpha} \\ &= b(r,t) J - c(r) u^{\ell+\alpha} \bigg[p u^{p-1} v^q(0,t) - (N-1) r^{-2} - 2\ell (1+\delta) \varepsilon r^\delta u^{\ell-1} \\ &- \ell u^{-1+p} v^q(0,t) + (N-1) r^{-2} (1+\delta) + (1+\delta) \delta r^{-2} \bigg] \\ &= b(r,t) J - c(r) u^{\ell+\alpha} \bigg[(p-\ell) u^{p-1} v^q(0,t) - 2\ell (1+\delta) \varepsilon r^\delta u^{\ell-1} + r^{-2} \delta(N+\delta) \bigg] \\ &\leqslant b(r,t) J - c(r) u^{\ell+\alpha} \bigg[(p-\ell) u^{p-1} v^q(0,t) - 2\ell (1+\delta) \varepsilon R^\delta u^{\ell-1} + R^{-2} \delta(N+\delta) \bigg], \end{split}$$ where $b(r,t) \equiv pu^{p+\alpha-1}v^q(0,t) - (N-1)r^{-2}u^\alpha - 2\ell(1+\delta)\varepsilon r^\delta u^{\ell+\alpha-1}$. In view of v(r,t) > 0, $v(0,t) = \max_{0 \le r \le R} v(r,t)$, and $v(0,t) \ge v(0,0) > 0$, $1 < \ell < p$, there exists $0 < \varepsilon_1 < 1$ such that, for $0 < \varepsilon \le \varepsilon_1$, $$(p-\ell)u^{p-1}v^{q}(0,t) + \delta(N+\delta)R^{-2} - 2\ell(1+\delta)\varepsilon R^{\delta}u^{\ell-1} \geqslant 0, \quad (r,t) \in (0,R) \times (0,T). \tag{4.3}$$ Thus $$J_t - u^{\alpha} \left(\frac{N-1}{r} J_r + J_{rr} \right) - b(r,t) J \leqslant 0, \quad (r,t) \in (0,R) \times (0,T).$$ In addition, as u(r, t) > 0 and u(R, t) = 0, we see that $u_r(R, t) \le 0$. Therefore $$J(0,t) = u_r(0,t) = 0,$$ $J(R,t) = u_r(R,t) \le 0,$ $t \in (0,T).$ For t = 0. Note that $0 \le \xi \le 1$, there exists $0 < \varepsilon_2 < 1$ such that, for $0 < \varepsilon \le \varepsilon_2$, $$J(r,0) = u_0'(r) + \varepsilon r^{1+\delta} u_0^{\ell}(r) \leqslant r^{\xi} \left[-c + \varepsilon R^{1+\delta-\xi} u_0^{\ell}(0) \right] \leqslant 0, \quad r \in [0,R]. \tag{4.4}$$ Choose $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$, then (4.3) and (4.4) hold. Similar to the proof of Theorem 4.1, we have $J(r, t) \leq 0$, i.e. $$-u^{-\ell}u_r \geqslant \varepsilon r^{1+\delta}, \quad (r,t) \in [0,R] \times [0,T).$$ Integrating the above inequality from 0 to r we have $$u(r,t) \leqslant \left(\frac{\varepsilon(\ell-1)}{2+\delta} r^{2+\delta} + u^{1-\ell}(0,t)\right)^{-1/(\ell-1)} \leqslant \left(\frac{\varepsilon(\ell-1)}{2+\delta}\right)^{-1/(\ell-1)} r^{-\frac{2+\delta}{\ell-1}}, \quad (x,t) \in (0,R] \times [0,T).$$ Note that $\delta > 0$ and $1 < \ell < p$ are arbitrary, and $(2 + \delta)/(\ell - 1) \to 2/(p - 1)$ as $\delta \to 0$ and $\ell \to p$, and $(2 + \delta)/(\ell - 1) \to \infty$ as $\ell \to 1$. For any $\gamma_1 > 2/(p - 1)$, there exist $\delta > 0$ and $\ell \in (1, p)$ such that $\gamma_1 = (2 + \delta)/(\ell - 1)$. Hence $u(r, t) \leq Cr^{-\gamma_1}$ for any $\gamma_1 > 2/(p - 1)$. \square ## Acknowledgments The authors are grateful to the referee and the associate editor for their helpful comments and suggestions. #### References - [1] J.M. Chadam, A. Piece, H.M. Yin, The blow-up property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl. 169 (1992) 313–328. - [2] Y.P. Chen, C.H. Xie, Blow-up for porous medium equation with a localized source, Appl. Math. Comput. 159 (2004) 79–93. - [3] W.B. Deng, Global existence and finite time blow-up for a degenerate reaction-diffusion system, Nonlinear Anal. 60 (5) (2005) 977–991. - [4] L.L. Du, Blow-up for a degenerate reaction-diffusion system with nonlinear localized sources, J. Math. Anal. Appl. 324 (2006) 304-320. - [5] L.L. Du, A further blow-up analysis for a localized porous medium equation, Appl. Math. Comput. 179 (2006) 200–208. - [6] A. Friedman, B. Mcleod, Blow-up of solutions of nonlinear degenerate parabolic equations, Arch. Ration. Mech. Anal. 96 (1986) 55-80. - [7] A. Friedman, B. Mcleod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985) 425-447. - [8] F.C. Li, S.X. Huang, C.H. Xie, Global existence and blow-up of solutions to a nonlocal reaction–diffusion system, Discrete Contin. Dyn. Syst. 9 (1992) 1519–1532. - [9] F.C. Li, C.H. Xie, Existence and blow-up for a degenerate parabolic equation with nonlocal source, Nonlinear Anal. 52 (2003) 523-534. - [10] H.A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 32 (1990) 262–288. - [11] H.L. Li, M.X. Wang, Properties of blow-up solutions to a parabolic system with nonlinear localized terms, Discrete Contin. Dyn. Syst. 13 (2005) 683–700 - [12] H.L. Li, M.X. Wang, Uniform blow-up profiles and boundary layer for a parabolic system with localized nonlinear reaction terms, Sci. China Ser. A 48 (2) (2005) 185–197. - [13] C.V. Pao, Blow-up of solution for a nonlocal reaction-diffusion problem in combustion theory, J. Math. Anal. Appl. 166 (1992) 591-600. - [14] P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (6) (1998) 1301–1334. - [15] P. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differential Equations 153 (1999) 374–406. - [16] X.F. Song, S.N. Zheng, Z.X. Jiang, Blow-up analysis for a nonlinear diffusion systems, Z. Angew. Math. Phys. 56 (2005) 1–10. - [17] M.X. Wang, C.H. Xie, A degenerate and strongly coupled quasilinear parabolic system not in divergence form, Z. Angew. Math. Phys. 55 (2004) 741–755. - [18] M.X. Wang, Y.M. Wang, Properties of positive solutions for non-local reaction—diffusion problem, Math. Methods Appl. Sci. 19 (1996) 1141–1156. - [19] S. Wang, M.X. Wang, C.H. Xie, A nonlinear degenerated diffusion equation not in divergence form, Z. Angew. Math. Phys. 51 (2000) 149– 159 - [20] S.N. Zheng, L.D. Wang, Blow-up rate and profile for a degenerate parabolic system coupled via nonlocal sources, Comput. Math. Appl. 52 (2006) 1387–1402.